1
|
Franchini M, Focosi D. Hyperimmune Plasma and Immunoglobulins against COVID-19: A Narrative Review. Life (Basel) 2024; 14:214. [PMID: 38398723 PMCID: PMC10890293 DOI: 10.3390/life14020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Since late 2019, the new SARS-CoV-2 virus belonging to the Coronaviridae family has been responsible for COVID-19 pandemic, a severe acute respiratory syndrome. Several antiviral therapies, mostly derived from previous epidemics, were initially repurposed to fight this not rarely life-threatening respiratory illness. Among them, however, the only specific antibody-based therapy available against SARS-CoV-2 infection during the first year of the pandemic was represented by COVID-19 convalescent plasma (CCP). CCP, collected from recovered individuals, contains high levels of polyclonal antibodies of different subclasses able to neutralize SARS-CoV-2 infection. Tens of randomized controlled trials have been conducted during the last three years of the pandemic to evaluate the safety and the clinical efficacy of CCP in both hospitalized and ambulatory COVID-19 patients, whose main results will be summarized in this narrative review. In addition, we will present the current knowledge on the development of anti-SARS-CoV-2 hyperimmune polyclonal immunoglobulins.
Collapse
Affiliation(s)
- Massimo Franchini
- Department of Transfusion Medicine and Hematology, Carlo Poma Hospital, 46100 Mantua, Italy
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy;
| |
Collapse
|
2
|
Katz LM, Dodd RY, Saa P, Gorlin JB, Palmer K, Hollinger FB, Stramer SL. Infectious disease agents and their potential threat to transfusion safety (an update to the 2009 Transfusion supplement). Transfusion 2024; 64 Suppl 1:S1-S3. [PMID: 38394041 DOI: 10.1111/trf.17626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 02/25/2024]
Affiliation(s)
- L M Katz
- Impact Life Blood Services, Medical Affairs, Emeritus Chief Medical Officer, Tipton, IA, USA
| | - Roger Y Dodd
- American Red Cross, Scientific Affairs, Vice President, Rockville MD, USA
| | - Paula Saa
- American Red Cross, Scientific Affairs, Executive Director, Rockville MD, USA
| | - J B Gorlin
- Memorial Blood Centers, A Division of New York Blood Centers, Physician Services, VP and Medical Director, St. Paul MN, USA
| | - K Palmer
- Association for the Advancement of Blood and Biotherapies, Regulatory Affairs, Director, Bethesda MD, USA
| | - F B Hollinger
- Baylor College of Medicine, Professor of Medicine, Molecular Virology & Epidemiology, Houston, TX, USA
| | - S L Stramer
- Infectious Diseases Consultant, North Potomac, MD, USA
| |
Collapse
|
3
|
Conti F, Moratti M, Leonardi L, Catelli A, Bortolamedi E, Filice E, Fetta A, Fabi M, Facchini E, Cantarini ME, Miniaci A, Cordelli DM, Lanari M, Pession A, Zama D. Anti-Inflammatory and Immunomodulatory Effect of High-Dose Immunoglobulins in Children: From Approved Indications to Off-Label Use. Cells 2023; 12:2417. [PMID: 37830631 PMCID: PMC10572613 DOI: 10.3390/cells12192417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/23/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND The large-scale utilization of immunoglobulins in patients with inborn errors of immunity (IEIs) since 1952 prompted the discovery of their key role at high doses as immunomodulatory and anti-inflammatory therapy, in the treatment of IEI-related immune dysregulation disorders, according to labelled and off-label indications. Recent years have been dominated by a progressive imbalance between the gradual but constant increase in the use of immunoglobulins and their availability, exacerbated by the SARS-CoV-2 pandemic. OBJECTIVES To provide pragmatic indications for a need-based application of high-dose immunoglobulins in the pediatric context. SOURCES A literature search was performed using PubMed, from inception until 1st August 2023, including the following keywords: anti-inflammatory; children; high dose gammaglobulin; high dose immunoglobulin; immune dysregulation; immunomodulation; immunomodulatory; inflammation; intravenous gammaglobulin; intravenous immunoglobulin; off-label; pediatric; subcutaneous gammaglobulin; subcutaneous immunoglobulin. All article types were considered. IMPLICATIONS In the light of the current imbalance between gammaglobulins' demand and availability, this review advocates the urgency of a more conscious utilization of this medical product, giving indications about benefits, risks, cost-effectiveness, and administration routes of high-dose immunoglobulins in children with hematologic, neurologic, and inflammatory immune dysregulation disorders, prompting further research towards a responsible employment of gammaglobulins and improving the therapeutical decisional process.
