1
|
Asin J, Calvete C, Uzal FA, Crossley BM, Duarte MD, Henderson EE, Abade dos Santos F. Rabbit hemorrhagic disease virus 2, 2010-2023: a review of global detections and affected species. J Vet Diagn Invest 2024; 36:617-637. [PMID: 39344909 PMCID: PMC11457751 DOI: 10.1177/10406387241260281] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
Rabbit hemorrhagic disease virus 2/genotype GI.2 (RHDV2/GI.2; Caliciviridae, Lagovirus) causes a highly contagious disease with hepatic necrosis and disseminated intravascular coagulation in several Leporidae species. RHDV2 was first detected in European rabbits (Oryctolagus cuniculus) in France in 2010 and has since spread widely. We gather here data on viral detections reported in various countries and affected species, and discuss pathology, genetic differences, and novel diagnostic aspects. RHDV2 has been detected almost globally, with cases reported in Europe, Africa, Oceania, Asia, and North America as of 2023. Since 2020, large scale outbreaks have occurred in the United States and Mexico and, at the same time, cases have been reported for the first time in previously unaffected countries, such as China, Japan, Singapore, and South Africa, among others. Detections have been notified in domestic and wild European rabbits, hares and jackrabbits (Lepus spp.), several species of cottontail and brush rabbits (Sylvilagus spp.), pygmy rabbits (Brachylagus idahoensis), and red rock rabbits (Pronolagus spp.). RHDV2 has also been detected in a few non-lagomorph species. Detection of RHDV2 causing RHD in Sylvilagus spp. and Leporidae species other than those in the genera Oryctolagus and Lepus is very novel. The global spread of this fast-evolving RNA virus into previously unexploited geographic areas increases the likelihood of host range expansion as new species are exposed; animals may also be infected by nonpathogenic caliciviruses that are disseminated by almost all species, and with which genetic recombination may occur.
Collapse
Affiliation(s)
- Javier Asin
- California Animal Health and Food Safety Laboratory, University of California–Davis, San Bernardino, CA, USA
| | - Carlos Calvete
- Animal Science Department, Agri-Food Research and Technology Centre of Aragon (CITA), Agri-Food Institute of Aragón (IA2), Zaragoza, Spain
| | - Francisco A. Uzal
- California Animal Health and Food Safety Laboratory, University of California–Davis, San Bernardino, CA, USA
| | | | | | - Eileen E. Henderson
- California Animal Health and Food Safety Laboratory, University of California–Davis, San Bernardino, CA, USA
| | - Fábio Abade dos Santos
- National Institute for Agrarian and Veterinary Research (INIAV), Oeiras, Portugal
- Faculty of Veterinary Medicine, Lusofona University, Lisboa, Portugal
| |
Collapse
|
2
|
Weyna AAW, Andreasen VA, Burrell CE, Kunkel MR, Radisic R, Goodwin CC, Fenton H, Dugovich BS, Poulson RL, Ruder MG, Yabsley MJ, Sanchez S, Nemeth NM. Causes of morbidity and mortality in wild cottontail rabbits in the eastern United States, 2013-2022. J Vet Diagn Invest 2024; 36:655-665. [PMID: 38853709 PMCID: PMC11457750 DOI: 10.1177/10406387241259000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
Interest in causes of mortality of free-ranging, native North American lagomorphs has grown with the emergence of rabbit hemorrhagic disease virus 2 (RHDV2). Over the years 2013-2022, the Southeastern Cooperative Wildlife Disease Study received 119 Sylvilagus spp. case submissions from the central and eastern United States, comprising 147 rabbits. Most (86%) of these submissions occurred after detecting RHDV2 in the United States in 2020. Laboratory data from these rabbits were retrospectively evaluated for major causes, contributors to mortality, and pathogen detections. Gross and histologic examination was performed for 112 rabbits. Common primary causes of death included trauma (n = 49), bacterial disease (n = 31), emaciation (n = 6), and parasitism (n = 6). Among the 32 rabbits with bacterial disease, 12 were diagnosed with tularemia and 7 with pasteurellosis. Rabbits with pasteurellosis had disseminated abscessation, septicemia, and/or polyserositis. Less commonly, cutaneous fibroma (n = 2), notoedric mange (n = 2), encephalitozoonosis (n = 2), neoplasia (round-cell sarcoma; n = 1), and congenital abnormalities (n = 1) were diagnosed. RHDV2 was not detected in 123 rabbits tested. Although RHDV2 has not been detected in wild lagomorphs in the eastern United States, detections in domestic rabbits from the region emphasize the need for continued surveillance. Furthermore, continued surveillance for Francisella tularensis informs public health risk. Overall, increased knowledge of Sylvilagus spp. health furthers our understanding of diseases affecting these important prey and game species.
