1
|
Riccò M, Cascio A, Corrado S, Bottazzoli M, Marchesi F, Gili R, Giuri PG, Gori D, Manzoni P. Occurrence of Central Nervous System Complications of Respiratory Syncytial Virus Infections: A Systematic Review with Meta-Analysis. EPIDEMIOLOGIA 2024; 5:421-455. [PMID: 39051211 PMCID: PMC11270441 DOI: 10.3390/epidemiologia5030031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
An increasing base of evidence suggests that respiratory syncytial virus (RSV) infections may be associated with neurological complications. In accord with the PRISMA statement, we performed a systematic review and meta-analysis on the occurrence of encephalitis and encephalopathy associated with documented RSV infections. PubMed, Embase, and Scopus databases were searched for eligible observational studies published up to 10 April 2024. Raw data included the occurrence of RSV infections among cases of encephalitis and/or encephalopathy and cases of encephalitis and/or encephalopathy among series of RSV infections. Data were pooled in a random effects model. Case reports were also collected, and their data pooled as a cumulative series. Heterogeneity was assessed using the I2 measure, while reporting bias was assessed by means of funnel plots and regression analysis. A total of 15 studies for a total of 7719 RSV infections and 1631 cases of encephalitis were analyzed. Moreover, 27 case reports and case series were retrieved, for a total of 84 individual cases of encephalitis/encephalopathy occurring during a documented RSV infection. A pooled prevalence of 2.20 cases of encephalitis/encephalopathy per 100 RSV cases (I2 = 99%) was calculated, while a prevalence of RSV infections among cases of encephalitis/encephalopathy was estimated to 3.53 per 100 cases for studies on respiratory specimens (I2 = 48%) and 0.37 per cases on central nervous system (CNS) specimens (I2 = 0%). Detection of RSV within the CNS was relatively rare (17.86% of pooled case reports), being associated with male gender (adjusted odds ratio [aOR] 5.021, 95% confidence interval [95%CI] 1.104 to 22.831) and recovery with long-term sequelae (aOR 5.699, 95%CI 1.152; 28.183). Case fatality ratio was estimated to be 0.43 per 100 cases on observational studies and 10.71% in case reports, a difference likely due to publication bias. In summary, RSV represented a not frequent but notable cause of encephalitis/encephalopathy in adults and children. The paucity of available studies not only recommends a cautious appraisal of our results but stresses the clinical significance of future studies on incident cases of encephalitis and/or encephalopathy.
Collapse
Affiliation(s)
- Matteo Riccò
- AUSL–IRCCS di Reggio Emilia, Servizio di Prevenzione e Sicurezza Negli Ambienti di Lavoro (SPSAL), Local Health Unit of Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Antonio Cascio
- Infectious and Tropical Diseases Unit, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, “G D’Alessandro”, University of Palermo, AOUP P. Giaccone, 90127 Palermo, Italy;
| | - Silvia Corrado
- ASST Rhodense, Dipartimento della donna e Area Materno-Infantile, UOC Pediatria, 20024 Milan, Italy
| | - Marco Bottazzoli
- Department of Otorhinolaryngology, APSS Trento, 38122 Trento, Italy
| | - Federico Marchesi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Renata Gili
- Department of Prevention, Turin Local Health Authority, 10125 Torino, Italy
| | | | - Davide Gori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Paolo Manzoni
- Department of Public Health and Pediatric Sciences, University of Torino School of Medicine, 10125 Turin, Italy
| |
Collapse
|
2
|
Wang Y, Zhang X, Xu L, Wang Y, Yan C, Chen H, Chen Y, Wei F, Han W, Wang F, Wang J, Huang X, Mo X. Clinical manifestations, prognostic factors, and outcomes of adenovirus pneumonia after allogeneic hematopoietic stem cell transplantation. Virol J 2024; 21:110. [PMID: 38745209 PMCID: PMC11094961 DOI: 10.1186/s12985-024-02383-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Severe pneumonia is one of the most important causes of mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Adenovirus (ADV) is a significant cause of severe viral pneumonia after allo-HSCT, and we aimed to identify the clinical manifestations, prognostic factors, and outcomes of ADV pneumonia after allo-HSCT. METHODS Twenty-nine patients who underwent allo-HSCT at the Peking University Institute of Hematology and who experienced ADV pneumonia after allo-HSCT were enrolled in this study. The Kaplan-Meier method was used to estimate the probability of overall survival (OS). Potential prognostic factors for 100-day OS after ADV pneumonia were evaluated through univariate and multivariate Cox regression analyses. RESULTS The incidence rate of ADV pneumonia after allo-HSCT was approximately 0.71%. The median time from allo-HSCT to the occurrence of ADV pneumonia was 99 days (range 17-609 days). The most common clinical manifestations were fever (86.2%), cough (34.5%) and dyspnea (31.0%). The 100-day probabilities of ADV-related mortality and OS were 40.4% (95% CI 21.1%-59.7%) and 40.5% (95% CI 25.2%-64.9%), respectively. Patients with low-level ADV DNAemia had lower ADV-related mortality and better OS than did those with high-level (≥ 106 copies/ml in plasma) ADV DNAemia. According to the multivariate analysis, high-level ADV DNAemia was the only risk factor for intensive care unit admission, invasive mechanical ventilation, ADV-related mortality, and OS after ADV pneumonia. CONCLUSIONS We first reported the prognostic factors and confirmed the poor outcomes of patients with ADV pneumonia after allo-HSCT. Patients with high-level ADV DNAemia should receive immediate and intensive therapy.
