1
|
Hagoss YT, Shen D, Wang W, Zhang Z, Li F, Sun E, Zhu Y, Ge J, Guo Y, Bu Z, Zhao D. African swine fever virus pCP312R interacts with host RPS27A to shut off host protein translation and promotes viral replication. Int J Biol Macromol 2024; 277:134213. [PMID: 39069039 DOI: 10.1016/j.ijbiomac.2024.134213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
African swine fever virus (ASFV) severely threatens the global economy and food security. ASFV encodes >150 genes, but the functions of most of them have yet to be characterized in detail. Here we explored the function of the ASFV CP312R gene and found that CP312R plays an essential role in ASFV replication. Knockout of the CP312R gene terminated viral replication and CP312R knockdown substantially suppressed ASFV infection in vitro. Furthermore, we resolved the crystal structure of pCP312R to 2.3 Å resolution and found that pCP312R has the potential to bind nucleic acids. LC-MS analysis and co-immunoprecipitation assay revealed that pCP312R interacts with RPS27A, a component of the 40S ribosomal subunit. Confocal microscopy showed the interaction between pCP312R and RPS27A leaded to a modification in the subcellular localization of this host protein, which suppresses host protein translation. Renilla-Glo luciferase assay and Ribopuromycylation analysis evidenced that knockout of RPS27A completely aborted the shutoff activity of pCP312R, and trans-complementation of RPS27A recovered pCP312R shutoff activity in RPS27A-knockout cells. Our findings shed light on the function of ASFV CP312R gene in virus infection, which triggers inhibition of host protein synthesis.
Collapse
Affiliation(s)
- Yibrah Tekle Hagoss
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; Department of Animal Sciences, College of Agriculture and Natural Resources, Raya University, Maichew, P.O. Box 92, Ethiopia
| | - Dongdong Shen
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Wenming Wang
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Zhenjiang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Fang Li
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Encheng Sun
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yuanmao Zhu
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yu Guo
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China.
| | - Zhigao Bu
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Dongming Zhao
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| |
Collapse
|
2
|
Romero MF, Krall JB, Nichols PJ, Vantreeck J, Henen MA, Dejardin E, Schulz F, Vicens Q, Vögeli B, Diallo MA. Novel Z-DNA binding domains in giant viruses. J Biol Chem 2024; 300:107504. [PMID: 38944123 PMCID: PMC11298590 DOI: 10.1016/j.jbc.2024.107504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/01/2024] Open
Abstract
Z-nucleic acid structures play vital roles in cellular processes and have implications in innate immunity due to their recognition by Zα domains containing proteins (Z-DNA/Z-RNA binding proteins, ZBPs). Although Zα domains have been identified in six proteins, including viral E3L, ORF112, and I73R, as well as, cellular ADAR1, ZBP1, and PKZ, their prevalence across living organisms remains largely unexplored. In this study, we introduce a computational approach to predict Zα domains, leading to the revelation of previously unidentified Zα domain-containing proteins in eukaryotic organisms, including non-metazoan species. Our findings encompass the discovery of new ZBPs in previously unexplored giant viruses, members of the Nucleocytoviricota phylum. Through experimental validation, we confirm the Zα functionality of select proteins, establishing their capability to induce the B-to-Z conversion. Additionally, we identify Zα-like domains within bacterial proteins. While these domains share certain features with Zα domains, they lack the ability to bind to Z-nucleic acids or facilitate the B-to-Z DNA conversion. Our findings significantly expand the ZBP family across a wide spectrum of organisms and raise intriguing questions about the evolutionary origins of Zα-containing proteins. Moreover, our study offers fresh perspectives on the functional significance of Zα domains in virus sensing and innate immunity and opens avenues for exploring hitherto undiscovered functions of ZBPs.
