1
|
Wang Y, Tan BC. Pentatricopeptide repeat proteins in plants: Cellular functions, action mechanisms, and potential applications. PLANT COMMUNICATIONS 2025; 6:101203. [PMID: 39644091 DOI: 10.1016/j.xplc.2024.101203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Pentatricopeptide repeat (PPR) proteins are involved in nearly all aspects of post-transcriptional processing in plant mitochondria and plastids, playing vital roles in plant growth, development, cytoplasmic male sterility restoration, and responses to biotic and abiotic stresses. Over the last three decades, significant advances have been made in understanding the functions of PPR proteins and the primary mechanisms through which they mediate post-transcriptional processing. This review aims to summarize these advancements, highlighting the mechanisms by which PPR proteins facilitate RNA editing, intron splicing, and RNA maturation in the context of organellar gene expression. We also present the latest progress in PPR engineering and discuss its potential as a biotechnological tool. Additionally, we discuss key challenges and questions that remain in PPR research.
Collapse
Affiliation(s)
- Yong Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China.
| |
Collapse
|
2
|
Niu Y, Zheng Y, Zhu H, Zhao H, Nie K, Wang X, Sun L, Song CP. The Arabidopsis Mitochondrial Pseudouridine Synthase Homolog FCS1 Plays Critical Roles in Plant Development. PLANT & CELL PHYSIOLOGY 2022; 63:955-966. [PMID: 35560171 DOI: 10.1093/pcp/pcac060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/16/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
As the most abundant RNA modification, pseudouridylation has been shown to play critical roles in Escherichia coli, yeast and humans. However, its function in plants is still unclear. Here, we characterized leaf curly and small 1 (FCS1), which encodes a pseudouridine synthase in Arabidopsis. fcs1 mutants exhibited severe defects in plant growth, such as delayed development and reduced fertility, and were significantly smaller than the wild type at different developmental stages. FCS1 protein is localized in the mitochondrion. The absence of FCS1 significantly reduces pseudouridylation of mitochondrial 26S ribosomal RNA (rRNA) at the U1692 site, which sits in the peptidyl transferase center. This affection of mitochondrial 26S rRNA may lead to the disruption of mitochondrial translation in the fcs1-1 mutant, causing high accumulation of transcripts but low production of proteins. Dysfunctional mitochondria with abnormal structures were also observed in the fcs1-1 mutant. Overall, our results suggest that FCS1-mediated pseudouridylation of mitochondrial 26S rRNA is required for mitochondrial translation, which is critical for maintaining mitochondrial function and plant development.
Collapse
Affiliation(s)
- Yanli Niu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of life Sciences, Henan University, Kaifeng 475001, China
| | - Yuan Zheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of life Sciences, Henan University, Kaifeng 475001, China
| | - Huijie Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of life Sciences, Henan University, Kaifeng 475001, China
| | - Hongyun Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of life Sciences, Henan University, Kaifeng 475001, China
| | - Kaili Nie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of life Sciences, Henan University, Kaifeng 475001, China
| | - Xiaopei Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of life Sciences, Henan University, Kaifeng 475001, China
| | - Lirong Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of life Sciences, Henan University, Kaifeng 475001, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of life Sciences, Henan University, Kaifeng 475001, China
| |
Collapse
|
3
|
Ma S, Yang W, Liu X, Li S, Li Y, Zhu J, Zhang C, Lu X, Zhou X, Chen R. Pentatricopeptide repeat protein CNS1 regulates maize mitochondrial complex III assembly and seed development. PLANT PHYSIOLOGY 2022; 189:611-627. [PMID: 35218364 PMCID: PMC9157079 DOI: 10.1093/plphys/kiac086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/28/2022] [Indexed: 06/02/2023]
Abstract
Mitochondrial function relies on the assembly of electron transport chain complexes, which requires coordination between proteins encoded by the mitochondrion and those of the nucleus. Here, we cloned a maize (Zea mays) cytochrome c maturation FN stabilizer1 (CNS1) and found it encodes a pentatricopeptide repeat (PPR) protein. Members of the PPR family are widely distributed in plants and are associated with RNA metabolism in organelles. P-type PPR proteins play essential roles in stabilizing the 3'-end of RNA in mitochondria; whether a similar process exists for stabilizing the 5'-terminus of mitochondrial RNA remains unclear. The kernels of cns1 exhibited arrested embryo and endosperm development, whereas neither conventional splicing deficiency nor RNA editing difference in mitochondrial genes was observed. Instead, most of the ccmFN transcripts isolated from cns1 mutant plants were 5'-truncated and therefore lacked the start codon. Biochemical and molecular data demonstrated that CNS1 is a P-type PPR protein encoded by nuclear DNA and that it localizes to the mitochondrion. Also, one binding site of CNS1 located upstream of the start codon in the ccmFN transcript. Moreover, abnormal mitochondrial morphology and dramatic upregulation of alternative oxidase genes were observed in the mutant. Together, these results indicate that CNS1 is essential for reaching a suitable level of intact ccmFN transcripts through binding to the 5'-UTR of the RNAs and maintaining 5'-integrity, which is crucial for sustaining mitochondrial complex III function to ensure mitochondrial biogenesis and seed development in maize.