Collapse
Affiliation(s)
- Yuewen Wang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Xiaohui Zhang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Lanping Xu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, 2019RU029, China
| | - Yu Wang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Chenhua Yan
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, 2019RU029, China
| | - Huan Chen
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Yuhong Chen
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Fangfang Wei
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Wei Han
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Fengrong Wang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Jingzhi Wang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Xiaojun Huang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, 2019RU029, China
- Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China
| | - Xiaodong Mo
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China.
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, 2019RU029, China.
| |
Collapse
|
3
|
Riccò M, Parisi S, Corrado S, Marchesi F, Bottazzoli M, Gori D. Respiratory Syncytial Virus Infections in Recipients of Bone Marrow Transplants: A Systematic Review and Meta-Analysis. Infect Dis Rep 2024; 16:317-355. [PMID: 38667752 PMCID: PMC11050314 DOI: 10.3390/idr16020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Human Respiratory Syncytial Virus (RSV) is a common cause of respiratory tract infections. Usually associated with infants and children, an increasing amount of evidence suggests that RSV can cause substantial morbidity and mortality in immunocompromised individuals, including recipients of bone marrow transplantation (BMT). The present systematic review was therefore designed in accordance with the PRISMA guidelines to collect available evidence about RSV infections in BMT recipients. Three medical databases (PubMed, Embase, and MedRxiv) were therefore searched for eligible observational studies published up to 30 September 2023 and collected cases were pooled in a random-effects model. Heterogeneity was assessed using I2 statistics. Reporting bias was assessed by means of funnel plots and regression analysis. Overall, 30 studies were retrieved, including 20,067 BMT cases and 821 RSV infection episodes. Of them, 351 were lower respiratory tract infections, and a total of 78 RSV-related deaths were collected. A pooled attack rate of 5.40% (95% confidence interval [95%CI] 3.81 to 7.60) was identified, with a corresponding incidence rate of 14.77 cases per 1000 person-years (95%CI 9.43 to 20.11), and a case fatality ratio (CFR) of 7.28% (95%CI 4.94 to 10.60). Attack rates were higher in adults (8.49%, 95%CI 5.16 to 13.67) than in children (4.79%, 95%CI 3.05 to 7.45), with similar CFR (5.99%, 95%CI 2.31 to 14.63 vs. 5.85%, 95%CI 3.35 to 10.02). By assuming RSV attack rates as a reference group, influenza (RR 0.518; 95%CI 0.446 to 0.601), adenovirus (RR 0.679, 95%CI 0.553 to 0.830), and human metapneumovirus (RR 0.536, 95%CI 0.438 to 0.655) were associated with a substantially reduced risk for developing corresponding respiratory infection. Despite the heterogeneous settings and the uneven proportion of adult and pediatric cases, our study has identified high attack rates and a substantial CFR of RSV in recipients of BMT, stressing the importance of specifically tailored preventive strategies and the need for effective treatment options.