Collapse
Affiliation(s)
- Miguel F Romero
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Jeffrey B Krall
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, Aurora, Colorado, USA
| | - Parker J Nichols
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, Aurora, Colorado, USA
| | - Jillian Vantreeck
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, Aurora, Colorado, USA
| | - Morkos A Henen
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, Aurora, Colorado, USA
| | - Emmanuel Dejardin
- GIGA I3 - Molecular Immunology and Signal Transduction, University of Liège, Liège, Belgium
| | - Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
| | - Quentin Vicens
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA.
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, Aurora, Colorado, USA.
| | - Mamadou Amadou Diallo
- GIGA I3 - Molecular Immunology and Signal Transduction, University of Liège, Liège, Belgium.
| |
Collapse
|
3
|
Venkateswaran D, Prakash A, Nguyen QA, Salman M, Suntisukwattana R, Atthaapa W, Tantituvanont A, Lin H, Songkasupa T, Nilubol D. Comprehensive Characterization of the Genetic Landscape of African Swine Fever Virus: Insights into Infection Dynamics, Immunomodulation, Virulence and Genes with Unknown Function. Animals (Basel) 2024; 14:2187. [PMID: 39123713 PMCID: PMC11311002 DOI: 10.3390/ani14152187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
African Swine Fever (ASF) is a lethal contagious hemorrhagic viral disease affecting the swine population. The causative agent is African Swine Fever Virus (ASFV). There is no treatment or commercial vaccine available at present. This virus poses a significant threat to the global swine industry and economy, with 100% mortality rate in acute cases. ASFV transmission occurs through both direct and indirect contact, with control measures limited to early detection, isolation, and culling of infected pigs. ASFV exhibits a complex genomic structure and encodes for more than 50 structural and 100 non-structural proteins and has 150 to 167 open reading frames (ORFs). While many of the proteins are non-essential for viral replication, they play crucial roles in mediating with the host to ensure longevity and transmission of virus in the host. The dynamic nature of ASFV research necessitates constant updates, with ongoing exploration of various genes and their functions, vaccine development, and other ASF-related domains. This comprehensive review aims to elucidate the structural and functional roles of both newly discovered and previously recorded genes involved in distinct stages of ASFV infection and immunomodulation. Additionally, the review discusses the virulence genes and genes with unknown functions, and proposes future interventions.
Collapse
Affiliation(s)
- Dhithya Venkateswaran
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anwesha Prakash
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Quynh Anh Nguyen
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Muhammad Salman
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Roypim Suntisukwattana
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Waranya Atthaapa
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Angkana Tantituvanont
- Department of Pharmaceutic and Industrial Pharmacies, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Hongyao Lin
- MSD Animal Health Innovation Pte Ltd., Singapore 718847, Singapore
| | - Tapanut Songkasupa
- National Institute of Animal Health, Department of Livestock Development, 50/2 Kasetklang, Phahonyothin 45-15, Chatuchak, Bangkok 10900, Thailand
| | - Dachrit Nilubol
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Herbert A. The ancient Z-DNA and Z-RNA specific Zα fold has evolved modern roles in immunity and transcription through the natural selection of flipons. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240080. [PMID: 39092141 PMCID: PMC11293857 DOI: 10.1098/rsos.240080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/29/2024] [Accepted: 05/08/2024] [Indexed: 08/04/2024]
Abstract
The Zα fold specifically binds to both Z-DNA and Z-RNA, left-handed nucleic acid structures that form under physiological conditions and are encoded by flipons. I trace the Zα fold back to unicellular organisms representing all three domains of life and to the realm of giant nucleocytoplasmic DNA viruses (NCVs). The canonical Zα fold is present in the earliest known holozoan unicellular symbiont Capsaspora owczarzaki and persists in vertebrates and some invertebrates, but not in plants or fungi. In metazoans, starting with porifera, Zα is incorporated into the double-stranded RNA editing enzyme ADAR and reflects an early symbiont relationship with NCV. In vertebrates, Zα is also present in ZBP1 and PKZ proteins that recognize host-derived Z-RNAs to defend against modern-day viruses. A related Zα fold, also likely to bind Z-DNA, is present in proteins thought to modulate gene expression, including a subset of prokaryote arsR proteins and the p15 (PC4) family present in algae. Other Zα variants that probably play a more general role in the reinitiation of transcription include the archaeal and human transcription factor E and the human RNA polymerase 3 subunit C proteins. The roles in immunity and transcription underlie the natural selection of flipons.
