1
|
Dowling GP, Keelan S, Cosgrove NS, Daly GR, Giblin K, Toomey S, Hennessy BT, Hill ADK. Receptor Discordance in Metastatic Breast Cancer; a review of clinical and genetic subtype alterations from primary to metastatic disease. Breast Cancer Res Treat 2024; 207:471-476. [PMID: 39090418 PMCID: PMC11420314 DOI: 10.1007/s10549-024-07431-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 07/02/2024] [Indexed: 08/04/2024]
Abstract
PURPOSE Receptor and subtype discordance between primary breast tumours and metastases is a frequently reported phenomenon. The aim of this article is to review the current evidence on receptor discordance in metastatic breast cancer and to explore the benefit of performing a repeat biopsy in this context. METHODS Searches were undertaken on PubMed and Clinicaltrials.gov for relevant publications and trials. CONCLUSION The current guidelines recommend offering to perform a biopsy of a metastatic lesion to evaluate receptor status. The choice of systemic therapy in metastatic disease is often based on the receptor status of the primary lesion. As therapeutic decision making is guided by subtype, biopsy of the metastatic lesion to determine receptor status may alter treatment. This article discusses discordance rates, the mechanisms of receptor discordance, the effect of discordance on treatment and survival outcomes, as well as highlighting some ongoing clinical trials in patients with metastatic breast cancer.
Collapse
Affiliation(s)
- Gavin P Dowling
- Medical Oncology Lab, Department of Molecular Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.
- The Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland.
- The Department of Surgery, Beaumont Hospital, Dublin, Ireland.
| | - Stephen Keelan
- The Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
- The Department of Surgery, Beaumont Hospital, Dublin, Ireland
| | - Nicola S Cosgrove
- The Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Gordon R Daly
- The Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
- The Department of Surgery, Beaumont Hospital, Dublin, Ireland
| | - Katie Giblin
- The Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
- The Department of Surgery, Beaumont Hospital, Dublin, Ireland
| | - Sinead Toomey
- Medical Oncology Lab, Department of Molecular Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Bryan T Hennessy
- Medical Oncology Lab, Department of Molecular Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Arnold D K Hill
- The Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
- The Department of Surgery, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
2
|
Zhang X, Yang F, Huang Z, Liu X, Xia G, Huang J, Yang Y, Li J, Huang J, Liu Y, Zhou T, Qi W, Gao G, Yang X. Macrophages Promote Subtype Conversion and Endocrine Resistance in Breast Cancer. Cancers (Basel) 2024; 16:678. [PMID: 38339428 PMCID: PMC10854660 DOI: 10.3390/cancers16030678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND The progression of tumors from less aggressive subtypes to more aggressive states during metastasis poses challenges for treatment strategies. Previous studies have revealed the molecular subtype conversion between primary and metastatic tumors in breast cancer (BC). However, the subtype conversion during lymph node metastasis (LNM) and the underlying mechanism remains unclear. METHODS We compared clinical subtypes in paired primary tumors and positive lymph nodes (PLNs) in BC patients and further validated them in the mouse model. Bioinformatics analysis and macrophage-conditioned medium treatment were performed to investigate the role of macrophages in subtype conversion. RESULTS During LNM, hormone receptors (HRs) were down-regulated, while HER2 was up-regulated, leading to the transformation of luminal A tumors towards luminal B tumors and from luminal B subtype towards HER2-enriched (HER2-E) subtype. The mouse model demonstrated the elevated levels of HER2 in PLN while retaining luminal characteristics. Among the various cells in the tumor microenvironment (TME), macrophages were the most clinically relevant in terms of prognosis. The treatment of a macrophage-conditioned medium further confirmed the downregulation of HR expression and upregulation of HER2 expression, inducing tamoxifen resistance. Through bioinformatics analysis, MNX1 was identified as a potential transcription factor governing the expression of HR and HER2. CONCLUSION Our study revealed the HER2-E subtype conversion during LNM in BC. Macrophages were the crucial cell type in TME, inducing the downregulation of HR and upregulation of HER2, probably via MNX1. Targeting macrophages or MNX1 may provide new avenues for endocrine therapy and targeted treatment of BC patients with LNM.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (X.Z.); (F.Y.); (Z.H.); (X.L.); (G.X.); (J.H.); (Y.Y.); (J.L.); (J.H.); (Y.L.); (T.Z.); (W.Q.)
| | - Fengyu Yang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (X.Z.); (F.Y.); (Z.H.); (X.L.); (G.X.); (J.H.); (Y.Y.); (J.L.); (J.H.); (Y.L.); (T.Z.); (W.Q.)
| | - Zhijian Huang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (X.Z.); (F.Y.); (Z.H.); (X.L.); (G.X.); (J.H.); (Y.Y.); (J.L.); (J.H.); (Y.L.); (T.Z.); (W.Q.)
- Department of Pathology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaojun Liu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (X.Z.); (F.Y.); (Z.H.); (X.L.); (G.X.); (J.H.); (Y.Y.); (J.L.); (J.H.); (Y.L.); (T.Z.); (W.Q.)
| | - Gan Xia
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (X.Z.); (F.Y.); (Z.H.); (X.L.); (G.X.); (J.H.); (Y.Y.); (J.L.); (J.H.); (Y.L.); (T.Z.); (W.Q.)
| | - Jieye Huang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (X.Z.); (F.Y.); (Z.H.); (X.L.); (G.X.); (J.H.); (Y.Y.); (J.L.); (J.H.); (Y.L.); (T.Z.); (W.Q.)
| | - Yang Yang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (X.Z.); (F.Y.); (Z.H.); (X.L.); (G.X.); (J.H.); (Y.Y.); (J.L.); (J.H.); (Y.L.); (T.Z.); (W.Q.)
| | - Junchen Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (X.Z.); (F.Y.); (Z.H.); (X.L.); (G.X.); (J.H.); (Y.Y.); (J.L.); (J.H.); (Y.L.); (T.Z.); (W.Q.)
| | - Jin Huang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (X.Z.); (F.Y.); (Z.H.); (X.L.); (G.X.); (J.H.); (Y.Y.); (J.L.); (J.H.); (Y.L.); (T.Z.); (W.Q.)
| | - Yuxin Liu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (X.Z.); (F.Y.); (Z.H.); (X.L.); (G.X.); (J.H.); (Y.Y.); (J.L.); (J.H.); (Y.L.); (T.Z.); (W.Q.)
| | - Ti Zhou
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (X.Z.); (F.Y.); (Z.H.); (X.L.); (G.X.); (J.H.); (Y.Y.); (J.L.); (J.H.); (Y.L.); (T.Z.); (W.Q.)
| | - Weiwei Qi
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (X.Z.); (F.Y.); (Z.H.); (X.L.); (G.X.); (J.H.); (Y.Y.); (J.L.); (J.H.); (Y.L.); (T.Z.); (W.Q.)
| | - Guoquan Gao
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (X.Z.); (F.Y.); (Z.H.); (X.L.); (G.X.); (J.H.); (Y.Y.); (J.L.); (J.H.); (Y.L.); (T.Z.); (W.Q.)
- Department of Internal Medicine, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510700, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xia Yang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (X.Z.); (F.Y.); (Z.H.); (X.L.); (G.X.); (J.H.); (Y.Y.); (J.L.); (J.H.); (Y.L.); (T.Z.); (W.Q.)
- Department of Internal Medicine, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510700, China
- Guangdong Engineering & Technology Research Center for Gene Manipulation and Biomacromolecular Products, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
3
|
Kaur J, Chandrashekar DS, Varga Z, Sobottka B, Janssen E, Gandhi K, Kowalski J, Kiraz U, Varambally S, Aneja R. Whole-Exome Sequencing Reveals High Mutational Concordance between Primary and Matched Recurrent Triple-Negative Breast Cancers. Genes (Basel) 2023; 14:1690. [PMID: 37761830 PMCID: PMC10531222 DOI: 10.3390/genes14091690] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
PURPOSE Triple-negative breast cancer (TNBC) is a molecularly complex and heterogeneous breast cancer subtype with distinct biological features and clinical behavior. Although TNBC is associated with an increased risk of metastasis and recurrence, the molecular mechanisms underlying TNBC metastasis remain unclear. We performed whole-exome sequencing (WES) analysis of primary TNBC and paired recurrent tumors to investigate the genetic profile of TNBC. METHODS Genomic DNA extracted from 35 formalin-fixed paraffin-embedded tissue samples from 26 TNBC patients was subjected to WES. Of these, 15 were primary tumors that did not have recurrence, and 11 were primary tumors that had recurrence (nine paired primary and recurrent tumors). Tumors were analyzed for single-nucleotide variants and insertions/deletions. RESULTS The tumor mutational burden (TMB) was 7.6 variants/megabase in primary tumors that recurred (n = 9); 8.2 variants/megabase in corresponding recurrent tumors (n = 9); and 7.3 variants/megabase in primary tumors that did not recur (n = 15). MUC3A was the most frequently mutated gene in all groups. Mutations in MAP3K1 and MUC16 were more common in our dataset. No alterations in PI3KCA were detected in our dataset. CONCLUSIONS We found similar mutational profiles between primary and paired recurrent tumors, suggesting that genomic features may be retained during local recurrence.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA;
| | - Darshan S. Chandrashekar
- Department of Pathology—Molecular and Cellular, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (D.S.C.); (S.V.)
| | - Zsuzsanna Varga
- Department of Pathology and Molecular Pathology, University Hospital Zurich, 8091 Zurich, Switzerland; (Z.V.); (B.S.)
| | - Bettina Sobottka
- Department of Pathology and Molecular Pathology, University Hospital Zurich, 8091 Zurich, Switzerland; (Z.V.); (B.S.)
| | - Emiel Janssen
- Department of Pathology, Stavanger University Hospital, Health Stavanger HF, 4068 Stavanger, Norway; (E.J.); (U.K.)
| | - Khanjan Gandhi
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA;
| | - Jeanne Kowalski
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA;
| | - Umay Kiraz
- Department of Pathology, Stavanger University Hospital, Health Stavanger HF, 4068 Stavanger, Norway; (E.J.); (U.K.)
| | - Sooryanarayana Varambally
- Department of Pathology—Molecular and Cellular, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (D.S.C.); (S.V.)