Collapse
Affiliation(s)
- Matteo Riccò
- AUSL–IRCCS di Reggio Emilia, Servizio di Prevenzione e Sicurezza Negli Ambienti di Lavoro (SPSAL), Local Health Unit of Reggio Emilia, 42122 Reggio Emilia, Italy
| | | | - Silvia Corrado
- ASST Rhodense, Dipartimento della donna e Area Materno-Infantile, UOC Pediatria, 20024 Milan, Italy;
| | - Federico Marchesi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Marco Bottazzoli
- Department of Otorhinolaryngology, APSS Trento, 38122 Trento, Italy
| | - Davide Gori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
4
|
Reicherz F, Abu-Raya B, Akinseye O, Rassekh SR, Wiens MO, Lavoie PM. Efficacy of Palivizumab Immunoprophylaxis for Reducing Severe RSV Outcomes in Children with Immunodeficiencies: A Systematic Review. J Pediatric Infect Dis Soc 2024; 13:136-143. [PMID: 38279954 DOI: 10.1093/jpids/piae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
BACKGROUND Palivizumab is recommended for prevention of severe respiratory syncytial virus (RSV) disease in immunocompromised children, despite a lack of strong supporting evidence. The recent approval of substitute RSV-neutralizing monoclonal antibodies against RSV, offers an opportunity to synthesize the most current evidence supporting the palivizumab standard of care. OBJECTIVE To evaluate the efficacy of palivizumab in preventing acute respiratory tract infection- or RSV-related hospitalization, or mortality in immunocompromised children. METHODS We searched Ovid MEDLINE and EMBASE for published clinical studies that investigated outcomes of palivizumab use in children. We included clinical trials, cohort studies, and case-control studies. The primary outcomes were RSV-related or respiratory viral infection-related hospitalizations, or RSV-related mortality. This systematic review was registered in PROSPERO (ID CRD42021248619) and is reported in accordance with the PRISMA guidelines. RESULTS From the 1993 records, six studies were eligible and included, for a total of 625 immunocompromised children with an heterogeneous composition of primary and acquired immunodeficiencies enrolled from palivizumab programs. There were no intervention studies. None of the studies included a control group. RSV hospitalizations were infrequent (0%-3.1% of children). Most children included received palivizumab, although one study (n = 56) did not specify how many received palivizumab. RSV mortality was neither observed, in three studies, nor reported, in three other studies. CONCLUSIONS The evidence supporting the use of palivizumab for prevention of severe RSV disease in immunocompromised children remains extremely limited and appears insufficient to justify prioritizing this intervention as the current standard of care over alternative interventions.
Collapse
Affiliation(s)
- Frederic Reicherz
- BC Children's Hospital Research Institute, Vancouver, Canada
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Bahaa Abu-Raya
- BC Children's Hospital Research Institute, Vancouver, Canada
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Canadian Center for Vaccinology, Dalhousie University, IWK Health Centre and the Nova Scotia Health Authority, Canada
- Departments of Pediatrics, Dalhousie University, Nova Scotia, Canada
- Microbiology and Immunology, Dalhousie University, Nova Scotia, Canada
| | - Omolabake Akinseye
- BC Children's Hospital Research Institute, Vancouver, Canada
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Shahrad Rod Rassekh
- BC Children's Hospital Research Institute, Vancouver, Canada
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Matthew O Wiens
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Pascal M Lavoie
- BC Children's Hospital Research Institute, Vancouver, Canada
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
5
|
Piñana JL, Tridello G, Xhaard A, Wendel L, Montoro J, Vazquez L, Heras I, Ljungman P, Mikulska M, Salmenniemi U, Perez A, Kröger N, Cornelissen J, Sala E, Martino R, Geurten C, Byrne J, Maertens J, Kerre T, Martin M, Pascual MJ, Yeshurun M, Finke J, Groll AH, Shaw PJ, Blijlevens N, Arcese W, Ganser A, Suarez-Lledo M, Alzahrani M, Choi G, Forcade E, Paviglianiti A, Solano C, Wachowiak J, Zuckerman T, Bader P, Clausen J, Mayer J, Schroyens W, Metafuni E, Knelange N, Averbuch D, de la Camara R. Upper and/or Lower Respiratory Tract Infection Caused by Human Metapneumovirus After Allogeneic Hematopoietic Stem Cell Transplantation. J Infect Dis 2024; 229:83-94. [PMID: 37440459 DOI: 10.1093/infdis/jiad268] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Human metapneumovirus (hMPV) epidemiology, clinical characteristics and risk factors for poor outcome after allogeneic stem cell transplantation (allo-HCT) remain a poorly investigated area. METHODS This retrospective multicenter cohort study examined the epidemiology, clinical characteristics, and risk factors for poor outcomes associated with human metapneumovirus (hMPV) infections in recipients of allo-HCT. RESULTS We included 428 allo-HCT recipients who developed 438 hMPV infection episodes between January 2012 and January 2019. Most recipients were adults (93%). hMPV infections were diagnosed at a median of 373 days after allo-HCT. The infections were categorized as upper respiratory tract disease (URTD) or lower respiratory tract disease (LRTD), with 60% and 40% of cases, respectively. Patients with hMPV LRTD experienced the infection earlier in the transplant course and had higher rates of lymphopenia, neutropenia, corticosteroid use, and ribavirin therapy. Multivariate analysis identified lymphopenia and corticosteroid use (>30 mg/d) as independent risk factors for LRTD occurrence. The overall mortality at day 30 after hMPV detection was 2% for URTD, 12% for possible LRTD, and 21% for proven LRTD. Lymphopenia was the only independent risk factor associated with day 30 mortality in LRTD cases. CONCLUSIONS These findings highlight the significance of lymphopenia and corticosteroid use in the development and severity of hMPV infections after allo-HCT, with lymphopenia being a predictor of higher mortality in LRTD cases.
Collapse
Affiliation(s)
- Jose Luis Piñana
- Hematology Department, Hospital Clinico Universitario de Valencia, Valencia, Spain
- Fundación INCLIVA, Instituto de Investigación Sanitaria, Hospital Clínico, Universitario de Valencia, Valencia, Spain
| | - Gloria Tridello
- Azienda Ospedaliera, Universitaria Integrata Verona, Verona, Italy
| | - Aliénor Xhaard
- Service d'Hématologie-Greffe, Hôpital Saint-Louis, Université Paris-Diderot, Paris, France
| | - Lotus Wendel
- Leiden Study Unit, EBMT, Leiden, The Netherlands
| | - Juan Montoro
- Hematology División, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Lourdes Vazquez
- Hematology Department, Hospital Clinico Universitario de Salamanca, Salamanca, Spain
| | | | - Per Ljungman
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska Comprehensive Cancer Center, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Malgorzata Mikulska
- Division of Infectious Diseases, Dipartimento di scienze della salute, University of Genoa, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Urpu Salmenniemi
- Hematology Department, Comprehensive Cancer Center, Helsinki University Central Hospital, Helsinki, Finland
| | - Ariadna Perez
- Hematology Department, Hospital Clinico Universitario de Valencia, Valencia, Spain
- Fundación INCLIVA, Instituto de Investigación Sanitaria, Hospital Clínico, Universitario de Valencia, Valencia, Spain
| | - Nicolaus Kröger
- Department for Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Cornelissen
- Hematology Department, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Elisa Sala
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Rodrigo Martino
- Hematology Department, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Claire Geurten
- Hematology Department, Birmingham Children's Hospital, Birmingham, United Kingdom
- Centre Hospitalier Universitaire de Liege, Liege, Belgium
| | - Jenny Byrne
- Hematology Department, Nottingham University, Nottingham, United Kingdom
| | - Johan Maertens
- Hematology Department, University Hospital Gasthuisberg, Leuven, Belgium
| | - Tessa Kerre
- Hematology Department, Ghent University Hospital, Gent, Belgium
| | - Murray Martin
- Hematology Department, Leicester Royal Infirmary, Leicester, United Kingdom
| | | | - Moshe Yeshurun
- Institution of Hematology, Rabin Medical Center, Petach-Tikva, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Jürgen Finke
- Hematology Department, University of Freiburg, Freiburg, Germany
| | - Andreas H Groll
- Infectious Disease Research Program, Department of Pediatric Hemtology and Oncology and Center for Bone Marrow Transplantation, University Children's Hospital, Muenster, Germany
| | - Peter J Shaw
- The Children`s Hospital at Westmead, Sydney, Australia
| | | | - William Arcese
- Hematology Department, Tor Vergata University of Rome, Rome, Italy
| | | | | | - Mohsen Alzahrani
- Department of Oncology, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Goda Choi
- University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Edouard Forcade
