1
|
Breitfelder AK, Schrödl W, Baums CG, Alber G, Müller U. The immunoglobulin M-degrading enzyme of Streptococcus suis (Ide Ssuis) leads to long-lasting inhibition of the activation of porcine IgM-secreting B cells. Vet Res 2024; 55:114. [PMID: 39313819 PMCID: PMC11421183 DOI: 10.1186/s13567-024-01363-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/12/2024] [Indexed: 09/25/2024] Open
Abstract
Streptococcus suis (S. suis) is one of the most important porcine pathogens, causing severe pathologies such as meningitis or polyarthritis. It is also a very successful colonizer of mucosal surfaces. The IgM-degrading enzyme of S. suis (IdeSsuis) specifically cleaves porcine IgM, which results in complement evasion. On the basis of our previous finding that IdeSsuis also cleaves the IgM B cell receptor in vitro, we verified IgM B cell receptor cleavage ex vivo in whole regional lymph nodes and investigated the working hypothesis that this IgM B cell receptor cleavage results in a long-lasting impaired B cell function. The number of IgM-secreting cells was determined via ELISpot analysis after porcine peripheral blood mononuclear cells had initially been treated with different recombinant S. suis proteins and subsequently stimulated with interleukin-2 and the toll-like receptor 7/8 ligand R848. Compared with treatment with medium or recombinant muramidase-released protein, treatment with rIdeSsuis but also with a cleavage-deficient variant led to a reduction in the number of IgM-secreting cells as well as the level of secreted IgM. Flow cytometry analysis confirmed that the IgM B cell receptor was cleaved only by rIdeSsuis, and the receptor recovered to pretreatment levels on day 2 after treatment. Flow cytometry analysis of B and T cells incubated with fluorescein-labelled recombinant proteins revealed that different rIdeSsuis variants bind specifically to B cells, most prominently the cleavage-deficient variant. Our results indicate that in vitro interference of rIdeSsuis with the IgM B cell receptor results in long-lasting impaired IgM secretion by B cells after toll-like receptor activation. Further studies are warranted to prove that the modulation of B cell function by IdeSsuis could play a role in vivo.
Collapse
Affiliation(s)
- Annika Katharina Breitfelder
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany.
| | - Wieland Schrödl
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Christoph Georg Baums
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Gottfried Alber
- Institute of Immunology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, BBZ, University of Leipzig, Leipzig, Germany
| | - Uwe Müller
- Institute of Immunology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, BBZ, University of Leipzig, Leipzig, Germany
| |
Collapse
|
2
|
López-Figueroa C, Cano E, Navarro N, Pérez-Maíllo M, Pujols J, Núñez JI, Vergara-Alert J, Segalés J. Clinical, Pathological and Virological Outcomes of Tissue-Homogenate-Derived and Cell-Adapted Strains of Porcine Epidemic Diarrhea Virus (PEDV) in a Neonatal Pig Model. Viruses 2023; 16:44. [PMID: 38257745 PMCID: PMC10819582 DOI: 10.3390/v16010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is characterized by diarrhea, vomiting, dehydration, and high mortality rates in neonatal piglets. Two distinct genogroups, S-INDEL (G1a, G1b) and non-S INDEL (G2a, G2b, and G2c), circulate worldwide and are characterized by varying degrees of virulence. Here, we compared the early pathogenesis of a PEDV S-INDEL strain obtained from intestine homogenate (CALAF-HOMOG) or adapted to cell culture by 22 passages (CALAF-ADAP) and a virulent non-S INDEL strain (PEDV-USA) in newborn piglets. After orogastric inoculation of PEDV strains, body weight, temperature and clinical signs were monitored for 48 hpi. Pathological studies were performed at 48 hpi and RNA extracts from jejunal content (at 48 hpi) and rectal swabs (at 0 and 48 hpi) were tested for the presence of PEDV RNA as well as sequenced and compared to the inoculum. Piglets inoculated with PEDV-USA and CALAF-HOMOG isolates showed more severe weight loss, diarrhea, villi fusion and atrophy compared to CALAF-ADAP inoculated piglets. The viral load of rectal swabs was higher in the PEDV-USA inoculated group, followed by CALAF-HOMOG and CALAF-ADAP isolates. Similarly, viral RNA load in jejunal content was comparable among PEDV-USA and CALAF-HOMOG inoculated piglets and higher than that of CALAF-ADAP ones. The comparison of three full PEDV sequences of the inocula with the corresponding ones of pigs after 48 hpi yielded a nucleotide identity >99.9%. This study highlights variations in virulence among S-INDEL and non-S INDEL strains and between S-INDEL isolates obtained from homogenate and cell culture.
Collapse
Affiliation(s)
- Carlos López-Figueroa
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain; (C.L.-F.); (E.C.); (N.N.); (M.P.-M.); (J.P.); (J.I.N.)