Collapse
Affiliation(s)
- Shuai Ma
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenzhu Yang
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoqing Liu
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Suzhen Li
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ye Li
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province , Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Jiameng Zhu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Chunyi Zhang
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoduo Lu
- Institute of Molecular Breeding for Maize, Qilu Normal University, Jinan 250200, China
| | - Xiaojin Zhou
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rumei Chen
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
4
|
The radish Ogura fertility restorer impedes translation elongation along its cognate CMS-causing mRNA. Proc Natl Acad Sci U S A 2021; 118:2105274118. [PMID: 34433671 DOI: 10.1073/pnas.2105274118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The control of messenger RNA (mRNA) translation has been increasingly recognized as a key regulatory step for gene control, but clear examples in eukaryotes are still scarce. Nucleo-cytoplasmic male sterilities (CMS) represent ideal genetic models to dissect genetic interactions between the mitochondria and the nucleus in plants. This trait is determined by specific mitochondrial genes and is associated with a pollen sterility phenotype that can be suppressed by nuclear genes known as restorer-of-fertility (Rf). In this study, we focused on the Ogura CMS system in rapeseed and showed that reversion to male sterility by the PPR-B fertility restorer (also called Rfo) occurs through a specific translation inhibition of the mitochondria-encoded CMS-causing mRNA orf138 We also demonstrate that PPR-B binds within the coding sequence of orf138 and acts as a ribosome blocker to specifically impede translation elongation along the orf138 mRNA. Rfo is the first recognized fertility restorer shown to act this way. These observations will certainly facilitate the development of synthetic fertility restorers for CMS systems in which efficient natural Rfs are lacking.
Collapse
|
5
|
Schleicher S, Binder S. In Arabidopsis thaliana mitochondria 5' end polymorphisms of nad4L-atp4 and nad3-rps12 transcripts are linked to RNA PROCESSING FACTORs 1 and 8. PLANT MOLECULAR BIOLOGY 2021; 106:335-348. [PMID: 33909186 PMCID: PMC8270843 DOI: 10.1007/s11103-021-01153-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/12/2021] [Indexed: 05/14/2023]
Abstract
RNA PROCESSING FACTORs 1 AND 8 (RPF1 and RPF8), both restorer of fertility like pentatricopeptide repeat proteins, are required for processing of dicistronic nad4L-atp4 and nad3-rps12 transcripts in Arabidopsis mitochondria. In mitochondria of Arabidopsis thaliana (Arabidopsis), the 5' termini of many RNAs are generated on the post-transcriptional level. This process is still poorly understood in terms of both the underlying mechanism as well as proteins required. Our studies now link the generation of polymorphic 5' extremities of the dicistronic nad3-rps12 and nad4L-atp4 transcripts to the function of the P-type pentatricopeptide repeat proteins RNA PROCESSING FACTORs 8 (RPF8) and 1 (RPF1). RPF8 is required to generate the nad3-rps12 -141 5' end in ecotype Van-0 whereas the RPF8 allele in Col has no function in the generation of any 5' terminus of this transcript. This observation strongly suggests the involvement of an additional factor in the generation of the -229 5' end of nad3-rps12 transcripts in Col. RPF1, previously found to be necessary for the generation of the -228 5' end of the major 1538 nucleotide-long nad4 mRNAs, is also important for the formation of nad4L-atp4 transcripts with a 5' end at position -318 in Col. Many Arabidopsis ecotypes contain inactive RPF1 alleles resulting in the accumulation of various low abundant nad4L-atp4 RNAs which might represent precursor and/or degradation products. Some of these ecotypes accumulate major, but slightly smaller RNA species. The introduction of RPF1 into these lines not only establishes the formation of the major nad4L-atp4 dicistronic mRNA with the -318 5' terminus, the presence of this gene also suppresses the accumulation of most alternative nad4L-atp4 RNAs. Beside RPF1, several other factors contribute to nad4L-atp4 transcript formation.