Collapse
Affiliation(s)
- Alisia A. W. Weyna
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, University of Georgia, Athens, GA, USA
| | - Victoria A. Andreasen
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, University of Georgia, Athens, GA, USA
| | - Caitlin E. Burrell
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, University of Georgia, Athens, GA, USA
| | - Melanie R. Kunkel
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, University of Georgia, Athens, GA, USA
| | - Rebecca Radisic
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, University of Georgia, Athens, GA, USA
| | - Chloe C. Goodwin
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, University of Georgia, Athens, GA, USA
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Heather Fenton
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, University of Georgia, Athens, GA, USA
| | - Brian S. Dugovich
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, University of Georgia, Athens, GA, USA
| | - Rebecca L. Poulson
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, University of Georgia, Athens, GA, USA
| | - Mark G. Ruder
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, University of Georgia, Athens, GA, USA
| | - Michael J. Yabsley
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, University of Georgia, Athens, GA, USA
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Susan Sanchez
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Nicole M. Nemeth
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, University of Georgia, Athens, GA, USA
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
3
|
Hall RN, Trought K, Strive T, Duckworth JA, Jenckel M. First Detection and Circulation of RHDV2 in New Zealand. Viruses 2024; 16:519. [PMID: 38675862 PMCID: PMC11053765 DOI: 10.3390/v16040519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Rabbit haemorrhage disease virus 2 (RHDV2) is a highly pathogenic lagovirus that causes lethal disease in rabbits and hares (lagomorphs). Since its first detection in Europe in 2010, RHDV2 has spread worldwide and has been detected in over 35 countries so far. Here, we provide the first detailed report of the detection and subsequent circulation of RHDV2 in New Zealand. RHDV2 was first detected in New Zealand in 2018, with positive samples retrospectively identified in December 2017. Subsequent time-resolved phylogenetic analysis suggested a single introduction into the North Island between March and November 2016. Genetic analysis identified a GI.3P-GI.2 variant supporting a non-Australian origin for the incursion; however, more accurate identification of the source of the incursion remains challenging due to the wide global distribution of the GI.3P-GI.2 variant. Furthermore, our analysis suggests the spread of the virus between the North and South Islands of New Zealand at least twice, dated to mid-2017 and around 2018. Further phylogenetic analysis also revealed a strong phylogeographic pattern. So far, no recombination events with endemic benign New Zealand rabbit caliciviruses have been identified. This study highlights the need for further research and surveillance to monitor the distribution and diversity of lagoviruses in New Zealand and to detect incursions of novel variants.
Collapse
Affiliation(s)
- Robyn N. Hall
- CSIRO Health & Biosecurity, Acton, ACT 2601, Australia
- Centre for Invasive Species Solutions, Bruce, ACT 2617, Australia
- Ausvet Pty Ltd., Fremantle, WA 6160, Australia;
| | - Katherine Trought
- Manaaki Whenua-Landcare Research, Lincoln 7608, New Zealand; (K.T.); (J.A.D.)
| | - Tanja Strive
- CSIRO Health & Biosecurity, Acton, ACT 2601, Australia
- Centre for Invasive Species Solutions, Bruce, ACT 2617, Australia
| | - Janine A. Duckworth
- Manaaki Whenua-Landcare Research, Lincoln 7608, New Zealand; (K.T.); (J.A.D.)