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Barcelona, Spain
| | - Esmeralda Cano
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain; (C.L.-F.); (E.C.); (N.N.); (M.P.-M.); (J.P.); (J.I.N.)
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Barcelona, Spain
| | - Núria Navarro
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain; (C.L.-F.); (E.C.); (N.N.); (M.P.-M.); (J.P.); (J.I.N.)
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Barcelona, Spain
| | - Mónica Pérez-Maíllo
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain; (C.L.-F.); (E.C.); (N.N.); (M.P.-M.); (J.P.); (J.I.N.)
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Barcelona, Spain
| | - Joan Pujols
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain; (C.L.-F.); (E.C.); (N.N.); (M.P.-M.); (J.P.); (J.I.N.)
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Barcelona, Spain
| | - José I. Núñez
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain; (C.L.-F.); (E.C.); (N.N.); (M.P.-M.); (J.P.); (J.I.N.)
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Barcelona, Spain
| | - Júlia Vergara-Alert
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain; (C.L.-F.); (E.C.); (N.N.); (M.P.-M.); (J.P.); (J.I.N.)
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Barcelona, Spain
| | - Joaquim Segalés
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain; (C.L.-F.); (E.C.); (N.N.); (M.P.-M.); (J.P.); (J.I.N.)
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Barcelona, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
3
|
Triacetyl Resveratrol Inhibits PEDV by Inducing the Early Apoptosis In Vitro. Int J Mol Sci 2022; 23:ijms232314499. [PMID: 36498827 PMCID: PMC9737061 DOI: 10.3390/ijms232314499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
PEDV represents an ancient Coronavirus still causing huge economic losses to the porcine breeding industry. Resveratrol has excellent antiviral effects. Triacetyl resveratrol (TCRV), a novel natural derivative of resveratrol, has been recently discovered, and its pharmacological effects need to be explored further. This paper aims to explore the relationship between PEDV and TCRV, which offers a novel strategy in the research of antivirals. In our study, Vero cells and IPEC-J2 cells were used as an in vitro model. First, we proved that TCRV had an obvious anti-PEDV effect and a strong inhibitory effect at different time points. Then, we explored the mechanism of inhibition of PEDV infection by TCRV. Our results showed that TCRV could induce the early apoptosis of PEDV-infected cells, in contrast to PEDV-induced apoptosis. Moreover, we observed that TCRV could promote the expression and activation of apoptosis-related proteins and release mitochondrial cytochrome C into cytoplasm. Based on these results, we hypothesized that TCRV induced the early apoptosis of PEDV-infected cells and inhibited PEDV infection by activating the mitochondria-related caspase pathway. Furthermore, we used the inhibitors Z-DEVD-FMK and Pifithrin-α (PFT-α) to support our hypothesis. In conclusion, the TCRV-activated caspase pathway triggered early apoptosis of PEDV-infected cells, thereby inhibiting PEDV infections.
Collapse
|
4
|
Puente H, Díaz I, Arguello H, Mencía-Ares Ó, Gómez-García M, Pérez-Pérez L, Vega C, Cortey M, Martín M, Rubio P, Carvajal A. Characterization and cross-protection of experimental infections with SeCoV and two PEDV variants. Transbound Emerg Dis 2022; 69:3225-3237. [PMID: 35918058 DOI: 10.1111/tbed.14674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/13/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023]
Abstract
The aim of this study was to characterize the infection of weaned pigs with swine enteric coronavirus (SeCoV) - a chimeric virus most likely originated from a recombination event between porcine epidemic diarrhoea virus (PEDV) and transmissible gastroenteritis virus, or its mutant porcine respiratory coronavirus - and two PEDV G1b variants, including a recently described recombinant PEDV-SeCoV (rPEDV-SeCoV), as well as to determine the degree of cross-protection achieved against the rPEDV-SeCoV. For this purpose, forty-eight 4-week-old weaned pigs were randomly allocated into four groups of 12 animals. Piglets within each group were primary inoculated with one of the investigated viral strains (B: PEDV; C: SeCoV and D: rPEDV-SeCoV) or mock-inoculated (A), and exposed to rPEDV-SeCOV at day 20 post-infection; thus, group A was primary challenged (-/rPEDV-SeCoV), groups B and C were subjected to a heterologous re-challenge (PEDV/rPEDV-SeCoV and SeCoV/rPEDV-SeCoV, respectively), and group D to a homologous re-challenge (rPEDV-SeCoV/rPEDV-SeCoV), Clinical signs, viral shedding, microscopic lesions and specific humoral and cellular immune responses (IgG, IgA, neutralizing antibodies and IgA and IFN-γ-secreting cells) were monitored. After primo-infection, all three viral strains induced an undistinguishable mild-to-moderate clinical disease with diarrhoea as the main sign and villus shortening lesions in the small intestine. In homologous re-challenged pigs, no clinical signs or lesions were observed, and viral shedding was only detected in a single animal. This fact may be explained by the significant high level of rPEDV-SeCoV-specific neutralizing antibodies found in these pigs before the challenge. In contrast, prior exposure to a different PEDV G1b variant or SeCoV only provided partial cross-protection, allowing rPEDV-SeCoV replication and shedding in faeces.