Collapse
Affiliation(s)
- Alan Herbert
- Discovery, InsideOutBio, 42 8th Street, Charlestown, MA02129, USA
| |
Collapse
|
5
|
Noll JCG, Rani R, Butt SL, Fernandes MHV, do Nascimento GM, Martins M, Caserta LC, Covaleda L, Diel DG. Identification of an Immunodominant B-Cell Epitope in African Swine Fever Virus p30 Protein and Evidence of p30 Antibody-Mediated Antibody Dependent Cellular Cytotoxicity. Viruses 2024; 16:758. [PMID: 38793639 PMCID: PMC11125664 DOI: 10.3390/v16050758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/26/2024] Open
Abstract
African Swine Fever Virus (ASFV) is a large dsDNA virus that encodes at least 150 proteins. The complexity of ASFV and lack of knowledge of effector immune functions and protective antigens have hindered the development of safe and effective ASF vaccines. In this study, we constructed four Orf virus recombinant vectors expressing individual ASFV genes B602L, -CP204L, E184L, and -I73R (ORFVΔ121-ASFV-B602L, -CP204L, -E184L, and -I73R). All recombinant viruses expressed the heterologous ASFV proteins in vitro. We then evaluated the immunogenicity of the recombinants by immunizing four-week-old piglets. In two independent animal studies, we observed high antibody titers against ASFV p30, encoded by CP204L gene. Using Pepscan ELISA, we identified a linear B-cell epitope of 12 amino acids in length (Peptide 15) located in an exposed loop region of p30 as an immunodominant ASFV epitope. Additionally, antibodies elicited against ASFV p30 presented antibody-dependent cellular cytotoxicity (ADCC) activity. These results underscore the role of p30 on antibody responses elicited against ASFV and highlight an important functional epitope that contributes to p30-specific antibody responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Diego G. Diel
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA (S.L.B.); (M.H.V.F.); (M.M.); (L.C.C.); (L.C.)
| |
Collapse
|
6
|
Bartas M, Brázda V, Pečinka P. Special Issue "Bioinformatics of Unusual DNA and RNA Structures". Int J Mol Sci 2024; 25:5226. [PMID: 38791265 PMCID: PMC11121459 DOI: 10.3390/ijms25105226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Nucleic acids are not only static carriers of genetic information but also play vital roles in controlling cellular lifecycles through their fascinating structural diversity [...].
Collapse
Affiliation(s)
- Martin Bartas
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic;
| | - Václav Brázda
- Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic;
| | - Petr Pečinka
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic;
| |
Collapse
|
7
|
Lai DC, Chaudhari J, Vu HLX. African swine fever virus early protein pI73R suppresses the type-I IFN promoter activities. Virus Res 2024; 343:199342. [PMID: 38408646 PMCID: PMC10918272 DOI: 10.1016/j.virusres.2024.199342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
African swine fever virus is known to suppress type-I interferon (IFN) responses. The main objective of this study was to screen early-expressed viral genes for their ability to suppress IFN production. Out of 16 early genes examined, I73R exhibited robust suppression of cGAS-STING-induced IFN-β promoter activities, impeding the function of both IRF3 and NF-κB transcription factors. As a result, I73R obstructed IRF3 nuclear translocation following the treatment of cells with poly(dA:dT), a strong inducer of the cGAS-STING signaling pathway. Although the I73R protein exhibits structural homology with the Zα domain binding to the left-handed helical form of DNA known as Z-DNA, its ability to suppress cGAS-STING induction of IFN-β was independent of Z-DNA binding activity. Instead, the α3 and β1 domains of I73R played a significant role in suppressing cGAS-STING induction of IFN-β. These findings offer insights into the protein's functions and support its role as a virulence factor.