- Service d'Hématologie Clinique et Thérapie Cellulaire, Centre Hospitalier Universitaire Bordeaux, Bordeaux, France
| | | | - Carlos Solano
- Hematology Department, Hospital Clinico Universitario de Valencia, Valencia, Spain
- Fundación INCLIVA, Instituto de Investigación Sanitaria, Hospital Clínico, Universitario de Valencia, Valencia, Spain
- Department of Medicine, University of Valencia, Valencia, Spain
| | - Jacek Wachowiak
- Department of Pediatric Oncology, Hematology, and Hematopoietic Cell Transplantation, University of Medical Sciences, Poznan, Poland
| | | | - Peter Bader
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Pediatrics and Adolescent Medicine, University Hospital, Goethe University, Frankfurt, Germany
| | - Johannes Clausen
- Department of Internal Medicine I, Ordensklinikum Linz-Elisabethinen, Johannes Kepler University, Linz, Austria
| | - Jiri Mayer
- Masaryk University Hospital Brno, Brno, Czech Republic
| | | | - Elisabetta Metafuni
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e EmatologiaGemelli Research Institute, Fondazione Policlinico Universitario Agostino Gemelli Research Institute, Roma, Italy
| | | | - Dina Averbuch
- Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Medical Center, Jerusalem, Israel
| | - Rafael de la Camara
- Hematology Department, Hospital de la Princesa, Madrid, Spain
- Hematology Department, Hospital Universitario Sanitas La Zarzuela, Madrid, Spain
| |
Collapse
|
6
|
Matsui T, Ogimi C. Risk factors for severity in seasonal respiratory viral infections and how they guide management in hematopoietic cell transplant recipients. Curr Opin Infect Dis 2023; 36:529-536. [PMID: 37729657 DOI: 10.1097/qco.0000000000000968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
PURPOSE OF REVIEW Seasonal respiratory virus infections (RVIs) often progress to severe diseases in hematopoietic cell transplant (HCT) recipients. This review summarizes the current evidence on risk factors for the severity of RVIs in this high-risk population and provides clinical management. RECENT FINDINGS The likelihood of the respiratory viral disease progression depends on the immune status of the host and the type of virus. Conventional host factors, such as the immunodeficiency scoring index and the severe immunodeficiency criteria, have been utilized to estimate the risk of progression to severe disease, including mortality. Recent reports have suggested nonconventional risk factors, such as hyperglycemia, hypoalbuminemia, prior use of antibiotics with broad anaerobic activity, posttransplant cyclophosphamide, and pulmonary impairment after RVIs. Identifying novel and modifiable risk factors is important with the advances of novel therapeutic and preventive interventions for RVIs. SUMMARY Validation of recently identified risk factors for severe RVIs in HCT recipients is required. The development of innovative interventions along with appropriate risk stratification is critical to improve outcomes in this vulnerable population.
Collapse
Affiliation(s)
- Toshihiro Matsui
- Division of Infectious Diseases, Department of Medical Subspecialties, National Center for Child Health and Development, Tokyo, Japan
| | - Chikara Ogimi
- Division of Infectious Diseases, Department of Medical Subspecialties, National Center for Child Health and Development, Tokyo, Japan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
7
|
Piñana JL, Pérez A, Chorão P, Guerreiro M, García-Cadenas I, Solano C, Martino R, Navarro D. Respiratory virus infections after allogeneic stem cell transplantation: Current understanding, knowledge gaps, and recent advances. Transpl Infect Dis 2023; 25 Suppl 1:e14117. [PMID: 37585370 DOI: 10.1111/tid.14117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023]
Abstract
Before the COVID-19 pandemic, common community-acquired seasonal respiratory viruses (CARVs) were a significant threat to the health and well-being of allogeneic hematopoietic cell transplant (allo-HCT) recipients, often resulting in severe illness and even death. The pandemic has further highlighted the significant risk that immunosuppressed patients, including allo-HCT recipients, face when infected with SARS-CoV-2. As preventive transmission measures are relaxed and CARVs circulate again among the community, including in allo-HSCT recipients, it is crucial to understand the current state of knowledge, gaps, and recent advances regarding CARV infection in allo-HCT recipients. Urgent research is needed to identify seasonal respiratory viruses as potential drivers for future pandemics.