Collapse
Affiliation(s)
- Sarah Schleicher
- Institut Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, 89069, Ulm, Germany
| | - Stefan Binder
- Institut Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, 89069, Ulm, Germany.
| |
Collapse
|
6
|
Proulex GCR, Meade MJ, Manoylov KM, Cahoon AB. Mitochondrial mRNA Processing in the Chlorophyte Alga Pediastrum duplex and Streptophyte Alga Chara vulgaris Reveals an Evolutionary Branch in Mitochondrial mRNA Processing. PLANTS (BASEL, SWITZERLAND) 2021; 10:576. [PMID: 33803683 PMCID: PMC8003010 DOI: 10.3390/plants10030576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 11/17/2022]
Abstract
Mitochondria carry the remnant of an ancestral bacterial chromosome and express those genes with a system separate and distinct from the nucleus. Mitochondrial genes are transcribed as poly-cistronic primary transcripts which are post-transcriptionally processed to create individual translationally competent mRNAs. Algae post-transcriptional processing has only been explored in Chlamydomonas reinhardtii (Class: Chlorophyceae) and the mature mRNAs are different than higher plants, having no 5' UnTranslated Regions (UTRs), much shorter and more variable 3' UTRs and polycytidylated mature mRNAs. In this study, we analyzed transcript termini using circular RT-PCR and PacBio Iso-Seq to survey the 3' and 5' UTRs and termini for two green algae, Pediastrum duplex (Class: Chlorophyceae) and Chara vulgaris (Class: Charophyceae). This enabled the comparison of processing in the chlorophyte and charophyte clades of green algae to determine if the differences in mitochondrial mRNA processing pre-date the invasion of land by embryophytes. We report that the 5' mRNA termini and non-template 3' termini additions in P. duplex resemble those of C. reinhardtii, suggesting a conservation of mRNA processing among the chlorophyceae. We also report that C. vulgaris mRNA UTRs are much longer than chlorophytic examples, lack polycytidylation, and are polyadenylated similar to embryophytes. This demonstrates that some mitochondrial mRNA processing events diverged with the split between chlorophytic and streptophytic algae.
Collapse
Affiliation(s)
- Grayson C. R. Proulex
- Department of Natural Sciences, The University of Virginia’s College at Wise, 1 College Ave., Wise, VA 24293, USA; (G.C.R.P.); (M.J.M.)
| | - Marcus J. Meade
- Department of Natural Sciences, The University of Virginia’s College at Wise, 1 College Ave., Wise, VA 24293, USA; (G.C.R.P.); (M.J.M.)
| | - Kalina M. Manoylov
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA 31061, USA;
| | - A. Bruce Cahoon
- Department of Natural Sciences, The University of Virginia’s College at Wise, 1 College Ave., Wise, VA 24293, USA; (G.C.R.P.); (M.J.M.)
| |
Collapse
|
7
|
Liu R, Cao SK, Sayyed A, Yang HH, Zhao J, Wang X, Jia RX, Sun F, Tan BC. The DYW-subgroup pentatricopeptide repeat protein PPR27 interacts with ZmMORF1 to facilitate mitochondrial RNA editing and seed development in maize. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5495-5505. [PMID: 32531050 DOI: 10.1093/jxb/eraa273] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/09/2020] [Indexed: 05/02/2023]
Abstract
C-to-U RNA editing in plant mitochondria requires the participation of many nucleus-encoded factors, most of which are pentatricopeptide repeat (PPR) proteins. There is a large number of PPR proteins and the functions many of them are unknown. Here, we report a mitochondrion-localized DYW-subgroup PPR protein, PPR27, which functions in the editing of multiple mitochondrial transcripts in maize. The ppr27 mutant is completely deficient in C-to-U editing at the ccmFN-1357 and rps3-707 sites, and editing at six other sites is substantially reduced. The lack of editing at ccmFN-1357 causes a deficiency of CcmFN protein. As CcmFN functions in the maturation pathway of cytochrome proteins that are subunits of mitochondrial complex III, its deficiency results in an absence of cytochrome c1 and cytochrome c proteins. Consequently, the assembly of mitochondrial complex III and super-complex I+III2 is decreased, which impairs the electron transport chain and respiration, leading to arrests in embryogenesis and endosperm development in ppr27. In addition, PPR27 was found to physically interact with ZmMORF1, which interacts with ZmMORF8, suggesting that these three proteins may facilitate C-to-U RNA editing via the formation of a complex in maize mitochondria. This RNA editing is essential for complex III assembly and seed development in maize.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Shi-Kai Cao