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA;
- Department of Clinical and Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
4
|
Heitkamp A, Madesta F, Amberg S, Wahaj S, Schröder T, Bechstein M, Meyer L, Broocks G, Hanning U, Gauer T, Werner R, Fiehler J, Gellißen S, Kniep HC. Discordant and Converting Receptor Expressions in Brain Metastases from Breast Cancer: MRI-Based Non-Invasive Receptor Status Tracking. Cancers (Basel) 2023; 15:cancers15112880. [PMID: 37296843 DOI: 10.3390/cancers15112880] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Discordance and conversion of receptor expressions in metastatic lesions and primary tumors is often observed in patients with brain metastases from breast cancer. Therefore, personalized therapy requires continuous monitoring of receptor expressions and dynamic adaptation of applied targeted treatment options. Radiological in vivo techniques may allow receptor status tracking at high frequencies at low risk and cost. The present study aims to investigate the potential of receptor status prediction through machine-learning-based analysis of radiomic MR image features. The analysis is based on 412 brain metastases samples from 106 patients acquired between 09/2007 and 09/2021. Inclusion criteria were as follows: diagnosed cerebral metastases from breast cancer; histopathology reports on progesterone (PR), estrogen (ER), and human epidermal growth factor 2 (HER2) receptor status; and availability of MR imaging data. In total, 3367 quantitative features of T1 contrast-enhanced, T1 non-enhanced, and FLAIR images and corresponding patient age were evaluated utilizing random forest algorithms. Feature importance was assessed using Gini impurity measures. Predictive performance was tested using 10 permuted 5-fold cross-validation sets employing the 30 most important features of each training set. Receiver operating characteristic areas under the curves of the validation sets were 0.82 (95% confidence interval [0.78; 0.85]) for ER+, 0.73 [0.69; 0.77] for PR+, and 0.74 [0.70; 0.78] for HER2+. Observations indicate that MR image features employed in a machine learning classifier could provide high discriminatory accuracy in predicting the receptor status of brain metastases from breast cancer.
Collapse
Affiliation(s)
- Alexander Heitkamp
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Frederic Madesta
- Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Sophia Amberg
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Schohla Wahaj
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Tanja Schröder
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Matthias Bechstein
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Lukas Meyer
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Gabriel Broocks
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Uta Hanning
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Tobias Gauer
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - René Werner
- Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- Center for Biomedical Artificial Intelligence (bAIome), University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Susanne Gellißen
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Helge C Kniep
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| |
Collapse
|
5
|
Guo L, Kong D, Liu J, Zhan L, Luo L, Zheng W, Zheng Q, Chen C, Sun S. Breast cancer heterogeneity and its implication in personalized precision therapy. Exp Hematol Oncol 2023; 12:3. [PMID: 36624542 PMCID: PMC9830930 DOI: 10.1186/s40164-022-00363-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
Breast cancer heterogeneity determines cancer progression, treatment effects, and prognosis. However, the precise mechanism for this heterogeneity remains unknown owing to its complexity. Here, we summarize the origins of breast cancer heterogeneity and its influence on disease progression, recurrence, and therapeutic resistance. We review the possible mechanisms of heterogeneity and the research methods used to analyze it. We also highlight the importance of cell interactions for the origins of breast cancer heterogeneity, which can be further categorized into cooperative and competitive interactions. Finally, we provide new insights into precise individual treatments based on heterogeneity.
Collapse
Affiliation(s)
- Liantao Guo
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Deguang Kong
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Jianhua Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Ling Zhan
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Lan Luo
- Department of Breast Surgery, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Road, Yunyan District, Guiyang, 550001, Guizhou, China
| | - Weijie Zheng
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Qingyuan Zheng
- Department of Urology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China.
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China.
| |
Collapse
|
6
|
Mellouli M, Graja S, Kridis WB, Ayed HB, Makni S, Triki M, Charfi S, Khanfir A, Boudawara TS, Kallel R. Discordance in receptor status between primary and metastatic breast cancer and overall survival: A single-center analysis. Ann Diagn Pathol 2022; 61:152044. [PMID: 36099874 DOI: 10.1016/j.anndiagpath.2022.152044] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/03/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND The tumor phenotype may change between primary and metastatic breast cancer. We compared the expression of estrogen receptor (ER), progesterone receptor (PR), and HER2 in a series of primary breast carcinomas (PBC) with their metastatic relapses and analyzed the impact of any changes on survival. MATERIALS AND METHODS It was a single-center retrospective study, collecting consecutive cases of metastatic breast carcinoma diagnosed in the pathology and medical oncology departments at Habib Bourguiba University Hospital in Sfax, Tunisia. An immunohistochemical study was used to assess ER, PR, and HER2 expression. Overall survival (OS) and post-metastasis survival (PMS) were evaluated using multivariable Cox regression analysis. RESULTS Our study included 68 patients. ER and PR status changed in 29.4 % and 39.7 % of cases, respectively. Conversions were mainly from positive to negative status (22 % and 23.5 % for ER and PR, respectively). Differences in HER2 status were observed in 19.6 % of cases, with loss of overexpression in 6 patients (10.7 %). Adjuvant trastuzumab therapy and PBC molecular subtype (HR-, HER2+) were associated with HER2 status discordance (p = 0.02 and 0.03, respectively). On multivariable analysis, HR-negative conversion tumors were significantly associated with a worse OS (p = 0.042) and PMS (p < 0.001), compared to HR-concordant positive tumors. CONCLUSION This study establishes that HR and HER2 status discordance between primary and metastatic breast carcinoma has a prognostic impact on patient outcome. Analyzing these receptors' status in all newly diagnosed cases of metastatic breast carcinoma is strongly recommended and would provide information for changing treatment strategies.
Collapse
Affiliation(s)
- Manel Mellouli
- Department of Pathology and Research Laboratory LR18SP10, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia.
| | - Soumaya Graja
- Department of Pathology and Research Laboratory LR18SP10, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Wala Ben Kridis
- Department of Medical Oncology, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Houda Ben Ayed
- Department of Community Health and Epidemiology, Hedi Chaker University Hospital, University of Sfax, Sfax, Tunisia
| | - Saadia Makni
- Department of Pathology and Research Laboratory LR18SP10, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Meriam Triki
- Department of Pathology and Research Laboratory LR18SP10, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Slim Charfi
- Department of Pathology and Research Laboratory LR18SP10, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Afef Khanfir
- Department of Medical Oncology, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Tahya Sellami Boudawara
- Department of Pathology and Research Laboratory LR18SP10, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Rim Kallel
- Department of Pathology and Research Laboratory LR18SP10, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| |
Collapse
|
7
|
Jansson M, Lindberg J, Rask G, Svensson J, Billing O, Nazemroaya A, Berglund A, Wärnberg F, Sund M. Prognostic Value of Stromal Type IV Collagen Expression in Small Invasive Breast Cancers. Front Mol Biosci 2022; 9:904526. [PMID: 35693557 PMCID: PMC9174894 DOI: 10.3389/fmolb.2022.904526] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/09/2022] [Indexed: 11/22/2022] Open
Abstract
Breast cancer is the most common cause of cancer death among women worldwide. Localized breast cancer can be cured by surgery and adjuvant therapy, but mortality remains high for tumors that metastasize early. Type IV collagen is a basement membrane protein, and breach of this extracellular matrix structure is the first step of cancer invasion. Type IV collagen is found in the stroma of many cancers, but its role in tumor biology is unclear. Here, expression of type IV collagen in the stroma of small breast cancers was analyzed, correlated to clinically used prognostic biomarkers and patient survival. The findings were further validated in an independent gene expression data cohort. Tissue samples from 1,379 women with in situ and small invasive breast cancers (≤15 mm) diagnosed in 1986-2004 were included. Primary tumor tissue was collected into tissue microarrays. Type IV collagen expression in tissues was visualized using immunohistochemistry. Gene expression data was extracted from the Cancer Genome Atlas database. Out of 1,379 women, 856 had an invasive breast cancer and type IV collagen staining was available for 714 patients. In Kaplan-Meier analysis high type IV collagen expression was significantly associated (p = 0.026) with poorer breast cancer specific survival. There was no correlation of type IV collagen expression to clinically used prognostic biomarkers. High type IV collagen expression was clearly associated to distant metastasis (p = 0.002). In an external validation cohort (n = 1,104), high type IV collagen mRNA expression was significantly (p = 0.041) associated with poorer overall survival, with overexpression of type IV collagen mRNA in metastatic tissue. Stromal type IV collagen expression in the primary tumor correlates to poor breast cancer specific survival most likely due to a higher risk of developing distant metastasis. This ECM protein may function as biomarker to predict the risk of future metastatic disease in patients with breast cancers.
Collapse
Affiliation(s)
- Malin Jansson
- Department of Surgery and Perioperative Sciences/Surgery, Umeå University, Umeå, Sweden
- *Correspondence: Malin Jansson,
| | - Jessica Lindberg
- Department of Surgery and Perioperative Sciences/Surgery, Umeå University, Umeå, Sweden
| | - Gunilla Rask
- Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
| | - Johan Svensson
- Department of Surgery and Perioperative Sciences/Surgery, Umeå University, Umeå, Sweden
- Department of Statistics, Umeå School of Business, Economics and Statistics, Umeå University, Umeå, Sweden
| | - Ola Billing
- Department of Surgery and Perioperative Sciences/Surgery, Umeå University, Umeå, Sweden
| | | | - Anette Berglund
- Department of Surgery and Perioperative Sciences/Surgery, Umeå University, Umeå, Sweden
| | - Fredrik Wärnberg
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Malin Sund
- Department of Surgery and Perioperative Sciences/Surgery, Umeå University, Umeå, Sweden
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
8
|
Bragina OD, Deyev SM, Chernov VI, Tolmachev VM. The Evolution of Targeted Radionuclide Diagnosis of HER2-Positive Breast Cancer. Acta Naturae 2022; 14:4-15. [PMID: 35923562 PMCID: PMC9307982 DOI: 10.32607/actanaturae.11611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/18/2022] [Indexed: 12/24/2022] Open
Abstract
This review examines the evolution of the radionuclide diagnosis of HER2-positive breast cancer using various compounds as a targeting module in clinical practice: from full-length antibodies to a new group of small synthetic proteins called alternative scaffold proteins. This topic is of especial relevance today in view of the problems attendant to the detection of breast cancer with HER2/neu overexpression, which, in most cases, introduce errors in the treatment of patients. The results of clinical studies of radiopharmaceuticals based on affibody molecules, ADAPTs, and DARPins for SPECT and PET have demonstrated good tolerability of the compounds, their rapid excretion from the body, and the possibility to differentiate tumor sites depending on the HER2/neu status. This indicates that targeted radionuclide diagnosis holds promise and the need to continue research in this direction.