Collapse
Affiliation(s)
- Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.C.); (A.M.); (A.P.)
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy; (A.F.); (D.M.C.); (M.L.); (D.Z.)
| | - Mattia Moratti
- Specialty School of Paediatrics, University of Bologna, 40138 Bologna, Italy; (A.C.); (E.B.)
| | - Lucia Leonardi
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| | - Arianna Catelli
- Specialty School of Paediatrics, University of Bologna, 40138 Bologna, Italy; (A.C.); (E.B.)
| | - Elisa Bortolamedi
- Specialty School of Paediatrics, University of Bologna, 40138 Bologna, Italy; (A.C.); (E.B.)
| | - Emanuele Filice
- Department of Pediatrics, Maggiore Hospital, 40133 Bologna, Italy;
| | - Anna Fetta
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy; (A.F.); (D.M.C.); (M.L.); (D.Z.)
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell’Età Pediatrica, 40139 Bologna, Italy
| | - Marianna Fabi
- Paediatric Emergency Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Elena Facchini
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (E.F.); (M.E.C.)
| | - Maria Elena Cantarini
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (E.F.); (M.E.C.)
| | - Angela Miniaci
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.C.); (A.M.); (A.P.)
| | - Duccio Maria Cordelli
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy; (A.F.); (D.M.C.); (M.L.); (D.Z.)
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell’Età Pediatrica, 40139 Bologna, Italy
| | - Marcello Lanari
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy; (A.F.); (D.M.C.); (M.L.); (D.Z.)
- Paediatric Emergency Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Andrea Pession
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.C.); (A.M.); (A.P.)
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy; (A.F.); (D.M.C.); (M.L.); (D.Z.)
| | - Daniele Zama
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy; (A.F.); (D.M.C.); (M.L.); (D.Z.)
- Paediatric Emergency Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| |
Collapse
|
4
|
Okamoto W, Hiwatashi Y, Kobayashi T, Morita Y, Onozawa H, Iwazaki M, Kohno M, Tomiyasu H, Tochinai R, Georgieva R, Bäumler H, Komatsu T. Poly(2-ethyl-2-oxazoline)-Conjugated Hemoglobins as a Red Blood Cell Substitute. ACS APPLIED BIO MATERIALS 2023; 6:3330-3340. [PMID: 37504970 DOI: 10.1021/acsabm.3c00392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Hemoglobin wrapped covalently with poly(2-ethyl-2-oxazoline)s (POx-Hb) is characterized physicochemically and physiologically as an artificial O2 carrier for use as a red blood cell (RBC) substitute. The POx-Hb is generated by linkage of porcine Hb surface-lysines to a sulfhydryl terminus of the POx derivative, with the average binding number of the polymers ascertained as 6. The POx-Hb shows moderately higher colloid osmotic activity and O2 affinity than the naked Hb. Human adult HbA conjugated with POx also possesses equivalent features and O2 binding properties. The POx-Hb solution exhibits good hemocompatibility, with no influence on the functions of platelets, granulocytes, and monocytes. Its circulation half-life in rats is 14 times longer than that of naked Hb. Hemorrhagic shock in rats is relieved sufficiently by infusion of the POx-Hb solution, as revealed by improvements of circulatory parameters. Serum biochemistry tests and histopathological observations indicate no acute toxicity or abnormality in the related organs. All results indicate that POx-Hb represents an attractive alternative for RBCs and a useful O2 therapeutic reagent in transfusion medicine.