Collapse
Affiliation(s)
- Jose L Piñana
- Hematology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
- Fundación INCLIVA, Instituto de Investigación Sanitaria Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Ariadna Pérez
- Hematology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
- Fundación INCLIVA, Instituto de Investigación Sanitaria Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Pedro Chorão
- Hematology Division, Hospital universitario y politécnico La Fe, Valencia, Spain
- Instituto de Investigación La Fe, Hospital Universitário y Politécncio La Fe, Valencia, Spain
| | - Manuel Guerreiro
- Hematology Division, Hospital universitario y politécnico La Fe, Valencia, Spain
- Instituto de Investigación La Fe, Hospital Universitário y Politécncio La Fe, Valencia, Spain
| | | | - Carlos Solano
- Hematology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
- Fundación INCLIVA, Instituto de Investigación Sanitaria Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Rodrigo Martino
- Hematology Division, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - David Navarro
- Microbiology department, Hospital Clinico Universitario de Valencia, Spain
- Department of Medicine, School of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|
8
|
Ogimi C, Xie H, Waghmare A, Jerome KR, Leisenring WM, Milano F, Englund JA, Boeckh M. Correlation of Initial Upper Respiratory Tract Viral Load with Progression to Lower Tract Disease in Adult Allogeneic Hematopoietic Cell Transplant Recipients. J Clin Virol 2022; 150-151:105152. [DOI: 10.1016/j.jcv.2022.105152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/30/2022] [Accepted: 04/02/2022] [Indexed: 10/18/2022]
|
9
|
Houist AL, Bondeelle L, Salmona M, LeGoff J, de Latour RP, Rivière F, Soler C, Houdouin V, Dalle JH, Robin C, Fourati S, Griscelli F, Coman T, Chevret S, Bergeron A. Evaluation of prognostic scores for respiratory syncytial virus infection in a French multicentre cohort of allogeneic haematopoietic stem cell transplantation recipients. Bone Marrow Transplant 2021; 56:3032-3041. [PMID: 34548625 PMCID: PMC8454013 DOI: 10.1038/s41409-021-01462-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/19/2021] [Accepted: 09/01/2021] [Indexed: 11/09/2022]
Abstract
Haematopoietic stem cell transplantation (HSCT) recipients are at risk for severe respiratory syncytial virus (RSV) infection. Two prognostic scores have been proposed to predict the risk of progression from upper respiratory tract infection (URTI) to lower respiratory tract infection (LRTI) and death. This was a multicentre study of allogeneic HSCT recipients diagnosed with an RSV infection between 2010 and 2019 who were retrospectively stratified by the immunodeficiency scoring index (ISI) and the severe immunodeficiency (SID) score. Endpoints were overall survival, RSV-attributable mortality and progression to LRTI after URTI. Prognostic analyses were performed using Cox regression models. We included 147 consecutive patients, including 94 (63.9%) initially diagnosed with URTI and 53 (36.1%) with LRTI. At 90 days, 14 patients had died (survival rate, 90.5%; 95% CI: 85.9-95.3), and nine deaths were attributable to RSV (attributable mortality rate, 5.4%; 95% CI: 2.5-10.0). The cumulative 90-day incidence of LRTI after URTI was 13.8% (95% CI: 7.8-21.6). Neither score showed prognostic value for mortality, while the ISI allowed the prediction of progression to LRTI (p = 0.0008). Our results do not fully replicate the results previously reported in cohorts of HSCT recipients. This may reflect the recent epidemiology of RSV infections in this HSCT cohort.