Collapse
Affiliation(s)
- O D Bragina
- Tomsk National Research Medical Center of the Russian Academy of Sciences Cancer Research institute, Tomsk, 634009 Russia
- National Research Tomsk Polytechnic University, Tomsk, 634050 Russia
| | - S M Deyev
- National Research Tomsk Polytechnic University, Tomsk, 634050 Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| | - V I Chernov
- Tomsk National Research Medical Center of the Russian Academy of Sciences Cancer Research institute, Tomsk, 634009 Russia
- National Research Tomsk Polytechnic University, Tomsk, 634050 Russia
| | - V M Tolmachev
- National Research Tomsk Polytechnic University, Tomsk, 634050 Russia
- Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Hacısalihoğlu UP, Dogan MA. Expression of estrogen and progesterone receptors, HER2 protein and Ki-67 proliferation index in breast carcinoma in both tumor tissue and tissue microarray. Biotech Histochem 2021; 97:298-305. [PMID: 34519589 DOI: 10.1080/10520295.2021.1973102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Breast cancer treatment is tailored to molecular subtypes, which are classified by cell type and by presence of estrogen and progesterone receptors, HER2 overexpression and Ki-67 proliferation index. In routine pathological practice, these markers are detected in tumor tissue using immunohistochemistry, which requires four immunohistochemical antibodies for each patient. We developed a new tissue microarray procedure using a punch device with a 6 mm core diameter. The presence of estrogen and progesterone receptors, HER2 expression and the Ki-67 proliferation index of tumor tissues of 50 breast carcinoma patients had been determined using the conventional approach. We created three tissue microarray blocks, each containing samples from 14 main tumor tissues. One tissue microarray block was created with samples taken from eight main tumor tissues. Sections were cut from the four blocks and subjected to immunohistochemical staining; the original samples and the microarrays then were compared. We found significant agreement between estrogen receptor, progesterone receptor and HER-2 expression as well as Ki-67 proliferation index status of the original tumor tissues and the tissue microarray. Our tissue microarray technique using a single 6 mm core is a reliable and cost-effective method for determining estrogen and progesterone receptors, HER-2 status and Ki-67 proliferation index levels in patients with early breast carcinoma.
Collapse
Affiliation(s)
- U P Hacısalihoğlu
- Department of Pathology, Medical Faculty, Istanbul Yeni Yuzyil University, Gaziosmanpasa Hospital, Istanbul, Turkey
| | - M A Dogan
- Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| |
Collapse
|
10
|
Jana S, Muscarella RA, Jones D. The Multifaceted Effects of Breast Cancer on Tumor-Draining Lymph Nodes. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1353-1363. [PMID: 34043978 DOI: 10.1016/j.ajpath.2021.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 12/31/2022]
Abstract
Breast cancer (BC) accounts for significant morbidity and mortality among women worldwide. About one in three patients with breast cancer present with lymph node (LN) metastasis and LN status is one of the most important prognostic predictors in patients with BC. In addition to their prognostic value, LNs initiate adaptive immunity against BC. Yet, BC cells often avoid immune-mediated destruction in LNs. This review provides an overview of the ways by which BC cells modulate LN stromal and hematopoietic cells to promote metastasis and immune evasion.
Collapse
Affiliation(s)
- Samir Jana
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Ronald A Muscarella
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Dennis Jones
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
11
|
Receptor conversion in metastatic breast cancer: analysis of 390 cases from a single institution. Mod Pathol 2020; 33:2499-2506. [PMID: 32620918 DOI: 10.1038/s41379-020-0615-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/28/2022]
Abstract
Estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2) status provide clinical utility in guiding therapeutic decision-making in metastatic breast cancer (BC). Increasing data have shown substantial differences between the receptor profiles of primary BCs and their paired metastases. In this study, we provide a large single center cohort to assess the frequency of receptor conversion in metastatic BC. The overall discordant rates were 18.3%, 40.3%, and 13.7% for ER, PR, and HER2, respectively. The discordance was significantly higher for PR when compared with ER and HER2. The conversion occurred significantly as a switch from positive to negative receptor status when compared with that from negative to positive for all three receptors. Semiquantitative analyses revealed a significantly decreased expression of both ER (25%) and PR (57%) in the metastases. There was a higher rate of PR discordance in bone metastases when comparing to other common organs of relapse. Furthermore, in the subset of patients with a single primary and multiple distant metastases, the discordant rates among the distant sites were 27.5%, 39.4%, and 14.3% for ER, PR, and HER2, respectively. A positive ER status, be it in primary or metastatic BC, was associated with a prolonged metastasis-free survival when compared with ER-negative primary tumors without conversion. Furthermore, a positive ER status in metastatic BC regardless of primary was associated with a superior overall survival when compared with an ER-negative tumor without conversion. Thus, receptor conversion is a frequent event in the course of BC progression, and can also be seen between different metastatic sites. Moreover, some conversions are of prognostic significance. The findings may reflect tumor heterogeneity, sampling or treatment effect, but may also indicate alteration in tumor biology. Repeat biomarker testing is warranted in making appropriate treatment plans in the pursuit of precision medicine.
Collapse
|
12
|
Wu J, Bryan J, Rubinstein SM, Wang L, Lenoue-Newton M, Zuhour R, Levy M, Micheel C, Xu Y, Bhavnani SK, Mackey L, Warner JL. Opportunities and Challenges for Analyzing Cancer Data at the Inter- and Intra-Institutional Levels. JCO Precis Oncol 2020; 4:1900394. [PMID: 32923903 DOI: 10.1200/po.19.00394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2020] [Indexed: 01/01/2023] Open
Abstract
PURPOSE Our goal was to identify the opportunities and challenges in analyzing data from the American Association of Cancer Research Project Genomics Evidence Neoplasia Information Exchange (GENIE), a multi-institutional database derived from clinically driven genomic testing, at both the inter- and the intra-institutional level. Inter-institutionally, we identified genotypic differences between primary and metastatic tumors across the 3 most represented cancers in GENIE. Intra-institutionally, we analyzed the clinical characteristics of the Vanderbilt-Ingram Cancer Center (VICC) subset of GENIE to inform the interpretation of GENIE as a whole. METHODS We performed overall cohort matching on the basis of age, ethnicity, and sex of 13,208 patients stratified by cancer type (breast, colon, or lung) and sample site (primary or metastatic). We then determined whether detected variants, at the gene level, were associated with primary or metastatic tumors. We extracted clinical data for the VICC subset from VICC's clinical data warehouse. Treatment exposures were mapped to a 13-class schema derived from the HemOnc ontology. RESULTS Across 756 genes, there were significant differences in all cancer types. In breast cancer, ESR1 variants were over-represented in metastatic samples (odds ratio, 5.91; q < 10-6). TP53 mutations were over-represented in metastatic samples across all cancers. VICC had a significantly different cancer type distribution than that of GENIE but patients were well matched with respect to age, sex, and sample type. Treatment data from VICC was used for a bipartite network analysis, demonstrating clusters with a mix of histologies and others being more histology specific. CONCLUSION This article demonstrates the feasibility of deriving meaningful insights from GENIE at the inter- and intra-institutional level and illuminates the opportunities and challenges of the data GENIE contains. The results should help guide future development of GENIE, with the goal of fully realizing its potential for accelerating precision medicine.
Collapse
Affiliation(s)
- Julie Wu
- Department of Internal Medicine, Vanderbilt University, Nashville, TN
| | | | - Samuel M Rubinstein
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
| | - Lucy Wang
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
| | - Michele Lenoue-Newton
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
| | - Raed Zuhour
- Department of Radiation Oncology, University of Texas Medical Branch, Galveston, TX
| | - Mia Levy
- Department of Internal Medicine, Vanderbilt University, Nashville, TN.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN.,Department of Biomedical Informatics, Vanderbilt University, Nashville, TN
| | - Christine Micheel
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
| | - Yaomin Xu
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN.,Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Suresh K Bhavnani
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX
| | | | - Jeremy L Warner
- Department of Internal Medicine, Vanderbilt University, Nashville, TN.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN.,Department of Biomedical Informatics, Vanderbilt University, Nashville, TN
| |
Collapse
|
13
|
Lu Y, Tong Y, Huang J, Lin L, Wu J, Fei X, Huang O, He J, Zhu L, Chen W, Li Y, Chen X, Shen K. Primary 21-Gene Recurrence Score and Disease Outcome in Loco-Regional and Distant Recurrent Breast Cancer Patients. Front Oncol 2020; 10:1315. [PMID: 32850415 PMCID: PMC7412719 DOI: 10.3389/fonc.2020.01315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/24/2020] [Indexed: 12/24/2022] Open
Abstract
Background: The 21-gene recurrence score (RS) assay has been proven prognostic and predictive for hormone receptor-positive/HER2-negative, node-negative early breast cancer patients. However, whether primary 21-gene RS can predict prognosis in recurrent breast cancer patients remained unknown. Patients and Methods: Consecutive breast cancer patients operated in Comprehensive Breast Health Center, Shanghai Ruijin Hospital between January 2009 and December 2018 were retrospectively analyzed. Patients with available 21-gene RS result for the primary tumor and reporting disease recurrence during follow-up were included. Association of 21-gene RS and overall survival (OS), post-recurrence overall survival (PR-OS), post-recurrence progression-free survival (PR-PFS), and first-line systemic treatment after recurrence were compared among different groups. Results: A total of 74 recurrent patients were included, with 10, 27, 37 patients in the RS <18, 18–30, and ≥ 31 groups, respectively. Recurrent patients with RS ≥ 31 were more likely to receive chemotherapy as their first-line treatment compared to those with RS <31 (P = 0.025). Compared to those with RS <31, patients with RS ≥ 31 had significantly worse OS (P = 0.025), worse PR-OS (P = 0.026), and a trend of inferior PR-PFS (P = 0.106). Multivariate analysis demonstrated that primary ER expression level (OS: P = 0.009; PR-OS: P = 0.017) and histological grade (OS: P = 0.003; PR-OS: P = 0.009), but not primary 21-gene RS (OS: P = 0.706; PR-OS: P = 0.120), were independently associated with worse OS and PR-OS. Conclusions: High primary 21-gene RS tended to be associated with worse disease outcome in loco-regional and distant recurrent breast cancer patients, which could influence the first-line systemic treatment after relapse, warranting further clinical evaluation.