Collapse
Affiliation(s)
- Héctor Puente
- Facultad de Veterinaria, Departamento de Sanidad Animal, Universidad de León, León, Spain
| | - Ivan Díaz
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Héctor Arguello
- Facultad de Veterinaria, Departamento de Sanidad Animal, Universidad de León, León, Spain.,INDEGSAL, Instituto de Desarrollo Ganadero, Universidad de León, León, Spain
| | - Óscar Mencía-Ares
- Facultad de Veterinaria, Departamento de Sanidad Animal, Universidad de León, León, Spain
| | - Manuel Gómez-García
- Facultad de Veterinaria, Departamento de Sanidad Animal, Universidad de León, León, Spain
| | - Lucía Pérez-Pérez
- Facultad de Veterinaria, Departamento de Sanidad Animal, Universidad de León, León, Spain
| | - Clara Vega
- Facultad de Veterinaria, Departamento de Sanidad Animal, Universidad de León, León, Spain
| | - Martí Cortey
- Facultat de Veterinària, Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Margarita Martín
- Facultat de Veterinària, Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Pedro Rubio
- Facultad de Veterinaria, Departamento de Sanidad Animal, Universidad de León, León, Spain.,INDEGSAL, Instituto de Desarrollo Ganadero, Universidad de León, León, Spain
| | - Ana Carvajal
- Facultad de Veterinaria, Departamento de Sanidad Animal, Universidad de León, León, Spain.,INDEGSAL, Instituto de Desarrollo Ganadero, Universidad de León, León, Spain
| |
Collapse
|
5
|
Li Y, Mateu E, Díaz I. Impact of Cryopreservation on Viability, Phenotype, and Functionality of Porcine PBMC. Front Immunol 2021; 12:765667. [PMID: 34912338 PMCID: PMC8666977 DOI: 10.3389/fimmu.2021.765667] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
The use of frozen peripheral blood mononuclear cells (PBMC) is common in immunological studies. The impact of freezing PBMC has been assessed using human and mice cells, but little information is available regarding domestic animals. In the present study, the phenotype and functionality of frozen porcine PBMC were examined. In a preliminary experiment, three freezing media: fetal bovine serum plus 10% dimethyl sulfoxide, PSC cryopreservation kit, and Cryostor CS10, were compared regarding the preservation of cell viability and the response of PBMC to mitogens after thawing. After being stored one month in liquid nitrogen, cell viability was above 89% for all freezing media. The ELISPOT IFN-gamma (IFN-γ) results in response to PHA and of IgG ELISPOT in response to R848+IL-2 were similar to those obtained using fresh PBMC. In the second set of experiments, PBMC were obtained from five pigs vaccinated against Porcine reproductive and respiratory syndrome virus (PRRSV) and then frozen using Cryostor CS10. Recovered cells were phenotyped by flow cytometry using anti-CD3, CD4, CD8, and CD21 antibodies and were used to assess the PRRSV-specific responses in a proliferation experiment, an IFN-γ ELISPOT, and an IgG ELISPOT, and compared to the results obtained with fresh cells. The antigen-specific responses of frozen cells were significantly (p<0.05) impaired in the proliferation assay, particularly for CD4/CD8 double-positive T-cells and for CD21+ cells. Freezing resulted in decreased proliferation when Con A, but not PHA, was used. In ELISPOT, cryopreservation resulted in a decreased frequency of IFN-γ-secreting cells in response to PRRSV (p<0.05) but the response to PHA was not affected. No differences were observed in the IgG ELISPOT after polyclonal activation. Taken together, cryopreservation of porcine PBMC had a significant impact on the magnitude of recall antigen responses and therefore, it may affect the response of effector/memory cells but seems not to have a major impact on naïve T-cells. These results may help to the better use of frozen porcine PBMC, and to the interpretation of the results obtained from them.
Collapse
Affiliation(s)
- Yanli Li
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Enric Mateu
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.,Centre de Recerca en Sanitat Animal, Institut de Recerca en Tecnologies Agroalimentàries (IRTA-CReSA), Bellaterra, Spain.,World Organisation for Animal Health (OIE) Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Spain
| | - Ivan Díaz
- Centre de Recerca en Sanitat Animal, Institut de Recerca en Tecnologies Agroalimentàries (IRTA-CReSA), Bellaterra, Spain.,World Organisation for Animal Health (OIE) Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Spain
| |
Collapse
|