| | - Maria Jenckel
- CSIRO Health & Biosecurity, Acton, ACT 2601, Australia
| |
Collapse
|
4
|
Li Z, Song K, Du Y, Zhang Z, Fan R, Zheng P, Liu J. Diagnosis of a Rabbit Hemorrhagic Disease Virus 2 (RHDV2) and the Humoral Immune Protection Effect of VP60 Vaccine. Curr Issues Mol Biol 2023; 45:6605-6617. [PMID: 37623236 PMCID: PMC10453004 DOI: 10.3390/cimb45080417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
Rabbit hemorrhagic disease (RHD) is known as rabbit plague and hemorrhagic pneumonia. It is an acute, septic, and highly fatal infectious disease caused by the Lagovirus rabbit hemorrhagic disease virus (RHDV) in the family Caliciviridae that infects wild and domestic rabbits and hares (lagomorphs). At present, RHDV2 has caused huge economic losses to the commercial rabbit trade and led to a decline in the number of wild lagomorphs worldwide. We performed a necropsy and pathological observations on five dead rabbits on a rabbit farm in Tai'an, China. The results were highly similar to the clinical and pathological changes of typical RHD. RHDV2 strain was isolated and identified by RT-PCR, and partial gene sequencing and genetic evolution analysis were carried out. There were significant differences in genetic characteristics and antigenicity between RHDV2 and classical RHDV strain, and the vaccine prepared with the RHDV strain cannot effectively prevent rabbit infection with RHDV2. Therefore, we evaluated the protective efficacy of a novel rabbit hemorrhagic virus baculovirus vector inactivated vaccine (VP60) in clinical application by animal regression experiment. The result showed that VP60 could effectively induce humoral immunity in rabbits. The vaccine itself had no significant effect on the health status of rabbits. This study suggested that the clinical application of VP60 may provide new ideas for preventing the spread of RHD2.
Collapse
Affiliation(s)
- Zhaoming Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Kaimin Song
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Yongzhen Du
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Zhuanglong Zhang
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Rupeng Fan
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Pimiao Zheng
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
5
|
Bosco-Lauth AM, Cominsky B, Porter S, Root JJ, Schueler A, Anderson G, VanderWal S, Benson A. A novel vaccine candidate against rabbit hemorrhagic disease virus 2 (RHDV2) confers protection in domestic rabbits. Am J Vet Res 2022; 83:ajvr.22.05.0095. [DOI: 10.2460/ajvr.22.05.0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
OBJECTIVE
To evaluate efficacy of a novel vaccine against rabbit hemorrhagic disease virus 2 (RHDV2) in domestic rabbits.
ANIMALS
40 New Zealand White rabbits obtained from a commercial breeder.
PROCEDURES
Rabbits were vaccinated and held at the production facility for the duration of the vaccination phase and transferred to Colorado State University for challenge with RHDV2. Rabbits were challenged with oral suspensions containing infectious virus and monitored for clinical disease for up to 10 days. Rabbits that died or were euthanized following infection were necropsied, and livers were evaluated for viral RNA via RT-PCR.
RESULTS
None of the vaccinated animals (0/9) exhibited clinical disease or mortality following infection with RHDV2 while 9/13 (69%) of the control animals succumbed to lethal disease following infection.
CLINICAL RELEVANCE
The novel vaccine described herein provided complete protection against lethal infection following RHDV2 challenge. Outside of emergency use, there are currently no licensed vaccines against RHDV2 on the market in the United States; as such, this vaccine candidate would provide an option for control of this disease now that RHDV2 has become established in North America.