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Aqib Sayyed
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Huan-Huan Yang
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Jiao Zhao
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiaomin Wang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Ru-Xue Jia
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Feng Sun
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
8
|
Kwasniak-Owczarek M, Kazmierczak U, Tomal A, Mackiewicz P, Janska H. Deficiency of mitoribosomal S10 protein affects translation and splicing in Arabidopsis mitochondria. Nucleic Acids Res 2020; 47:11790-11806. [PMID: 31732734 PMCID: PMC7145619 DOI: 10.1093/nar/gkz1069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/14/2019] [Accepted: 10/30/2019] [Indexed: 11/14/2022] Open
Abstract
The ribosome is not only a protein-making machine, but also a regulatory element in protein synthesis. This view is supported by our earlier data showing that Arabidopsis mitoribosomes altered due to the silencing of the nuclear RPS10 gene encoding mitochondrial ribosomal protein S10 differentially translate mitochondrial transcripts compared with the wild-type. Here, we used ribosome profiling to determine the contribution of transcriptional and translational control in the regulation of protein synthesis in rps10 mitochondria compared with the wild-type ones. Oxidative phosphorylation system proteins are preferentially synthesized in wild-type mitochondria but this feature is lost in the mutant. The rps10 mitoribosomes show slightly reduced translation efficiency of most respiration-related proteins and at the same time markedly more efficiently synthesize ribosomal proteins and MatR and TatC proteins. The mitoribosomes deficient in S10 protein protect shorter transcript fragments which exhibit a weaker 3-nt periodicity compared with the wild-type. The decrease in the triplet periodicity is particularly drastic for genes containing introns. Notably, splicing is considerably less effective in the mutant, indicating an unexpected link between the deficiency of S10 and mitochondrial splicing. Thus, a shortage of the mitoribosomal S10 protein has wide-ranging consequences on mitochondrial gene expression.
Collapse
Affiliation(s)
- Malgorzata Kwasniak-Owczarek
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14A, 50-383 Wroclaw, Poland
| | - Urszula Kazmierczak
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14A, 50-383 Wroclaw, Poland
| | - Artur Tomal
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14A, 50-383 Wroclaw, Poland
| | - Pawel Mackiewicz
- Department of Genomics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14A, 50-383 Wroclaw, Poland
| | - Hanna Janska
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14A, 50-383 Wroclaw, Poland
| |
Collapse
|
9
|
Zhu C, Jin G, Fang P, Zhang Y, Feng X, Tang Y, Qi W, Song R. Maize pentatricopeptide repeat protein DEK41 affects cis-splicing of mitochondrial nad4 intron 3 and is required for normal seed development. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3795-3808. [PMID: 31020318 PMCID: PMC6685664 DOI: 10.1093/jxb/erz193] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/10/2019] [Indexed: 05/18/2023]
Abstract
The splicing of organelle-encoded mRNA in plants requires proteins encoded in the nucleus. The mechanism of splicing and the factors involved are not well understood. Pentatricopeptide repeat (PPR) proteins are known to participate in such RNA-protein interactions. Maize defective kernel 41 (dek41) is a seedling-lethal mutant that causes developmental defects. In this study, the Dek41 gene was cloned by Mutator tag isolation and allelic confirmation, and was found to encode a P-type PPR protein that targets mitochondria. Analysis of the mitochondrial RNA transcript profile revealed that dek41 mutations cause reduced splicing efficiency of mitochondrial nad4 intron 3. Immature dek41 kernels exhibited severe reductions in complex I assembly and NADH dehydrogenase activity. Up-regulated expression of alternative oxidase genes and deformed inner cristae of mitochondria in dek41, as revealed by TEM, indicated that proper splicing of nad4 is essential for correct mitochondrial functioning and morphology. Consistent with this finding, differentially expressed genes in the dek41 endosperm included those related to mitochondrial function and activity. Our results indicate that DEK41 is a PPR protein that affects cis-splicing of mitochondrial nad4 intron 3 and is required for correct mitochondrial functioning and maize kernel development.