Collapse
Affiliation(s)
| | - Louise Bondeelle
- Université de Paris, Service de Pneumologie, Hôpital Saint-Louis, AP-HP -, Paris, France
| | - Maud Salmona
- Université de Paris, Service de Virologie, Hôpital Saint-Louis, AP-HP -, Paris, France
| | - Jérôme LeGoff
- Université de Paris, Service de Virologie, Hôpital Saint-Louis, AP-HP -, Paris, France
| | | | - Frédéric Rivière
- Service de Pneumologie, Hôpital d'instruction des armées Percy -, Clamart, France
| | - Charles Soler
- Service de Microbiologie, Hôpital d'instruction des armées Percy -, Clamart, France
| | - Véronique Houdouin
- Université de Paris, Service de Pneumologie-Pédiatrie, Hôpital Robert Debré, AP-HP -, Paris, France
| | - Jean-Hugues Dalle
- Université de Paris, Service d'Hématologie pédiatrique, Hôpital Robert Debré, AP-HP -, Paris, France
| | - Christine Robin
- Service d'Hématologie, Hôpital Henri Mondor, Université Paris-Est, AP-HP -, Créteil, France
| | - Slim Fourati
- Département de Bactériologie-Virologie, Hôpital Henri Mondor, Université Paris-Est, AP-HP -, Créteil, France
| | - Franck Griscelli
- Département de Biologie et de Pathologies médicales, Institut Gustave-Roussy -, Villejuif, France
| | - Tereza Coman
- Service d'Hématologie, Institut Gustave-Roussy -, Villejuif, France
| | - Sylvie Chevret
- Université de Paris, Département de Biostatistique et Informatique Médicale, Hôpital Saint Louis, AP-HP -, Paris, France.,Université de Paris, ECSTRRA Team, Inserm, UMR 1153 CRESS, F-75010, Paris, France
| | - Anne Bergeron
- Université de Paris, Service de Pneumologie, Hôpital Saint-Louis, AP-HP -, Paris, France. .,Université de Paris, ECSTRRA Team, Inserm, UMR 1153 CRESS, F-75010, Paris, France.
| |
Collapse
|
10
|
Jarmoliński T, Matkowska‐Kocjan A, Rosa M, Olejnik I, Gorczyńska E, Kałwak K, Ussowicz M. SARS-CoV-2 viral clearance during bone marrow aplasia after allogeneic hematopoietic stem cell transplantation-A case report. Pediatr Transplant 2021; 25:e13875. [PMID: 32949079 PMCID: PMC7537051 DOI: 10.1111/petr.13875] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/30/2020] [Accepted: 09/09/2020] [Indexed: 12/23/2022]
Abstract
Respiratory viral infections are known causes of mortality after allogeneic hematopoietic stem cell transplantation (HSCT). Here, we report a unique case of a child with viral pneumonia caused by coinfection with human metapneumovirus (MPV), respiratory syncytial virus (RSV), and SARS-CoV-2 after HSCT. A 9-year-old girl with acute lymphoblastic leukemia underwent allogeneic HSCT from a matched, unrelated donor. During the post-transplant period, in profound leukopenia (below 10 leukocytes/µL), she was diagnosed with SARS-CoV-2, MPV, and RSV pneumonia and was treated with ribavirin and chloroquine. Before leukocyte recovery, the girl became asymptomatic, and SARS-CoV-2 and RSV clearance was achieved. The shedding of SARS-CoV-2 stopped before immune system recovery, and one may hypothesize that the lack of an inflammatory response might have been a contributing factor to the mild clinical course. Post-transplant care in HSCT recipients with COVID-19 infection is feasible in regular transplant units, provided the patient does not present with respiratory failure. Early and repeated testing for SARS-CoV-2 in post-transplant patients with concomitant infection mitigation strategies should be considered in children after HSCT who develop fever, respiratory symptoms, and perhaps gastrointestinal symptoms to control the spread of COVID-19 both in patients and in healthcare workers in hospital environments. Training of staff and the availability of personal protective equipment are crucial for containing SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Tomasz Jarmoliński
- Department of Pediatric Bone Marrow Transplantation, Oncology, and HematologyWroclaw Medical UniversityWroclawPoland
| | | | - Monika Rosa
- Department of Pediatric Bone Marrow Transplantation, Oncology, and HematologyWroclaw Medical UniversityWroclawPoland
| | - Igor Olejnik
- Department of Pediatric Bone Marrow Transplantation, Oncology, and HematologyWroclaw Medical UniversityWroclawPoland
| | - Ewa Gorczyńska
- Department of Pediatric Bone Marrow Transplantation, Oncology, and HematologyWroclaw Medical UniversityWroclawPoland
| | - Krzysztof Kałwak
- Department of Pediatric Bone Marrow Transplantation, Oncology, and HematologyWroclaw Medical UniversityWroclawPoland
| | - Marek Ussowicz
- Department of Pediatric Bone Marrow Transplantation, Oncology, and HematologyWroclaw Medical UniversityWroclawPoland
| |
Collapse
|