Collapse
Affiliation(s)
| | - Bethany Cominsky
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - Stephanie Porter
- USDA, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, CO
| | - J. Jeffrey Root
- USDA, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, CO
| | | | | | | | | |
Collapse
|
6
|
Chen M, Fan Z, Hu B, Song Y, Wei H, Qiu R, Zhu W, Xu W, Wang F. Pathogenicity of the newly emerged Lagovirus europaeus GI.2 strain in China in experimentally infected rabbits. Vet Microbiol 2021; 265:109311. [PMID: 34965497 DOI: 10.1016/j.vetmic.2021.109311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 11/19/2022]
Abstract
In April 2020, rabbit hemorrhagic virus type 2 (Lagovirus europaeus GI.2), which causes highly infectious fatal rabbit hemorrhagic disease, was emerged in China. The phylogenetic analyses of the complete genome sequence of GI.2 showed that it belonged to the non-recombinant GI.3/GI.2 genotype. However, the pathogenicity of this GI.2 strain differed from that of early typical GI.2 strains in Europe. To prevent the spread of the new strain in China, its pathogenicity urgently needs to be studied. Thus, viral shedding and distribution as well as clinical symptoms, histopathological changes, and serum cytokines were studied in experimentally GI.2/SC2020-infected rabbit adults and kits. The kit group showed a shorter survival time after the challenge than the adult group did. The mortality rate was higher in the kits (80 %) than in the adults (30 %). Viral RNA could be detected in both nasal and fecal swabs, and the main dissemination route appeared to be the fecal route. Viral RNA rapidly increased in the blood of the adults and kits at 6 h post-infection, indicating that blood viral load testing can be used for early diagnosis. The most affected organs were the liver and spleen, and the lesions were more severe in the kits than in the adults. The liver contained the highest viral RNA levels. Moreover, serum interleukin (IL)-6, IL-8, IL-10, and tumor necrosis factor-alpha levels were increased in the infected rabbits. In conclusion, our findings will help to understand the evolutionary trends and pathogenic characteristics of GI.2 strains in China.
Collapse
Affiliation(s)
- Mengmeng Chen
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
| | - Zhiyu Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
| | - Bo Hu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
| | - Yanhua Song
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
| | - Houjun Wei
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
| | - Rulong Qiu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
| | - Weifeng Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
| | - Weizhong Xu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
| | - Fang Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China.
| |
Collapse
|
7
|
Mohamed F, Gidlewski T, Berninger ML, Petrowski HM, Bracht AJ, de Rueda CB, Barrette RW, Grady M, O'Hearn ES, Lewis CE, Moran KE, Sturgill TL, Capucci L, Root JJ. Comparative susceptibility of eastern cottontails and New Zealand white rabbits to classical rabbit haemorrhagic disease virus (RHDV) and RHDV2. Transbound Emerg Dis 2021; 69:e968-e978. [PMID: 34738741 DOI: 10.1111/tbed.14381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022]
Abstract
Rabbit haemorrhagic disease virus (RHDV) is associated with high morbidity and mortality in the European rabbit (Oryctolagus cuniculus). In 2010, a genetically distinct RHDV named RHDV2 emerged in Europe and spread to many other regions, including North America in 2016. Prior to this study it was unknown if eastern cottontails (ECT(s); Sylvilagus floridanus), one of the most common wild lagomorphs in the United States, were susceptible to RHDV2. In this study, 10 wild-caught ECTs and 10 New Zealand white rabbits (NZWR(s); O. cuniculus) were each inoculated orally with either RHDV (RHDVa/GI.1a; n = 5 per species) or RHDV2 (a recombinant GI.1bP-GI.2; n = 5 per species) and monitored for the development of disease. Three of the five ECTs that were infected with RHDV2 developed disease consistent with RHD and died at 4 and 6 days post-inoculation (DPI). The RHDV major capsid protein/antigen (VP60) was detected in the livers of three ECTs infected with RHDV2, but none was detected in the ECTs infected with RHDV. Additionally, RHD viral RNA was detected in the liver, spleen, intestine and blood of ECTs infected with RHDV2, but not in the ECTs infected with RHDV. RHD viral RNA was detected in urine, oral swabs and rectal swabs in at least two of five ECTs infected with RHDV2. One ECT inoculated with RHDV2 seroconverted and developed a high antibody titre by the end of the experimental period (21 DPI). ECTs inoculated with the classic RHDV did not seroconvert. In comparison, NZWRs inoculated with RHDV2 exhibited high mortality (five of five) at 2 DPI and four of five NZWRs inoculated with RHDV either died or were euthanized at 2 DPI indicating both of these viruses were highly pathogenic to this species. This experiment indicates that ECTs are susceptible to RHDV2 and can shed viral RNA, thereby suggesting this species could be involved in the epidemiology of this virus.