Collapse
Affiliation(s)
- Chenguang Zhu
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Guangpu Jin
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Peng Fang
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yan Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Xuzhen Feng
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yuanping Tang
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Rentao Song
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Correspondence:
| |
Collapse
|
10
|
Wu M, Ren Y, Cai M, Wang Y, Zhu S, Zhu J, Hao Y, Teng X, Zhu X, Jing R, Zhang H, Zhong M, Wang Y, Lei C, Zhang X, Guo X, Cheng Z, Lin Q, Wang J, Jiang L, Bao Y, Wang Y, Wan J. Rice FLOURY ENDOSPERM10 encodes a pentatricopeptide repeat protein that is essential for the trans-splicing of mitochondrial nad1 intron 1 and endosperm development. THE NEW PHYTOLOGIST 2019; 223:736-750. [PMID: 30916395 DOI: 10.1111/nph.15814] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/14/2019] [Indexed: 05/18/2023]
Abstract
Endosperm, the major storage organ in cereal grains, determines grain yield and quality. Despite the fact that a role for P-type pentatricopeptide repeat (PPR) proteins in the regulation of endosperm development has emerged, molecular functions of many P-type PPR proteins remain obscure. Here, we report a rice endosperm defective mutant, floury endosperm10 (flo10), which developed smaller starch grains in starchy endosperm and abnormal cells in the aleurone layer. Map-based cloning and rescued experiments showed that FLO10 encodes a P-type PPR protein with 26 PPR motifs, which is localized to mitochondria. Loss of function of FLO10 affected the trans-splicing of the mitochondrial nad1 intron 1, which was accompanied by the increased accumulation of the nad1 exon 1 and exons 2-5 precursors. The failed formation of mature nad1 led to a dramatically decreased assembly and activity of complex I, reduced ATP production, and changed mitochondrial morphology. In addition, loss of function of FLO10 significantly induced an alternative respiratory pathway involving alternative oxidase. These results reveal that FLO10 plays an important role in the maintenance of mitochondrial function and endosperm development through its effect on the trans-splicing of the mitochondrial nad1 intron 1 in rice.
Collapse
Affiliation(s)
- Mingming Wu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yulong Ren
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Maohong Cai
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunlong Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shanshan Zhu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jianping Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanyuan Hao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuan Teng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaopin Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruonan Jing
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huan Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingsheng Zhong
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongfei Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Cailin Lei
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xin Zhang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiuping Guo
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhijun Cheng
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qibing Lin
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jie Wang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yiqun Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
11
|
Halpert M, Liveanu V, Glaser F, Schuster G. The Arabidopsis chloroplast RNase J displays both exo- and robust endonucleolytic activities. PLANT MOLECULAR BIOLOGY 2019; 99:17-29. [PMID: 30511330 DOI: 10.1007/s11103-018-0799-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/22/2018] [Indexed: 05/17/2023]
Abstract
Arabidopsis chloroplast RNase J displaces both exo- and endo-ribonucleolytic activities and contains a unique GT-1 DNA binding domain. Control of chloroplast gene expression is predominantly at the post-transcriptional level via the coordinated action of nuclear encoded ribonucleases and RNA-binding proteins. The 5' end maturation of mRNAs ascribed to the combined action of 5'→3' exoribonuclease and gene-specific RNA-binding proteins of the pentatricopeptide repeat family and others that impede the progression of this nuclease. The exo- and endoribonuclease RNase J, the only prokaryotic 5'→3' ribonuclease that is commonly present in bacteria, Archaea, as well as in the chloroplasts of higher plants and green algae, has been implicated in this process. Interestingly, in addition to the metalo-β-lactamase and β-CASP domains, RNase J of plants contains a conserved GT-1 domain that was previously characterized in transcription factors that function in light and stress responding genes. Here, we show that the Arabidopsis RNase J (AtRNase J), when analyzed in vitro with synthetic RNAs, displays both 5'→3' exonucleolytic activity, as well as robust endonucleolytic activity as compared to its bacterial homolog RNase J1 of Bacillus subtilis. AtRNase J degraded single-stranded RNA and DNA molecules but displays limited activity on double stranded RNA. The addition of three guanosines at the 5' end of the substrate significantly inhibited the degradation activity, indicating that the sequence and structure of the RNA substrate modulate the ribonucleolytic activity. Mutation of three amino acid in the catalytic reaction center significantly inhibited both the endonucleolytic and exonucleolytic degradation activities, while deletion of the carboxyl GT-1 domain that is unique to the plant RNAse J proteins, had a little or no significant effect. The robust endonucleolytic activity of AtRNase J suggests its involvement in the processing and degradation of RNA in the chloroplast.