Collapse
Affiliation(s)
- Danh Cong Lai
- Nebraska Center for Virology, University of Nebraska-Lincoln, United States
| | | | - Hiep L X Vu
- Nebraska Center for Virology, University of Nebraska-Lincoln, United States; Department of Animal Science, University of Nebraska-Lincoln, United States.
| |
Collapse
|
8
|
Zhong Y, Zhong X, Qiao L, Wu H, Liu C, Zhang T. Zα domain proteins mediate the immune response. Front Immunol 2023; 14:1241694. [PMID: 37771585 PMCID: PMC10523160 DOI: 10.3389/fimmu.2023.1241694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023] Open
Abstract
The Zα domain has a compact α/β architecture containing a three-helix bundle flanked on one side by a twisted antiparallel β sheet. This domain displays a specific affinity for double-stranded nucleic acids that adopt a left-handed helical conformation. Currently, only three Zα-domain proteins have been identified in eukaryotes, specifically ADAR1, ZBP1, and PKZ. ADAR1 is a double-stranded RNA (dsRNA) binding protein that catalyzes the conversion of adenosine residues to inosine, resulting in changes in RNA structure, function, and expression. In addition to its editing function, ADAR1 has been shown to play a role in antiviral defense, gene regulation, and cellular differentiation. Dysregulation of ADAR1 expression and activity has been associated with various disease states, including cancer, autoimmune disorders, and neurological disorders. As a sensing molecule, ZBP1 exhibits the ability to recognize nucleic acids with a left-handed conformation. ZBP1 harbors a RIP homotypic interaction motif (RHIM), composed of a highly charged surface region and a leucine-rich hydrophobic core, enabling the formation of homotypic interactions between proteins with similar structure. Upon activation, ZBP1 initiates a downstream signaling cascade leading to programmed cell death, a process mediated by RIPK3 via the RHIM motif. PKZ was identified in fish, and contains two Zα domains at the N-terminus. PKZ is essential for normal growth and development and may contribute to the regulation of immune system function in fish. Interestingly, some pathogenic microorganisms also encode Zα domain proteins, such as, Vaccinia virus and Cyprinid Herpesvirus. Zα domain proteins derived from pathogenic microorganisms have been demonstrated to be pivotal contributors in impeding the host immune response and promoting virus replication and spread. This review focuses on the mammalian Zα domain proteins: ADAR1 and ZBP1, and thoroughly elucidates their functions in the immune response.
Collapse
Affiliation(s)
- Yuhan Zhong
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao Zhong
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Liangjun Qiao
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Hong Wu
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Chang Liu
- Division of Liver, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Zhang
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Liu Y, Shen Z, Xie Z, Song Y, Li Y, Liang R, Gong L, Di D, Liu J, Liu J, Chen Z, Yu W, Lv L, Zhong Q, Liao X, Tian C, Wang R, Song Q, Wang H, Peng G, Chen H. African swine fever virus I73R is a critical virulence-related gene: A potential target for attenuation. Proc Natl Acad Sci U S A 2023; 120:e2210808120. [PMID: 37023125 PMCID: PMC10104517 DOI: 10.1073/pnas.2210808120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
African swine fever virus (ASFV) is a large, double-stranded DNA virus that causes a fatal disease in pigs, posing a threat to the global pig industry. Whereas some ASFV proteins have been found to play important roles in ASFV-host interaction, the functional roles of many proteins are still largely unknown. In this study, we identified I73R, an early viral gene in the replication cycle of ASFV, as a key virulence factor. Our findings demonstrate that pI73R suppresses the host innate immune response by broadly inhibiting the synthesis of host proteins, including antiviral proteins. Crystallization and structural characterization results suggest that pI73R is a nucleic-acid-binding protein containing a Zα domain. It localizes in the nucleus and inhibits host protein synthesis by suppressing the nuclear export of cellular messenger RNA (mRNAs). While pI73R promotes viral replication, the deletion of the gene showed that it is a nonessential gene for virus replication. In vivo safety and immunogenicity evaluation results demonstrate that the deletion mutant ASFV-GZΔI73R is completely nonpathogenic and provides effective protection to pigs against wild-type ASFV. These results reveal I73R as a virulence-related gene critical for ASFV pathogenesis and suggest that it is a potential target for virus attenuation. Accordingly, the deletion mutant ASFV-GZΔI73R can be a potent live-attenuated vaccine candidate.