Collapse
Affiliation(s)
- Fawzi Mohamed
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Foreign Animal Disease Diagnostic Laboratory, Plum Island Animal Disease Center, Greenport, New York, USA
| | - Thomas Gidlewski
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Disease Program, Fort Collins, Colorado, USA
| | - Mary L Berninger
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Foreign Animal Disease Diagnostic Laboratory, Plum Island Animal Disease Center, Greenport, New York, USA
| | - Heather M Petrowski
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Foreign Animal Disease Diagnostic Laboratory, Plum Island Animal Disease Center, Greenport, New York, USA
| | - Alexa J Bracht
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Foreign Animal Disease Diagnostic Laboratory, Plum Island Animal Disease Center, Greenport, New York, USA
| | - Carla Bravo de Rueda
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Foreign Animal Disease Diagnostic Laboratory, Plum Island Animal Disease Center, Greenport, New York, USA
| | - Roger W Barrette
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Foreign Animal Disease Diagnostic Laboratory, Plum Island Animal Disease Center, Greenport, New York, USA
| | - Meredith Grady
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Disease Program, Fort Collins, Colorado, USA
| | - Emily S O'Hearn
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Foreign Animal Disease Diagnostic Laboratory, Plum Island Animal Disease Center, Greenport, New York, USA
| | - Charles E Lewis
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Foreign Animal Disease Diagnostic Laboratory, Plum Island Animal Disease Center, Greenport, New York, USA
| | - Karen E Moran
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Foreign Animal Disease Diagnostic Laboratory, Plum Island Animal Disease Center, Greenport, New York, USA
| | - Tracy L Sturgill
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Regionalization Evaluation Services, Raleigh, North Carolina, USA
| | - Lorenzo Capucci
- Istituto Zooprofilattico Sperimenatale della Lombardia e dell'Emilia Romagna and OIE Reference Laboratory for Rabbit Hemorrhagic Disease, Brescia, Italy
| | - J Jeffrey Root
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado, USA
| |
Collapse
|
8
|
An Outbreak of Rabbit Hemorrhagic Disease in British Columbia, Canada. J Wildl Dis 2021; 57:983-986. [PMID: 34516651 DOI: 10.7589/jwd-d-21-00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/25/2021] [Indexed: 11/20/2022]
Abstract
From 2018 to 2019, an outbreak of rabbit hemorrhagic disease virus 2 occurred in British Columbia, Canada, in feral and domestic European rabbits (Oryctolagus cuniculus). Anthropogenic translocation of infected animals is suspected to have played a role in the introduction and spread of the virus.