Collapse
Affiliation(s)
- Yujie Lu
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwei Tong
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiahui Huang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Lin
- Department of Clinical Laboratory, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiayi Wu
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaochun Fei
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ou Huang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianrong He
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhu
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiguo Chen
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yafen Li
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaosong Chen
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kunwei Shen
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Finlay-Schultz J, Jacobsen BM, Riley D, Paul KV, Turner S, Ferreira-Gonzalez A, Harrell JC, Kabos P, Sartorius CA. New generation breast cancer cell lines developed from patient-derived xenografts. Breast Cancer Res 2020; 22:68. [PMID: 32576280 PMCID: PMC7310532 DOI: 10.1186/s13058-020-01300-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Breast cancer is a highly heterogeneous disease characterized by multiple histologic and molecular subtypes. While a myriad of breast cancer cell lines have been developed over the past 60 years, estrogen receptor alpha (ER)+ disease and some mutations associated with this subtype remain underrepresented. Here we describe six breast cancer cell lines derived from patient-derived xenografts (PDX) and their general characteristics. METHODS Established breast cancer PDX were processed into cell suspensions and placed into standard 2D cell culture; six emerged into long-term passageable cell lines. Cell lines were assessed for protein expression of common luminal, basal, and mesenchymal markers, growth assessed in response to estrogens and endocrine therapies, and RNA-seq and oncogenomics testing performed to compare relative transcript levels and identify putative oncogenic drivers. RESULTS Three cell lines express ER and two are also progesterone receptor (PR) positive; PAM50 subtyping identified one line as luminal A. One of the ER+PR+ lines harbors a D538G mutation in the gene for ER (ESR1), providing a natural model that contains this endocrine-resistant genotype. The third ER+PR-/low cell line has mucinous features, a rare histologic type of breast cancer. The three other lines are ER- and represent two basal-like and a mixed ductal/lobular breast cancer. The cell lines show varied responses to tamoxifen and fulvestrant, and three were demonstrated to regrow tumors in vivo. RNA sequencing confirms all cell lines are human and epithelial. Targeted oncogenomics testing confirmed the noted ESR1 mutation in addition to other mutations (i.e., PIK3CA, BRCA2, CCND1, NF1, TP53, MYC) and amplifications (i.e., FGFR1, FGFR3) frequently found in breast cancers. CONCLUSIONS These new generation breast cancer cell lines add to the existing repository of breast cancer models, increase the number of ER+ lines, and provide a resource that can be genetically modified for studying several important clinical breast cancer features.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Lobular/genetics
- Carcinoma, Lobular/metabolism
- Carcinoma, Lobular/pathology
- Cell Culture Techniques
- Cell Line, Tumor
- Female
- Gene Expression Profiling
- Heterografts
- Humans
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Receptor, ErbB-2/metabolism
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/metabolism
Collapse
Affiliation(s)
- Jessica Finlay-Schultz
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Britta M Jacobsen
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Duncan Riley
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kiran V Paul
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Scott Turner
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | | | - J Chuck Harrell
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Peter Kabos
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Carol A Sartorius
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
15
|
Ross C, Szczepanek K, Lee M, Yang H, Qiu T, Sanford JD, Hunter K. The genomic landscape of metastasis in treatment-naïve breast cancer models. PLoS Genet 2020; 16:e1008743. [PMID: 32463822 PMCID: PMC7282675 DOI: 10.1371/journal.pgen.1008743] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 06/09/2020] [Accepted: 03/28/2020] [Indexed: 12/24/2022] Open
Abstract
Metastasis remains the principle cause of mortality for breast cancer and presents a critical challenge because secondary lesions are often refractory to conventional treatments. While specific genetic alterations are tightly linked to primary tumor development and progression, the role of genetic alteration in the metastatic process is not well-understood. The theory of tumor evolution postulated by Peter Nowell in 1976 has yet to be proven in the context of metastasis. Therefore, in order to investigate how somatic evolution contributes to breast cancer metastasis, we performed exome, whole genome, and RNA sequencing of matched metastatic and primary tumors from pre-clinical mouse models of breast cancer. Here we show that in a treatment-naïve setting, recurrent single nucleotide variants and copy number variation, but not gene fusion events, play key metastasis-driving roles in breast cancer. For instance, we identified recurrent mutations in Kras, a known driver of colorectal and lung tumorigenesis that has not been previously implicated in breast cancer metastasis. However, in a set of in vivo proof-of-concept experiments we show that the Kras G12D mutation is sufficient to significantly promote metastasis using three syngeneic allograft models. The work herein confirms the existence of metastasis-driving mutations and presents a novel framework to identify actionable metastasis-targeted therapies.
Collapse
Affiliation(s)
- Christina Ross
- Laboratory of Cancer Biology and Genetics, Metastasis Susceptibility Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Karol Szczepanek
- Laboratory of Cancer Biology and Genetics, Metastasis Susceptibility Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Maxwell Lee
- Laboratory of Cancer Biology and Genetics, High-Dimension Data Analysis Group, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Howard Yang
- Laboratory of Cancer Biology and Genetics, High-Dimension Data Analysis Group, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Tinghu Qiu
- Laboratory of Cancer Biology and Genetics, Metastasis Susceptibility Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Jack D. Sanford
- Laboratory of Cancer Biology and Genetics, Metastasis Susceptibility Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Kent Hunter
- Laboratory of Cancer Biology and Genetics, Metastasis Susceptibility Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
16
|
Luna A, Rabassa ME, Isla Larrain M, Cabaleiro P, Zwenger A, Canzoneri R, Segal-Eiras A, Abba MC, Croce MV. Breast cancer cutaneous metastases are associated to uMUC1 and sialyl Lewis x and to highly malignant primary tumors. Pathol Res Pract 2020; 216:152859. [PMID: 32081510 DOI: 10.1016/j.prp.2020.152859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/10/2020] [Accepted: 02/10/2020] [Indexed: 11/25/2022]
Abstract
Breast cancer spreading to different organs have been related to different molecules and mechanisms, but cutaneous metastasis remains unexplored. Increasing evidence showed that MUC1 and some of its carbohydrate associated antigens may be implicated in breast cancer metastasis. In this study we analyzed these tumor markers in order to identify breast cancer cutaneous metastatic profiles. A cohort of 26 primary tumors from breast cancer patients with cutaneous metastases were included; also, cutaneous and lymphatic node metastatic samples and primary tumors from breast cancer patients without metastases were analysed. Immunohistochemical (IHC) studies demonstrated that both underglycosylated MUC1 (uMUC1) and sialyl Lewis x (sLex) to be positively associated with cutaneous metastatic primary tumors (p < 0.05). Notably, a high percentage of tumors with cutaneous metastases were characterized as triple negative and Her2+ tumors (37.5 % and 29 %, respectively). Some discordant results were found between primary tumors and their matched cutaneous metastases. To determine if MUC1 variants may be carriers of carbohydrate antigens, subcellular fractions from a cutaneous metastatic lesion were obtained, immunoprecipitated and analyzed by Western blot. We found that the isolated uMUC1 with a molecular weight of>200 kDa was also the site for binding of anti-sLex MAb; in coincidence, a high correlation of positive IHC expression of both markers was observed. Our findings confirm that breast cancer cutaneous metastases were associated to highly malignant primary tumors and sustain the hypothesis that u-MUC1 and sLe x may drive breast cancer cutaneous metastases.
Collapse
Affiliation(s)
- A Luna
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - M E Rabassa
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - M Isla Larrain
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - P Cabaleiro
- Laboratorio de Patología, Citopatología e Inmunohistoquímica, Neuquén, Argentina
| | - A Zwenger
- GOCS Neuquén Hospital, Neuquén, Argentina
| | - R Canzoneri
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - A Segal-Eiras
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - M C Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - M V Croce
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina.
| |
Collapse
|
17
|
Hutchinson KE, Yost SE, Chang CW, Johnson RM, Carr AR, McAdam PR, Halligan DL, Chang CC, Schmolze D, Liang J, Yuan Y. Comprehensive Profiling of Poor-Risk Paired Primary and Recurrent Triple-Negative Breast Cancers Reveals Immune Phenotype Shifts. Clin Cancer Res 2020; 26:657-668. [PMID: 31611282 PMCID: PMC8568263 DOI: 10.1158/1078-0432.ccr-19-1773] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/07/2019] [Accepted: 10/09/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Emerging data suggest immune checkpoint inhibitors have reduced efficacy in heavily pretreated triple-negative breast cancers (TNBC), but underlying mechanisms are poorly understood. To better understand the phenotypic evolution of TNBCs, we studied the genomic and transcriptomic profiles of paired tumors from patients with TNBC. EXPERIMENTAL DESIGN We collected paired primary and metastatic TNBC specimens from 43 patients and performed targeted exome sequencing and whole-transcriptome sequencing. From these efforts, we ascertained somatic mutation profiles, tumor mutational burden (TMB), TNBC molecular subtypes, and immune-related gene expression patterns. Stromal tumor-infiltrating lymphocytes (stromal TIL), recurrence-free survival, and overall survival were also analyzed. RESULTS We observed a typical TNBC mutational landscape with minimal shifts in copy number or TMB over time. However, there were notable TNBC molecular subtype shifts, including increases in the Lehmann/Pietenpol-defined basal-like 1 (BL1, 11.4%-22.6%) and mesenchymal (M, 11.4%-22.6%) phenotypes, and a decrease in the immunomodulatory phenotype (IM, 31.4%-3.2%). The Burstein-defined basal-like immune-activated phenotype was also decreased (BLIA, 42.2%-17.2%). Among downregulated genes from metastases, we saw enrichment of immune-related Kyoto Encyclopedia of Genes and Genomes pathways and gene ontology (GO) terms, and decreased expression of immunomodulatory gene signatures (P < 0.03) and percent stromal TILs (P = 0.03). There was no clear association between stromal TILs and survival. CONCLUSIONS We observed few mutational shifts, but largely consistent transcriptomic shifts in longitudinally paired TNBCs. Transcriptomic and IHC analyses revealed significantly reduced immune-activating gene expression signatures and TILs in recurrent TNBCs. These data may explain the observed lack of efficacy of immunotherapeutic agents in heavily pretreated TNBCs. Further studies are ongoing to better understand these initial observations.See related commentary by Savas and Loi, p. 526.
Collapse
Affiliation(s)
| | - Susan E Yost
- Department of Medical Oncology and Therapeutic Research, City of Hope National Medical Center, Duarte, California
| | - Ching-Wei Chang
- Oncology Biostatistics, Genentech, Inc., South San Francisco, California
| | | | | | | | | | - Chun-Chieh Chang
- Oncology Biostatistics, Genentech, Inc., South San Francisco, California
| | - Daniel Schmolze
- Department of Pathology, City of Hope National Medical Center, Duarte, California
| | - Jackson Liang
- Oncology Biomarker Development, Genentech, Inc., South San Francisco, California
| | - Yuan Yuan
- Department of Medical Oncology and Therapeutic Research, City of Hope National Medical Center, Duarte, California.
| |
Collapse
|
18
|
Advances in the Characterization of Circulating Tumor Cells in Metastatic Breast Cancer: Single Cell Analyses and Interactions, and Patient-Derived Models for Drug Testing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1220:61-80. [PMID: 32304080 DOI: 10.1007/978-3-030-35805-1_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metastasis is the major cause of breast cancer death worldwide. In metastatic breast cancer, circulating tumor cells (CTCs) can be captured from patient blood samples sequentially over time and thereby serve as surrogates to assess the biology of surviving cancer cells that may still persist in solitary or multiple metastatic sites following treatment. CTCs may thus function as potential real-time decision-making guides for selecting appropriate therapies during the course of disease or for the development and testing of new treatments. The heterogeneous nature of CTCs warrants the use of single cell platforms to better inform our understanding of these cancer cells. Current techniques for single cell analyses and techniques for investigating interactions between cancer and immune cells are discussed. In addition, methodologies for growing patient-derived CTCs in vitro or propagating them in vivo to facilitate CTC drug testing are reviewed. We advocate the use of CTCs in appropriate microenvironments to appraise the effectiveness of cancer chemotherapies, immunotherapies, and for the development of new cancer treatments, fundamental to personalizing and improving the clinical management of metastatic breast cancer.