Collapse
Affiliation(s)
- Yingnan Liu
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North), Ministry of Agriculture and Rural Affairs, P.R. China, Shanghai Veterinary Research Institute, Biosafety Research Center, Chinese Academy of Agricultural Sciences, Shanghai200241, China
| | - Zhou Shen
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei430070, China
| | - Zhenhua Xie
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North), Ministry of Agriculture and Rural Affairs, P.R. China, Shanghai Veterinary Research Institute, Biosafety Research Center, Chinese Academy of Agricultural Sciences, Shanghai200241, China
| | - Yingying Song
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North), Ministry of Agriculture and Rural Affairs, P.R. China, Shanghai Veterinary Research Institute, Biosafety Research Center, Chinese Academy of Agricultural Sciences, Shanghai200241, China
| | - Yao Li
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North), Ministry of Agriculture and Rural Affairs, P.R. China, Shanghai Veterinary Research Institute, Biosafety Research Center, Chinese Academy of Agricultural Sciences, Shanghai200241, China
| | - Rui Liang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei430070, China
| | - Lang Gong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong510642, China
| | - Dongdong Di
- The Spirit Jinyu Biological Pharmaceutical Co. Ltd., Hohhot, Inner, Mongolia010030, China
| | - Jianqi Liu
- The Spirit Jinyu Biological Pharmaceutical Co. Ltd., Hohhot, Inner, Mongolia010030, China
| | - Jingyi Liu
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North), Ministry of Agriculture and Rural Affairs, P.R. China, Shanghai Veterinary Research Institute, Biosafety Research Center, Chinese Academy of Agricultural Sciences, Shanghai200241, China
| | - Zongyan Chen
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North), Ministry of Agriculture and Rural Affairs, P.R. China, Shanghai Veterinary Research Institute, Biosafety Research Center, Chinese Academy of Agricultural Sciences, Shanghai200241, China
| | - Wanqi Yu
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North), Ministry of Agriculture and Rural Affairs, P.R. China, Shanghai Veterinary Research Institute, Biosafety Research Center, Chinese Academy of Agricultural Sciences, Shanghai200241, China
| | - Lu Lv
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North), Ministry of Agriculture and Rural Affairs, P.R. China, Shanghai Veterinary Research Institute, Biosafety Research Center, Chinese Academy of Agricultural Sciences, Shanghai200241, China
| | - Qiuping Zhong
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North), Ministry of Agriculture and Rural Affairs, P.R. China, Shanghai Veterinary Research Institute, Biosafety Research Center, Chinese Academy of Agricultural Sciences, Shanghai200241, China
| | - Xinxin Liao
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North), Ministry of Agriculture and Rural Affairs, P.R. China, Shanghai Veterinary Research Institute, Biosafety Research Center, Chinese Academy of Agricultural Sciences, Shanghai200241, China
| | - Chuanwen Tian
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North), Ministry of Agriculture and Rural Affairs, P.R. China, Shanghai Veterinary Research Institute, Biosafety Research Center, Chinese Academy of Agricultural Sciences, Shanghai200241, China
| | - Rongrong Wang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North), Ministry of Agriculture and Rural Affairs, P.R. China, Shanghai Veterinary Research Institute, Biosafety Research Center, Chinese Academy of Agricultural Sciences, Shanghai200241, China
| | - Qingqing Song
- The Spirit Jinyu Biological Pharmaceutical Co. Ltd., Hohhot, Inner, Mongolia010030, China
| | - Heng Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong510642, China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei430070, China
| | - Hongjun Chen