Collapse
|
9
|
Asin J, Rejmanek D, Clifford DL, Mikolon AB, Henderson EE, Nyaoke AC, Macías-Rioseco M, Streitenberger N, Beingesser J, Woods LW, Lavazza A, Capucci L, Crossley B, Uzal FA. Early circulation of rabbit haemorrhagic disease virus type 2 in domestic and wild lagomorphs in southern California, USA (2020-2021). Transbound Emerg Dis 2021; 69:e394-e405. [PMID: 34487612 DOI: 10.1111/tbed.14315] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/29/2021] [Accepted: 09/05/2021] [Indexed: 11/28/2022]
Abstract
Rabbit haemorrhagic disease virus type 2 (RHDV2) causes a severe systemic disease with hepatic necrosis. Differently from classic RHDV, which affects only European rabbits (Oryctolagus cuniculus), RHDV2 can affect many leporid species, including hares (Lepus spp.) and cottontail rabbits (Sylvilagus spp.). RHDV2 emerged in Europe in 2010 and spread worldwide. During the last 5 years, there have been multiple outbreaks in North America since the first known event in 2016 in Quebec, Canada, including several detections in British Columbia, Canada, between 2018 and 2019, Washington State and Ohio, USA, in 2018 and 2019, and New York, USA, in 2020. However, the most widespread outbreak commenced in March 2020 in the southwestern USA and Mexico. In California, RHDV2 spread widely across several southern counties between 2020 and 2021, and the aim of this study was to report and characterize these early events of viral incursion and circulation within the state. Domestic and wild lagomorphs (n = 81) collected between August 2020 and February 2021 in California with a suspicion of RHDV2 infection were tested by reverse transcription quantitative real-time PCR on the liver, and histology and immunohistochemistry for pan-lagovirus were performed on liver sections. In addition, whole genome sequencing from 12 cases was performed. During this period, 33/81 lagomorphs including 24/59 domestic rabbits (O. cuniculus), 3/16 desert cottontail rabbits (Sylvilagus audubonii), and 6/6 black-tailed jackrabbits (Lepus californicus) tested positive. All RHDV2-positive animals had hepatic necrosis typical of pathogenic lagovirus infection, and the antigen was detected in sections from individuals of the three species. The 12 California sequences were closely related (98.9%-99.95%) to each other, and also very similar (99.0%-99.4%) to sequences obtained in other southwestern states during the 2020-2021 outbreak; however, they were less similar to strains obtained in New York in 2020 (96.7%-96.9%) and Quebec in 2016 (92.4%-92.6%), suggesting that those events could be related to different viral incursions. The California sequences were more similar (98.6%-98.7%) to a strain collected in British Columbia in 2018, which suggests that that event could have been related to the 2020 outbreak in the southwestern USA.
Collapse
Affiliation(s)
- Javier Asin
- California Animal Health and Food Safety Laboratory System, San Bernardino branch, University of California-Davis, San Bernardino, California, USA
| | - Daniel Rejmanek
- California Animal Health and Food Safety Laboratory System, Davis branch, University of California-Davis, Davis, California, USA
| | - Deana L Clifford
- Wildlife Health Laboratory, California Department of Fish and Wildlife, Rancho Cordova, California, USA
| | - Andrea B Mikolon
- California Department of Food and Agriculture, Sacramento, California, USA
| | - Eileen E Henderson
- California Animal Health and Food Safety Laboratory System, San Bernardino branch, University of California-Davis, San Bernardino, California, USA
| | - Akinyi C Nyaoke
- California Animal Health and Food Safety Laboratory System, San Bernardino branch, University of California-Davis, San Bernardino, California, USA
| | - Melissa Macías-Rioseco
- California Animal Health and Food Safety Laboratory System, Tulare branch, University of California-Davis, Tulare, California, USA
| | - Nicolas Streitenberger
- California Animal Health and Food Safety Laboratory System, San Bernardino branch, University of California-Davis, San Bernardino, California, USA
| | - Juliann Beingesser
- California Animal Health and Food Safety Laboratory System, San Bernardino branch, University of California-Davis, San Bernardino, California, USA
| | - Leslie W Woods
- California Animal Health and Food Safety Laboratory System, Davis branch, University of California-Davis, Davis, California, USA
| | - Antonio Lavazza
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna and OIE Reference Laboratory for Rabbit Hemorrhagic Disease, Brescia, Italy
| | - Lorenzo Capucci
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna and OIE Reference Laboratory for Rabbit Hemorrhagic Disease, Brescia, Italy
| | - Beate Crossley
- California Animal Health and Food Safety Laboratory System, Davis branch, University of California-Davis, Davis, California, USA
| | - Francisco A Uzal
- California Animal Health and Food Safety Laboratory System, San Bernardino branch, University of California-Davis, San Bernardino, California, USA
| |
Collapse
|