Collapse
|
19
|
Yoo B, Meka N, Sheedy P, Billig AM, Pantazopoulos P, Medarova Z. MicroRNA-710 regulates multiple pathways of carcinogenesis in murine metastatic breast cancer. PLoS One 2019; 14:e0226356. [PMID: 31834924 PMCID: PMC6910689 DOI: 10.1371/journal.pone.0226356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/25/2019] [Indexed: 11/18/2022] Open
Abstract
Prior research has shown that critical differences between non-metastatic and metastatic tumor cells are at the level of microRNA. Consequently, harnessing these molecules for the treatment of metastatic cancer could have significant clinical impact. In the present study, we set out to identify metastasis-specific microRNAs which drive metastatic colonization of distant organs. Using a murine model of metastatic breast cancer, we employed a directed approach in which we screened for microRNAs that are differentially expressed between the primary tumors and metastatic lesions but concordantly expressed in all of the metastatic lesions irrespective of the tissue that is colonized. Of the identified targets, we focused on miR-710, which was consistently and significantly downregulated in the metastatic lesions relative to the primary tumors. The level of downregulation was independent of the distant organ that is involved, suggesting that miR-710 plays a fundamental role in metastatic colonization. Computational target prediction suggested a pleiotropic role for miR-710 in apoptosis, migration and invasion, and stemness. Using a previously validated oligonucleotide delivery system, we introduced miR-710 mimics into 4T1 metastatic breast adenocarcinoma cells and assessed the resultant phenotypic effects. We demonstrated significant inhibition of cell viability, migration, and invasion. We also showed that the treatment profoundly enhanced cell senescence, reduced stemness, and influenced markers of epithelial to mesenchymal transition, as evidenced by enhanced E-cadherin and reduced vimentin expression. This knowledge represents a first step towards harnessing a similar approach to discover novel microRNA targets with therapeutic potential in metastasis.
Collapse
Affiliation(s)
- Byunghee Yoo
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
- * E-mail: (BY); (ZM)
| | - Nikhil Meka
- College of Arts and Science, New York University, NY, United States of America
| | - Patrick Sheedy
- Department of Health Sciences, CaNCURE Program, Northeastern University, Boston, MA
| | - Ann-Marie Billig
- Department of Health Sciences, CaNCURE Program, Northeastern University, Boston, MA
| | - Pamela Pantazopoulos
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Zdravka Medarova
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
- * E-mail: (BY); (ZM)
| |
Collapse
|
20
|
FDG-PET/CT for Response Monitoring in Metastatic Breast Cancer: Today, Tomorrow, and Beyond. Cancers (Basel) 2019; 11:cancers11081190. [PMID: 31443324 PMCID: PMC6721531 DOI: 10.3390/cancers11081190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 12/25/2022] Open
Abstract
While current international guidelines include imaging of the target lesion for response monitoring in metastatic breast cancer, they do not provide specific recommendations for choice of imaging modality or response criteria. This is important as clinical decisions may vary depending on which imaging modality is used for monitoring metastatic breast cancer. FDG-PET/CT has shown high accuracy in diagnosing metastatic breast cancer, and the Positron Emission Tomography Response Criteria in Solid Tumors (PERCIST) have shown higher predictive values than the CT-based Response Evaluation Criteria in Solid Tumors (RECIST) for prediction of progression-free survival. No studies have yet addressed the clinical impact of using different imaging modalities or response evaluation criteria for longitudinal response monitoring in metastatic breast cancer. We present a case study of a patient with metastatic breast cancer who was monitored first with conventional CT and then with FDG-PET/CT. We retrospectively applied PERCIST to evaluate the longitudinal response to treatment. We used the one-lesion PERCIST model measuring SULpeak in the hottest metastatic lesion on consecutive scans. This model provides a continuous variable that allows graphical illustration of disease fluctuation along with response categories. The one-lesion PERCIST approach seems able to reflect molecular changes and has the potential to support clinical decision-making. Prospective clinical studies addressing the clinical impact of PERCIST in metastatic breast cancer are needed to establish evidence-based recommendations for response monitoring in this disease.
Collapse
|
21
|
Schrijver WAME, Suijkerbuijk KPM, van Gils CH, van der Wall E, Moelans CB, van Diest PJ. Receptor Conversion in Distant Breast Cancer Metastases: A Systematic Review and Meta-analysis. J Natl Cancer Inst 2019; 110:568-580. [PMID: 29315431 DOI: 10.1093/jnci/djx273] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/28/2017] [Indexed: 12/22/2022] Open
Abstract
Background In metastatic breast cancer, hormone and/or human epidermal growth factor receptor 2 (HER2)-targeted therapy decision-making is still largely based on tissue characteristics of the primary tumor. However, a change of estrogen receptor alpha (ERα), progesterone receptor (PR), and HER2 status in distant metastases has frequently been reported. The actual incidence of this phenomenon has been debated. Methods We performed a meta-analysis including 39 studies assessing receptor conversion from primary breast tumors to paired distant breast cancer metastases. We noted the direction of change (positive to negative or vice versa) and performed subgroup analyses for different thresholds for positivity, the type of test used to assess HER2 receptor status, and metastasis location-specific differences (two-sided tests). Results Overall, the incidence of receptor conversion varied largely between studies. For ERα, PR, and HER2, we found that random effects pooled positive to negative conversion percentages of 22.5% (95% confidence interval [CI] = 16.4% to 30.0%), 49.4% (95% CI = 40.5% to 58.2%), and 21.3% (95% CI = 14.3% to 30.5%), respectively. Negative to positive conversion percentages were 21.5% (95% CI = 18.1% to 25.5%), 15.9% (95% CI = 11.3% to 22.0%), and 9.5% (95% CI = 7.4% to 12.1%). Furthermore, ERα discordance was statistically significantly higher in the central nervous system and bone compared with liver metastases (20.8%, 95% CI = 15.0% to 28.0%, and 29.3%, 95% CI = 13.0% to 53.5%, vs 14.3%, 95% CI = 11.3% to 18.1, P = .008 and P < .001, respectively), and PR discordance was higher in bone (42.7%, 95% CI = 35.1% to 50.6%, P < .001) and liver metastases (47.0%, 95% CI = 41.0% to 53.0%, P < .001) compared with central nervous system metastases (23.3%, 95% CI = 16.0% to 32.6%). Conclusions Receptor conversion for ERα, PR, and HER2 occurs frequently in the course of disease progression in breast cancer. Large prospective studies assessing the impact of receptor conversion on treatment efficacy and survival are needed. Meanwhile, reassessing receptor status in metastases is strongly encouraged.
Collapse
Affiliation(s)
| | - Karijn P M Suijkerbuijk
- Department of Medical Oncology, University Medical Center Utrecht Cancer Center, Utrecht, the Netherlands
| | - Carla H van Gils
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Elsken van der Wall
- Department of Medical Oncology, University Medical Center Utrecht Cancer Center, Utrecht, the Netherlands
| | - Cathy B Moelans
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
22
|
Boolbol SK, Harshan M, Chadha M, Kirstein L, Cohen JM, Klein P, Anderson J, Davison D, Jakubowski DM, Baehner FL, Malamud S. Genomic comparison of paired primary breast carcinomas and lymph node macrometastases using the Oncotype DX Breast Recurrence Score ® test. Breast Cancer Res Treat 2019; 177:611-618. [PMID: 31302854 DOI: 10.1007/s10549-019-05346-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/02/2019] [Indexed: 11/27/2022]
Abstract
PURPOSE Adjuvant therapy decisions may in part be based on results of Oncotype DX Breast Recurrence Score® (RS) testing of primary tumors. When necessary, lymph node metastases may be considered as a surrogate. Here we evaluate the concordance in gene expression between primary breast cancers and synchronous lymph node metastases, based on results from quantitative RT-PCR-based RS testing between matched primary tumors and synchronous nodal metastases. METHODS This retrospective, exploratory study included patients (≥ 18 years old) treated at our center (2005-2009) who had ER+ , HER2-negative invasive breast cancer and synchronous nodal metastases with available tumor blocks from both sites. Paired tissue blocks underwent RS testing, and RS and single-gene results for ER, PR, and HER2 were explored between paired samples. RESULTS A wide distribution of RS results in tumors and in synchronous nodal metastases were modestly correlated between 84 paired samples analyzed (Pearson correlation 0.69 [95% CI 0.55-0.78]). Overall concordance in RS group classification between samples was 63%. ER, PR, and HER2 by RT-PCR between the primary tumor and lymph node were also modestly correlated (Pearson correlation [95% CI] 0.64 [0.50-0.75], 0.64 [0.49-0.75], and 0.51 [0.33-0.65], respectively). Categorical concordance (positive or negative) was 100% for ER, 77% for PR, and 100% for HER2. CONCLUSIONS There is modest correlation in continuous gene expression, as measured by the RS and single-gene results for ER, PR, and HER2 between paired primary tumors and synchronous nodal metastases. RS testing for ER+ breast cancer should continue to be based on analysis of primary tumors.
Collapse
Affiliation(s)
- Susan K Boolbol
- Department of Surgery, Mount Sinai Beth Israel, 10 Nathan D Perlman Pl, New York, NY, 10003, USA
| | - Manju Harshan
- Department of Pathology, Lenox Hill Hospital, 100 East 77th St, New York, NY, 10075, USA
| | - Manjeet Chadha
- Department of Radiation Oncology, Mount Sinai Beth Israel, 10 Nathan D Perlman Pl, New York, NY, 10003, USA
| | - Laurie Kirstein
- Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Jean-Marc Cohen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Paula Klein
- Department of Medicine, Mount Sinai Beth Israel, 10 Nathan D Perlman Pl, New York, NY, 10003, USA
| | - Joseph Anderson
- Genomic Health, Inc., 301 Penobscot Drive, Redwood City, CA, 94063, USA
| | - Deborah Davison
- Genomic Health, Inc., 301 Penobscot Drive, Redwood City, CA, 94063, USA
| | | | | | - Stephen Malamud
- Department of Medicine, Mount Sinai Beth Israel, 10 Nathan D Perlman Pl, New York, NY, 10003, USA
| |
Collapse
|
23
|
Lin FM, Yost SE, Wen W, Frankel PH, Schmolze D, Chu PG, Yuan YC, Liu Z, Yim J, Chen Z, Yuan Y. Differential gene expression and AKT targeting in triple negative breast cancer. Oncotarget 2019; 10:4356-4368. [PMID: 31320990 PMCID: PMC6633890 DOI: 10.18632/oncotarget.27026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/30/2019] [Indexed: 02/03/2023] Open
Abstract
Background: Metastatic triple negative breast cancer (mTNBC) is a heterogeneous disease with poor prognosis. Molecular evolution of TNBC through chemotherapy selection pressure is well recognized but poorly understood. PI3K/AKT/mTOR is one of the most commonly identified oncogenic-driver pathways in breast cancer. The current study is designed to understand the genomic and transcriptomic changes, focusing on the PI3K/AKT/mTOR pathway alterations in paired primary and metastatic TNBCs. Results: Genomic analysis of 7 paired specimens identified 67 known mutations including those from the following signaling pathways: cell cycle, p53, PI3K/AKT/mTOR, RAS/MAPK, and RTK/GF. Principle coordinate analysis (PCoA) identified 4 distinctive molecular groups based on the gene expression patterns of PI3K/AKT/mTOR pathway. Key differentially-expressed genes included AKT3, GSK3B, GNA11, PI3KR1, and GNAQ. Importantly, AKT-targeted therapy showed efficacy in a patient-derived xenograft (PDX) model of TNBC in vivo. Conclusion: Genomic discordance of paired primary and metastatic TNBCs was identified, with significant increase in tumor proliferation pathways seen in metastases. Among the differentially expressed genes, AKT3 can potentially serve as a target for novel combination therapy for treatment of metastatic TNBC. Methods: Paired specimens from 10 patients with TNBCs were identified through an IRB-approved protocol (2002-2015). FoundationOneTM sequencing was performed for genomic profiling, and Affymetrix Human Genechip 2.0st was used for mRNA expression profiling. The similarity among samples was calculated based on Pearson correlation coefficients, which were used to construct hierarchical clustering and heat maps.