Collapse
Affiliation(s)
- Wataru Okamoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Yuuki Hiwatashi
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Tatsuhiro Kobayashi
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Yoshitsugu Morita
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Hiroto Onozawa
- Department of General Thoracic Surgery, School of Medicine, Tokai University, 143 Shimokasuya, Isehara-shi, Kanagawa 259-1193, Japan
| | - Masayuki Iwazaki
- Department of General Thoracic Surgery, School of Medicine, Tokai University, 143 Shimokasuya, Isehara-shi, Kanagawa 259-1193, Japan
| | - Mitsutomo Kohno
- Department of General Thoracic Surgery, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe-shi, Saitama 350-8550, Japan
| | - Hirotaka Tomiyasu
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryota Tochinai
- Department of Veterinary Pathophysiology and Animal Health, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Radostina Georgieva
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Medical Physics, Biophysics and Radiology, Medical Faculty, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Hans Bäumler
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Teruyuki Komatsu
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
5
|
Roberts DJ. Blood services, COVID-19 and lessons being learnt: the past pandemic is not over, it's not even past. Transfus Med 2023; 33:3-5. [PMID: 36815536 DOI: 10.1111/tme.12959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/03/2023] [Indexed: 02/24/2023]
Affiliation(s)
- David J Roberts
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Murtha-Lemekhova A, Fuchs J, Ritscher E, Hoffmann K. Effect of Autotransfusion in HCC Surgery on Survival and Recurrence: A Systematic Review and Meta-Analysis. Cancers (Basel) 2022; 14:4837. [PMID: 36230760 PMCID: PMC9564172 DOI: 10.3390/cancers14194837] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The chronic blood shortage has forced clinicians to seek alternatives to allogeneic blood transfusions during surgery. Due to anatomic uniqueness resulting in a vast vasculature, liver surgery can lead to significant blood loss, and an estimated 30% of patients require blood transfusions in major hepatectomy. Allogeneic transfusion harbors the risk of an immunologic reaction. However, the hesitation to reinfuse a patient's own blood during cancer surgery is reinforced by the potentiality of reintroducing and disseminating tumor cells into an individual undergoing curative treatment. Two methods of autotransfusions are common: autotransfusion after preoperative blood donation and intraoperative blood salvage (IBS). We aim to investigate the effect of autotransfusion on recurrence and survival rates of patients undergoing surgery for HCC. METHODS The protocol for this meta-analysis was registered at PROSPERO prior to data extraction. MEDLINE, Web of Science and Cochrane Library were searched for publications on liver surgery and blood salvage (autologous transfusion or intraoperative blood salvage). Comparative studies were included. Outcomes focused on long-term oncologic status and mortality. Hazard ratios (HR) estimated outcomes with a fixed-effects model. Risk of bias was assessed using ROBINS-I, and certainty of evidence was evaluated with GRADE. Separate analyses were performed for liver transplantation and hepatectomies. RESULTS Fifteen studies were included in the analysis (nine on transplantation and six on hepatectomies), and they comprised 2052 patients. Overall survival was comparable between patients who received intraoperative blood salvage (IBS) or not for liver transplantation (HR 1.13, 95% CI [0.89, 1.42] p = 0.31). Disease-free survival also was comparable (HR 0.97, 95% CI [0.76, 1.24], p = 0.83). Autotransfusion after prior donation was predominantly used in hepatectomy. Patients who received autotransfusion had a significantly better overall survival than the control (HR 0.71, 95% CI [0.58, 0.88], p = 0.002). Disease-free survival was also significantly higher in patients with autotransfusion (HR 0.88, 95% CI [0.80, 0.96], p = 0.005). Although overall, the certainty of evidence is low and included studies exhibited methodological heterogeneity, the heterogeneity of outcomes was low to moderate. CONCLUSION Autotransfusion, including intraoperative blood salvage, does not adversely affect the overall or disease-free survival of patients with HCC undergoing resection or transplantation. The results of this meta-analysis justify a randomized-controlled trial regarding the feasibility and potential benefits of autotransfusion in HCC surgery.
Collapse
Affiliation(s)
| | | | | | - Katrin Hoffmann
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany
| |
Collapse
|