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North), Ministry of Agriculture and Rural Affairs, P.R. China, Shanghai Veterinary Research Institute, Biosafety Research Center, Chinese Academy of Agricultural Sciences, Shanghai200241, China
| |
Collapse
|
10
|
Yang S, Miao C, Liu W, Zhang G, Shao J, Chang H. Structure and function of African swine fever virus proteins: Current understanding. Front Microbiol 2023; 14:1043129. [PMID: 36846791 PMCID: PMC9950752 DOI: 10.3389/fmicb.2023.1043129] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/26/2023] [Indexed: 02/12/2023] Open
Abstract
African swine fever virus (ASFV) is a highly infectious and lethal double-stranded DNA virus that is responsible for African swine fever (ASF). ASFV was first reported in Kenya in 1921. Subsequently, ASFV has spread to countries in Western Europe, Latin America, and Eastern Europe, as well as to China in 2018. ASFV epidemics have caused serious pig industry losses around the world. Since the 1960s, much effort has been devoted to the development of an effective ASF vaccine, including the production of inactivated vaccines, attenuated live vaccines, and subunit vaccines. Progress has been made, but unfortunately, no ASF vaccine has prevented epidemic spread of the virus in pig farms. The complex ASFV structure, comprising a variety of structural and non-structural proteins, has made the development of ASF vaccines difficult. Therefore, it is necessary to fully explore the structure and function of ASFV proteins in order to develop an effective ASF vaccine. In this review, we summarize what is known about the structure and function of ASFV proteins, including the most recently published findings.
Collapse
Affiliation(s)
| | | | - Wei Liu
- African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Guanglei Zhang
- African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | | | | |
Collapse
|
11
|
Herbert A, Poptsova M. Z-RNA and the Flipside of the SARS Nsp13 Helicase: Is There a Role for Flipons in Coronavirus-Induced Pathology? Front Immunol 2022; 13:912717. [PMID: 35784331 PMCID: PMC9247175 DOI: 10.3389/fimmu.2022.912717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
We present evidence suggesting that the severe acute respiratory syndrome (SARS) coronavirus non-structural protein 13 (Nsp13) modulates the Z-RNA dependent regulated cell death pathways . We show that Z-prone sequences [called flipons] exist in coronavirus and provide a signature (Z-sig) that enables identification of the animal viruses from which the human pathogens arose. We also identify a potential RIP Homology Interaction Motif (RHIM) in the helicase Nsp13 that resembles those present in proteins that initiate Z-RNA-dependent cell death through interactions with the Z-RNA sensor protein ZBP1. These two observations allow us to suggest a model in which Nsp13 down regulates Z-RNA activated innate immunity by two distinct mechanisms. The first involves a novel ATP-independent Z-flipon helicase (flipase) activity in Nsp13 that differs from that of canonical A-RNA helicases. This flipase prevents formation of Z-RNAs that would otherwise activate cell death pathways. The second mechanism likely inhibits the interactions between ZBP1 and the Receptor Interacting Proteins Kinases RIPK1 and RIPK3 by targeting their RHIM domains. Together the described Nsp13 RHIM and flipase activities have the potential to alter the host response to coronaviruses and impact the design of drugs targeting the Nsp13 protein. The Z-sig and RHIM domains may provide a way of identifying previously uncharacterized viruses that are potentially pathogenic for humans.
Collapse
Affiliation(s)
- Alan Herbert
- InsideOutBio, Discovery, Charlestown, MA, United States
- Laboratory of Bioinformatics, Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia
- *Correspondence: Alan Herbert,
| | - Maria Poptsova
- Laboratory of Bioinformatics, Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia
| |
Collapse
|