Collapse
Affiliation(s)
- Feng-Mao Lin
- Department of Diabetes Complications and Metabolism, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Susan E. Yost
- Department of Medical Oncology and Therapeutic Research, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Wei Wen
- Department of Surgery, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Paul H. Frankel
- Department of Biostatistics, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Daniel Schmolze
- Department of Pathology, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Pei-Guo Chu
- Department of Pathology, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Yate-Ching Yuan
- Bioinformatics Core Facility, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Zheng Liu
- Bioinformatics Core Facility, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - John Yim
- Department of Surgery, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Zhen Chen
- Department of Diabetes Complications and Metabolism, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Yuan Yuan
- Department of Medical Oncology and Therapeutic Research, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| |
Collapse
|
24
|
Selli C, Sims AH. Neoadjuvant Therapy for Breast Cancer as a Model for Translational Research. Breast Cancer (Auckl) 2019; 13:1178223419829072. [PMID: 30814840 PMCID: PMC6381436 DOI: 10.1177/1178223419829072] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 01/21/2023] Open
Abstract
Neoadjuvant therapy, where patients receive systemic therapy before surgical removal of the tumour, can downstage tumours allowing breast-conserving surgery, rather than mastectomy. In addition to its impact on surgery, the neoadjuvant setting offers a valuable opportunity to monitor individual tumour response. The effectiveness of standard and/or potential new therapies can be tested in the neoadjuvant pre-surgical setting. It can potentially help to identify markers differentiating patients that will potentially benefit from continuing with the same or a different adjuvant treatment enabling personalised treatment. Characterising the molecular response to treatment over time can more accurately identify the significant differences between baseline samples that would not be identified without post-treatment samples. In this review, we discuss the potential and challenges of using the neoadjuvant setting in translational breast cancer research, considering the implications for improving our understanding of response to treatment, predicting therapy benefit, modelling breast cancer dormancy, and the development of drug resistance.
Collapse
Affiliation(s)
- Cigdem Selli
- Applied Bioinformatics of Cancer, University of Edinburgh Cancer Research UK Centre, MRC Institute of Genetics & Molecular Medicine, Edinburgh, UK
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Andrew H Sims
- Applied Bioinformatics of Cancer, University of Edinburgh Cancer Research UK Centre, MRC Institute of Genetics & Molecular Medicine, Edinburgh, UK
| |
Collapse
|
25
|
Profiling of Invasive Breast Carcinoma Circulating Tumour Cells-Are We Ready for the 'Liquid' Revolution? Cancers (Basel) 2019; 11:cancers11020143. [PMID: 30691008 PMCID: PMC6406427 DOI: 10.3390/cancers11020143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/24/2022] Open
Abstract
As dissemination through blood and lymph is the critical step of the metastatic cascade, circulating tumour cells (CTCs) have attracted wide attention as a potential surrogate marker to monitor progression into metastatic disease and response to therapy. In patients with invasive breast carcinoma (IBC), CTCs are being considered nowadays as a valid counterpart for the assessment of known prognostic and predictive factors. Molecular characterization of CTCs using protein detection, genomic and transcriptomic panels allows to depict IBC biology. Such molecular profiling of circulating cells with increased metastatic abilities appears to be essential, especially after tumour resection, as well as in advanced disseminated disease, when information crucial for identification of therapeutic targets becomes unobtainable from the primary site. If CTCs are truly representative of primary tumours and metastases, characterization of the molecular profile of this easily accessible ‘biopsy’ might be of prime importance for clinical practice in IBC patients. This review summarizes available data on feasibility and documented benefits of monitoring of essential IBC biological features in CTCs, with special reference to multifactorial proteomic, genomic, and transcriptomic panels of known prognostic or predictive value.
Collapse
|
26
|
Zhao ZM, Yost SE, Hutchinson KE, Li SM, Yuan YC, Noorbakhsh J, Liu Z, Warden C, Johnson RM, Wu X, Chuang JH, Yuan Y. CCNE1 amplification is associated with poor prognosis in patients with triple negative breast cancer. BMC Cancer 2019; 19:96. [PMID: 30665374 PMCID: PMC6341717 DOI: 10.1186/s12885-019-5290-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/07/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Triple negative breast cancer (TNBC) is aggressive with limited treatment options upon recurrence. Molecular discordance between primary and metastatic TNBC has been observed, but the degree of biological heterogeneity has not been fully explored. Furthermore, genomic evolution through treatment is poorly understood. In this study, we aim to characterize the genomic changes between paired primary and metastatic TNBCs through transcriptomic and genomic profiling, and to identify genomic alterations which may contribute to chemotherapy resistance. METHODS Genomic alterations and mRNA expression of 10 paired primary and metastatic TNBCs were determined through targeted sequencing, microarray analysis, and RNA sequencing. Commonly mutated genes, as well as differentially expressed and co-expressed genes were identified. We further explored the clinical relevance of differentially expressed genes between primary and metastatic tumors to patient survival using large public datasets. RESULTS Through gene expression profiling, we observed a shift in TNBC subtype classifications between primary and metastatic TNBCs. A panel of eight cancer driver genes (CCNE1, TPX2, ELF3, FANCL, JAK2, GSK3B, CEP76, and SYK) were differentially expressed in recurrent TNBCs, and were also overexpressed in TCGA and METABRIC. CCNE1 and TPX2 were co-overexpressed in TNBCs. DNA mutation profiling showed that multiple mutations occurred in genes comprising a number of potentially targetable pathways including PI3K/AKT/mTOR, RAS/MAPK, cell cycle, and growth factor receptor signaling, reaffirming the wide heterogeneity of mechanisms driving TNBC. CCNE1 amplification was associated with poor overall survival in patients with metastatic TNBC. CONCLUSIONS CCNE1 amplification may confer resistance to chemotherapy and is associated with poor overall survival in TNBC.
Collapse
Affiliation(s)
- Zi-Ming Zhao
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Susan E Yost
- City of Hope Comprehensive Cancer Center and Beckman Research Institute, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | | | - Sierra Min Li
- City of Hope Comprehensive Cancer Center and Beckman Research Institute, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Yate-Ching Yuan
- City of Hope Comprehensive Cancer Center and Beckman Research Institute, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Javad Noorbakhsh
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Zheng Liu
- City of Hope Comprehensive Cancer Center and Beckman Research Institute, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Charles Warden
- City of Hope Comprehensive Cancer Center and Beckman Research Institute, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Radia M Johnson
- Genentech, Inc., Oncology Biomarker Development, South San Francisco, CA, USA
| | - Xiwei Wu
- City of Hope Comprehensive Cancer Center and Beckman Research Institute, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Jeffrey H Chuang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Yuan Yuan
- City of Hope Comprehensive Cancer Center and Beckman Research Institute, 1500 E. Duarte Road, Duarte, CA, 91010, USA.
| |
Collapse
|
27
|
Selli C, Turnbull AK, Pearce DA, Li A, Fernando A, Wills J, Renshaw L, Thomas JS, Dixon JM, Sims AH. Molecular changes during extended neoadjuvant letrozole treatment of breast cancer: distinguishing acquired resistance from dormant tumours. Breast Cancer Res 2019; 21:2. [PMID: 30616553 PMCID: PMC6323855 DOI: 10.1186/s13058-018-1089-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/19/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The risk of recurrence for endocrine-treated breast cancer patients persists for many years or even decades following surgery and apparently successful adjuvant therapy. This period of dormancy and acquired resistance is inherently difficult to investigate; previous efforts have been limited to in-vitro or in-vivo approaches. In this study, sequential tumour samples from patients receiving extended neoadjuvant aromatase inhibitor therapy were characterised as a novel clinical model. METHODS Consecutive tumour samples from 62 patients undergoing extended (4-45 months) neoadjuvant aromatase inhibitor therapy with letrozole were subjected to transcriptomic and proteomic analysis, representing before (≤ 0), early (13-120 days), and long-term (> 120 days) neoadjuvant aromatase inhibitor therapy with letrozole. Patients with at least a 40% initial reduction in tumour size by 4 months of treatment were included. Of these, 42 patients with no subsequent progression were classified as "dormant", and the remaining 20 patients as "acquired resistant". RESULTS Changes in gene expression in dormant tumours begin early and become more pronounced at later time points. Therapy-induced changes in resistant tumours were common features of treatment, rather than being specific to the resistant phenotype. Comparative analysis of long-term treated dormant and resistant tumours highlighted changes in epigenetics pathways including DNA methylation and histone acetylation. The DNA methylation marks 5-methylcytosine and 5-hydroxymethylcytosine were significantly reduced in resistant tumours compared with dormant tissues after extended letrozole treatment. CONCLUSIONS This is the first patient-matched gene expression study investigating long-term aromatase inhibitor-induced dormancy and acquired resistance in breast cancer. Dormant tumours continue to change during treatment whereas acquired resistant tumours more closely resemble their diagnostic samples. Global loss of DNA methylation was observed in resistant tumours under extended treatment. Epigenetic alterations may lead to escape from dormancy and drive acquired resistance in a subset of patients, supporting a potential role for therapy targeted at these epigenetic alterations in the management of resistance to oestrogen deprivation therapy.
Collapse
Affiliation(s)
- Cigdem Selli
- Applied Bioinformatics of Cancer, University of Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, Edinburgh, UK.,Department of Pharmacology, Faculty of Pharmacy, Ege University, 35040, Izmir, Turkey
| | - Arran K Turnbull
- Applied Bioinformatics of Cancer, University of Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, Edinburgh, UK.,Edinburgh Breast Unit, Western General Hospital, Edinburgh, UK
| | - Dominic A Pearce
- Applied Bioinformatics of Cancer, University of Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, Edinburgh, UK
| | - Ang Li
- Applied Bioinformatics of Cancer, University of Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, Edinburgh, UK
| | - Anu Fernando
- Applied Bioinformatics of Cancer, University of Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, Edinburgh, UK.,Edinburgh Breast Unit, Western General Hospital, Edinburgh, UK
| | - Jimi Wills
- Mass Spectrometry Unit, MRC Institute of Genetics and Molecular Medicine, Edinburgh, UK
| | - Lorna Renshaw
- Edinburgh Breast Unit, Western General Hospital, Edinburgh, UK
| | - Jeremy S Thomas
- Edinburgh Breast Unit, Western General Hospital, Edinburgh, UK
| | - J Michael Dixon
- Edinburgh Breast Unit, Western General Hospital, Edinburgh, UK
| | - Andrew H Sims
- Applied Bioinformatics of Cancer, University of Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, Edinburgh, UK.
| |
Collapse
|
28
|
Chatterjee G, Pai T, Hardiman T, Avery-Kiejda K, Scott RJ, Spencer J, Pinder SE, Grigoriadis A. Molecular patterns of cancer colonisation in lymph nodes of breast cancer patients. Breast Cancer Res 2018; 20:143. [PMID: 30458865 PMCID: PMC6247766 DOI: 10.1186/s13058-018-1070-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lymph node (LN) metastasis is an important prognostic parameter in breast carcinoma, a crucial site for tumour–immune cell interaction and a gateway for further dissemination of tumour cells to other metastatic sites. To gain insight into the underlying molecular changes from the pre-metastatic, via initial colonisation to the fully involved LN, we reviewed transcriptional research along the evolving microenvironment of LNs in human breast cancers patients. Gene expression studies were compiled and subjected to pathway-based analyses, with an emphasis on immune cell-related genes. Of 366 studies, 14 performed genome-wide gene expression comparisons and were divided into six clinical-biological scenarios capturing different stages of the metastatic pathway in the LN, as follows: metastatically involved LNs are compared to their patient-matched primary breast carcinomas (scenario 1) or the normal breast tissue (scenario 2). In scenario 3, uninvolved LNs were compared between LN-positive patients and LN-negative patients. Scenario 4 homed in on the residual uninvolved portion of involved LNs and compared it to the patient-matched uninvolved LNs. Scenario 5 contrasted uninvolved and involved LNs, whilst in scenario 6 involved (sentinel) LNs were assessed between patients with other either positive or negative LNs (non-sentinel). Gene lists from these chronological steps of LN metastasis indicated that gene patterns reflecting deficiencies in dendritic cells and hyper-proliferation of B cells parallel to tumour promoting pathways, including cell adhesion, extracellular matrix remodelling, cell motility and DNA repair, play key roles in the changing microenvironment of a pro-metastatic to a metastatically involved LN. Similarities between uninvolved LNs and the residual uninvolved portion of involved LNs hinted that LN alterations expose systemic tumour-related immune responses in breast cancer patients. Despite the diverse settings, gene expression patterns at different stages of metastatic colonisation in LNs were recognised and may provide potential avenues for clinical interventions to counteract disease progression for breast cancer patients.
Collapse
Affiliation(s)
- Gaurav Chatterjee
- Cancer Bioinformatics, King's College London, Innovation Hub, Cancer Centre at Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.,School of Cancer & Pharmaceutical Sciences, CRUK King's Health Partners Centre, King's College London, Innovation Hub, Comprehensive Cancer Centre at Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.,Department of Pathology, Tata Memorial Centre, 8th Floor, Annexe Building, Mumbai, India
| | - Trupti Pai
- Cancer Bioinformatics, King's College London, Innovation Hub, Cancer Centre at Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.,School of Cancer & Pharmaceutical Sciences, CRUK King's Health Partners Centre, King's College London, Innovation Hub, Comprehensive Cancer Centre at Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.,Department of Pathology, Tata Memorial Centre, 8th Floor, Annexe Building, Mumbai, India
| | - Thomas Hardiman
- Cancer Bioinformatics, King's College London, Innovation Hub, Cancer Centre at Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.,School of Cancer & Pharmaceutical Sciences, CRUK King's Health Partners Centre, King's College London, Innovation Hub, Comprehensive Cancer Centre at Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Kelly Avery-Kiejda
- Priority Research Centre for Cancer, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Rodney J Scott
- Priority Research Centre for Cancer, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Jo Spencer
- Peter Gorer Department of Immunobiology, King's College London, Guy's Hospital, 2nd Floor, Borough Wing, London, SE1 9RT, UK
| | - Sarah E Pinder
- School of Cancer & Pharmaceutical Sciences, CRUK King's Health Partners Centre, King's College London, Innovation Hub, Comprehensive Cancer Centre at Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Anita Grigoriadis
- Cancer Bioinformatics, King's College London, Innovation Hub, Cancer Centre at Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK. .,School of Cancer & Pharmaceutical Sciences, CRUK King's Health Partners Centre, King's College London, Innovation Hub, Comprehensive Cancer Centre at Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK. .,Breast Cancer Now Research Unit, Innovation Hub, Cancer Centre at Guy's Hospital, King's College London, Faculty of Life Sciences and Medicine, London, SE1 9RT, UK.
| |
Collapse
|
29
|
Tan Y, Wang Q, Xie Y, Qiao X, Zhang S, Wang Y, Yang Y, Zhang B. Identification of FOXM1 as a specific marker for triple‑negative breast cancer. Int J Oncol 2018; 54:87-97. [PMID: 30365046 PMCID: PMC6254995 DOI: 10.3892/ijo.2018.4598] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/30/2018] [Indexed: 12/19/2022] Open
Abstract
The present study aimed to identify the therapeutic role of the forkhead box M1 (FOXM1)-associated pathway in triple-negative breast cancer (TNBC). Using a Cancer Landscapes-based analysis, a gene regulatory network model was constructed. The present results demonstrated that FOXM1 occupies a key position in gene networks and is a critical regulatory gene in breast cancer. Using breast carcinoma gene expression data from The Cancer Genome Atlas, it was identified that FOXM1 expression was increased in the basal-like breast cancer subtype compared with other breast cancer subtypes. RNA-sequencing analysis of MDA-MB-231 cells treated with 4 and 10 µl/ml Thiostrepton identified 662 and 5,888 significantly differentially expressed genes, respectively. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses demonstrated that FOXM1 was highly associated with multiple biological processes and was markedly associated with metabolic pathways in TNBC. The use of Search Tool for the Retrieval of Interacting Genes/Proteins provided a critical assessment and integration of protein-protein interactions, and demonstrated the multiple important functions of FOXM1 in TNBC. Real-time cell analysis, reverse transcription-quantitative polymerase chain reaction and immunofluorescence staining were used to assess the anti-tumor activity of Thiostrepton in TNBC cells in vitro. The present results identified that suppression of FOXM1 using Thiostrepton inhibited MDA-MB-231 cell proliferation and the expression of cell cycle-associated genes, including cyclin A2, cyclin B2, checkpoint kinase 1, centrosomal protein 55 and polo like kinase 1. Immunofluorescence staining analysis demonstrated that vimentin, filamentous actin and zinc finger E-box-binding homeobox 1 were all decreased following treatment with Thiostrepton. Furthermore, a BALB/C nude mouse subcutaneous xenograft model was used to verify the function of FOXM1 in vivo. The present results demonstrated that FOXM1 inhibition significantly suppressed MDA-MB-231 cell tumorigenesis in vivo. Overall, the present results suggested that FOXM1 is a key gene that serves important roles in multiple biological processes in TNBC and that it may serve as a novel therapeutic target in TNBC.
Collapse
Affiliation(s)
- Yanli Tan
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Qixue Wang
- Department of Neurosurgery, Tianjin Neurological Institute, Tianjin 300052, P.R. China
| | - Yingbin Xie
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Xiaoxia Qiao
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Shun Zhang
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Yanan Wang
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Yongbin Yang
- Department of Pathology, Hebei University Medical College, Baoding, Hebei 071000, P.R. China
| | - Bo Zhang
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| |
Collapse
|
30
|
Yoo B, Fuchs BC, Medarova Z. New Directions in the Study and Treatment of Metastatic Cancer. Front Oncol 2018; 8:258. [PMID: 30042926 PMCID: PMC6048200 DOI: 10.3389/fonc.2018.00258] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/22/2018] [Indexed: 12/23/2022] Open
Abstract
Traditional cancer therapy has relied on a strictly cytotoxic approach that views non-metastatic and metastatic tumor cells as identical in terms of molecular biology and sensitivity to therapeutic intervention. Mounting evidence suggests that, in fact, non-metastatic and metastatic tumor cells differ in key characteristics that could explain the capacity of the metastatic cells to not only escape the primary organ but also to survive while in the circulation and to colonize a distant organ. Here, we lay out a framework for a new multi-pronged therapeutic approach. This approach involves modifying the local microenvironment of the primary tumor to inhibit the formation and release of metastatic cells; normalizing the microenvironment of the metastatic organ to limit the capacity of metastatic tumor cells to invade and colonize the organ; remediating the immune response to tumor neoantigens; and targeting metastatic tumor cells on a systemic level by restoring critical and unique aspects of the cell’s phenotype, such as anchorage dependence. Given the limited progress against metastatic cancer using traditional therapeutic strategies, the outlined paradigm could provide a more rational alternative to patients with metastatic cancer.
Collapse
Affiliation(s)
- Byunghee Yoo
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Bryan C Fuchs
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, United States
| | - Zdravka Medarova
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
31
|
Meng X, Song S, Jiang ZF, Sun B, Wang T, Zhang S, Wu S. Receptor conversion in metastatic breast cancer: a prognosticator of survival. Oncotarget 2018; 7:71887-71903. [PMID: 27655689 PMCID: PMC5342130 DOI: 10.18632/oncotarget.12114] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/05/2016] [Indexed: 12/29/2022] Open
Abstract
Objective This retrospective study investigated the association between hormone receptor (HR) conversion and survival in breast cancer patients. Methods Estrogen receptor (ER) and progesterone receptor (PR) status (positive or negative) of primary tumors and of paired metastatic sites in 627 breast cancer patients were analyzed by McNemar's test for rates of receptor conversion. A survival analysis was performed using the Kaplan-Meier method, and prognostic factors were assessed using Cox's proportional hazards regression model. Results Conversion of ER occurred in 165 (26.31%) patients, and conversion of PR in 213 (33.97%; P < 0.001, both). For 82 patients whose ER and PR were reassessed 2-4 times during metastatic progression, ER and PR re-conversion occurred in 22 (26.83%) and 29 (35.36%), respectively. The change of ER or PR from positive to negative was associated with worse overall survival and post-recurrent survival (log-rank; P < 0.001, both). A subgroup analysis of HR-positive patients (i.e., positive ER, PR, or both) in primary tumor and HR-negative in metastatic sites showed that patients who accepted both salvage endocrine therapy and chemotherapy had better post-recurrent survival than did those who accepted salvage chemotherapy only (log-rank; P = 0.003). Conclusion ER and PR status may change several times during metastatic tumor progression. A change of HR from positive to negative was associated with worse survival compared with consistent positivity. Repeated evaluations of HR status are necessary in metastatic breast cancer. Salvage hormonal therapy is still worth trying for patients whose HR status changes from positive to negative.
Collapse
Affiliation(s)
- Xiangying Meng
- Radiotherapy Department, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Santai Song
- Breast Cancer Department, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Ze-fei Jiang
- Breast Cancer Department, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Bing Sun
- Radiotherapy Department, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Tao Wang
- Breast Cancer Department, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Shaohua Zhang
- Breast Cancer Department, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Shikai Wu
- Radiotherapy Department, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
32
|
Vornicova O, Naroditsky I, Boyango I, Shachar SS, Mashiach T, Ilan N, Vlodavsky I, Bar-Sela G. Prognostic significance of heparanase expression in primary and metastatic breast carcinoma. Oncotarget 2018; 9:6238-6244. [PMID: 29464068 PMCID: PMC5814208 DOI: 10.18632/oncotarget.23560] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/26/2017] [Indexed: 12/25/2022] Open
Abstract
High levels of heparanase are detected in many types of tumors, associated with bad prognosis. Typically, heparanase levels are evaluated in a biopsy taken from the primary lesion, whereas its expression by the resulting metastases is most often unresolved. This becomes critically important as anti-heparanase compounds enter advanced clinical trials. Here, we examined the expression of heparanase in pairs of primary and the resulting distant metastases of breast carcinoma. Interestingly, we found that heparanase expression in the metastatic lesion does not always reflect its expression in the primary tumor. Accordingly, in some cases, the primary lesion was stained positive for heparanase while the metastasis stained negative, and vice versa. Heparanase discordance occurred in 38% of the patients, higher than that reported for hormone receptors, and was associated with bad prognosis. Thus, examination of heparanase levels in the tumor metastases should be evaluated for most efficient precision medicine applying heparanase inhibitors. Furthermore, we found that in stage I breast cancer patients strong heparanase staining is associated with shorter overall survival. Thus, heparanase levels can assist in the diagnosis and in determining the necessity and type of treatment in early stage breast cancer.
Collapse
Affiliation(s)
- Olga Vornicova
- Division of Oncology, Rambam Health Care Campus, Haifa, Israel
| | - Inna Naroditsky
- Departments of Pathology, Rambam Health Care Campus, Haifa, Israel
| | - Ilanit Boyango
- Cancer and Vascular Biology Research Center, Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | - Neta Ilan
- Cancer and Vascular Biology Research Center, Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Gil Bar-Sela
- Division of Oncology, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
33
|
Jung J, Lee SH, Park M, Youn JH, Shin SH, Gwak HS, Yoo H. Discordances in ER, PR, and HER2 between primary breast cancer and brain metastasis. J Neurooncol 2017; 137:295-302. [PMID: 29260362 PMCID: PMC5851692 DOI: 10.1007/s11060-017-2717-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/13/2017] [Indexed: 01/01/2023]
Abstract
When distant metastases are discovered, it is important to determine receptor profiles of these lesions through histologic examination. However, brain metastasis sites are difficult to reach to be routinely biopsied. The purpose of this study was to determine expression profiles of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) in breast cancer brain metastasis (BCBM) and the existence of discordance between primary breast cancer and brain metastasis. A total of 37 patients who underwent craniotomies for metastatic brain tumors arising from breast cancer at National Cancer Center (NCC) of Korea between 2002 and 2014 were retrospectively reviewed. Clinicopathologic data were collected from electronic medical records. Receptor profiles of primary breast cancer and brain metastasis in each patient were identified. Data of ER, PR, and HER2 expression in brain metastasis were available in electronic medical records for 21 (56.8%) of 37 cases. Results of ER, PR, and HER2 expression were positive in 47.6, 42.9, and 38.1% of patients with brain metastasis, respectively. Receptor conversion occurred in 11 (52.4%) of 21 patients (for ER, 9.5%; for PR, 38.1%; for HER2, 23.8%). Overall survival was longer in patients with concordant receptor expression patterns between primary breast cancer and brain lesion compared to that in patients with discordant patterns. However, such difference was not statistically significant (discordant vs. concordant median survival: 19.2 versus 31.1 months, p = 0.181). Receptor conversion in BCBMs was observed in over 50% of Korean patients used in this study. HER2 conversion was observed in 23.8% of patients in this study. Therefore, if resistance to anti-HER2 treatment is suspected in patients with BCBM, biopsy is needed to determine receptor profiles of brain lesion.
Collapse
Affiliation(s)
- Jaehag Jung
- Department of Surgery, Eulji University Hospital, Daejeon, South Korea
| | - Seung Hoon Lee
- Department of Neurosurgery, Eulji University Hospital, Daejeon, South Korea.,Neurooncology Clinic, National Cancer Center Hospital, Goyang, South Korea
| | - Mira Park
- Department of Preventive Medicine, Eulji University, Daejeon, South Korea
| | - Ji Hye Youn
- Neurooncology Clinic, National Cancer Center Hospital, Goyang, South Korea
| | - Sang Hoon Shin
- Neurooncology Clinic, National Cancer Center Hospital, Goyang, South Korea
| | - Ho Shin Gwak
- Neurooncology Clinic, National Cancer Center Hospital, Goyang, South Korea
| | - Heon Yoo
- Neurooncology Clinic, National Cancer Center Hospital, Goyang, South Korea.
| |
Collapse
|
34
|
Chen HR, Wu YT, Yu QB, Yang YY, Wei YX, Li HY, Wu KN, Kong LQ. Negative genic switch of HER-2 in the primary tumor instead of the synchronous metastatic nodal lesions after neoadjuvant chemotherapy in a patient with primary HER2-positive breast cancer. World J Surg Oncol 2017; 15:189. [PMID: 29052527 PMCID: PMC5649047 DOI: 10.1186/s12957-017-1255-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 10/09/2017] [Indexed: 11/10/2022] Open
Abstract
Background A few retrospective studies have indicated that neoadjuvant chemotherapy (NAC) in breast cancer may change biomarker profiles of the primary tumor. Little is known about the status of HER-2 gene of the synchronous nodal metastases when that of the residual tumor undergoes negative conversion in a neoadjuvant setting. Case presentation We describe a female patient with left breast cancer (T2N2M0) who underwent negative conversion of HER-2 in the primary tumor instead of the synchronous nodal lesions after NAC. Core needle biopsy showed invasive ductal carcinoma with HER2 immunohistochemistry (IHC) (2+) and amplified HER-2 gene determined by fluorescence in situ hybridization (FISH). Then, the patient underwent 4 cycles of anthracycline- and taxane-based NAC and subsequent left modified radical mastectomy. Postoperative pathology showed invasive ductal carcinoma involving 4 of 12 surgically excised axillary lymph nodes with HER2 IHC (1+) and FISH negative (HER2 gene not amplified) in the residual tumor of the breast specimen. Due to the negative genic switch of HER2 after NAC, the patient rejected to accept trastuzumab. Under the patient’s consent, the synchronous nodal lesions were further investigated and showed HER2 IHC(−) but FISH positive (HER-2 gene amplified). Therefore, the patient agreed to accept adjuvant trastuzumab treatment every 3 weeks for 1 year. Conclusions We propose further assessment of HER2 gene in the synchronous nodal metastases, especially when negative genic switch of HER-2 occurs in the primary tumor after NAC in order to tailor the systemic regimens for breast cancer patients.
Collapse
Affiliation(s)
- Hao-Ran Chen
- Department of Endocrine & Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Yu-Tuan Wu
- Department of Endocrine & Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Qiu-Bo Yu
- Center for Molecular Medicine Testing, Chongqing Medical University, No.1, Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Ya-Ying Yang
- Clinical Diagnostic Pathology Center, Chongqing Medical University, No.1, Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Yu-Xian Wei
- Department of Endocrine & Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Hong-Yuan Li
- Department of Endocrine & Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Kai-Nan Wu
- Department of Endocrine & Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Ling-Quan Kong
- Department of Endocrine & Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
35
|
Sieuwerts AM, Schrijver WAME, Dalm SU, de Weerd V, Moelans CB, ter Hoeve N, van Diest PJ, Martens JWM, van Deurzen CHM. Progressive APOBEC3B mRNA expression in distant breast cancer metastases. PLoS One 2017; 12:e0171343. [PMID: 28141868 PMCID: PMC5283735 DOI: 10.1371/journal.pone.0171343] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 01/19/2017] [Indexed: 02/07/2023] Open
Abstract
Background APOBEC3B was recently identified as a gain-of-function enzymatic source of mutagenesis, which may offer novel therapeutic options with molecules that specifically target this enzyme. In primary breast cancer, APOBEC3B mRNA is deregulated in a substantial proportion of cases and its expression is associated with poor prognosis. However, its expression in breast cancer metastases, which are the main causes of breast cancer-related death, remained to be elucidated. Patients and methods RNA was isolated from 55 primary breast cancers and paired metastases, including regional lymph node (N = 20) and distant metastases (N = 35). APOBEC3B mRNA levels were measured by RT-qPCR. Expression levels of the primary tumors and corresponding metastases were compared, including subgroup analysis by estrogen receptor (ER/ESR1) status. Results Overall, APOBEC3B mRNA levels of distant metastases were significantly higher as compared to the corresponding primary breast tumor (P = 0.0015), an effect that was not seen for loco-regional lymph node metastases (P = 0.23). Subgroup analysis by ER-status showed that increased APOBEC3B levels in distant metastases were restricted to metastases arising from ER-positive primary breast cancers (P = 0.002). However, regarding ER-negative primary tumors, only loco-regional lymph node metastases showed increased APOBEC3B expression when compared to the corresponding primary tumor (P = 0.028). Conclusion APOBEC3B mRNA levels are significantly higher in breast cancer metastases as compared to the corresponding ER-positive primary tumors. This suggests a potential role for APOBEC3B in luminal breast cancer progression, and consequently, a promising role for anti-APOBEC3B therapies in advanced stages of this frequent form of breast cancer.
Collapse
Affiliation(s)
- Anieta M. Sieuwerts
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
- Cancer Genomics Center, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
- * E-mail:
| | | | - Simone U. Dalm
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Vanja de Weerd
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Cathy B. Moelans
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Natalie ter Hoeve
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul J. van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - John W. M. Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
- Cancer Genomics Center, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| | | |
Collapse
|