Collapse
Affiliation(s)
- Michal Halpert
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Varda Liveanu
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Fabian Glaser
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
- Bioinformatics Knowledge Unit, The Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Gadi Schuster
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel.
| |
Collapse
|
12
|
Zhang YF, Suzuki M, Sun F, Tan BC. The Mitochondrion-Targeted PENTATRICOPEPTIDE REPEAT78 Protein Is Required for nad5 Mature mRNA Stability and Seed Development in Maize. MOLECULAR PLANT 2017; 10:1321-1333. [PMID: 28951060 DOI: 10.1016/j.molp.2017.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/27/2017] [Accepted: 09/10/2017] [Indexed: 05/06/2023]
Abstract
Pentatricopepetide repeat (PPR) proteins are a large family of RNA-binding proteins involved in RNA metabolism in plant organelles. Although many PPR proteins have been functionally studied, few of them are identified with a function in mitochondrial RNA stability. By using a reverse genetic approach, we characterized the role of the mitochondrion-targeted PPR78 protein in nad5 mature mRNA stability and maize (Zea mays) seed development. Loss of PPR78 function leads to a dramatic reduction in the steady-state level of mitochondrial nad5 mature mRNA, blocks the assembly of complex I in the electron transport chain, and causes an arrest in embryogenesis and endosperm development. Characterization of a second strong allele confirms the function of PPR78 in nad5 mRNA accumulation and maize seed development. The generation of mature nad5 requires the assembly of three distinct precursor RNAs via trans-splicing reactions, and the accumulation of nad5T1 precursor is reduced in the ppr78 mutants. However, it is the instability of mature nad5 rather than nad5T1 causing loss of the full-length nad5 transcript, and degradation of nad5 losing both translation start and stop codons is enriched in the mutant. Our data imply the assembly of mature nad5 mRNA precedes the protection of PPR78.
Collapse
Affiliation(s)
- Ya-Feng Zhang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Masaharu Suzuki
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, Florida 32611, USA
| | - Feng Sun
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, China.
| |
Collapse
|
13
|
Wang C, Aubé F, Planchard N, Quadrado M, Dargel-Graffin C, Nogué F, Mireau H. The pentatricopeptide repeat protein MTSF2 stabilizes a nad1 precursor transcript and defines the 3΄ end of its 5΄-half intron. Nucleic Acids Res 2017; 45:6119-6134. [PMID: 28334831 PMCID: PMC5449624 DOI: 10.1093/nar/gkx162] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/28/2017] [Indexed: 12/14/2022] Open
Abstract
RNA expression in plant mitochondria implies a large number of post-transcriptional events in which transcript processing and stabilization are essential. In this study, we analyzed the function of the Arabidopsis mitochondrial stability factor 2 gene (MTSF2) and show that the encoded pentatricopeptide repeat protein is essential for the accumulation of stable nad1 mRNA. The production of mature nad1 requires the assembly of three independent RNA precursors via two trans-splicing reactions. Genetic analyses revealed that the lack of nad1 in mtsf2 mutants results from the specific destabilization of the nad1 exons 2-3 precursor transcript. We further demonstrated that MTSF2 binds to its 3΄ extremity with high affinity, suggesting a protective action by blocking exoribonuclease progression. By defining the 3΄ end of nad1 exons 2-3 precursor, MTSF2 concomitantly determines the 3΄ extremity of the first half of the trans-intron found at the end of the transcript. Therefore, binding of the MTSF2 protein to nad1 exons 2-3 precursor evolved both to stabilize the transcript and to define a 3΄ extremity compatible with the trans-splicing reaction needed to reconstitute mature nad1. We thus reveal that the range of transcripts stabilized by association with protective protein on their 3΄ end concerns also mitochondrial precursor transcripts.
Collapse
Affiliation(s)
- Chuande Wang
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
- Paris-Sud University, Université Paris-Saclay, 91405 Orsay Cedex, France
- These authors contributed equally to the paper as first authors
| | - Fabien Aubé
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
- These authors contributed equally to the paper as first authors
| | - Noelya Planchard
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
- Paris-Sud University, Université Paris-Saclay, 91405 Orsay Cedex, France
- These authors contributed equally to the paper as first authors
| | - Martine Quadrado
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Céline Dargel-Graffin
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Fabien Nogué
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Hakim Mireau
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
- To whom correspondence should be addressed. Tel: +33 130 833 070; Fax: +33 130 833 319;
| |
Collapse
|
14
|
Stoll K, Jonietz C, Schleicher S, des Francs-Small CC, Small I, Binder S. In Arabidopsis thaliana distinct alleles encoding mitochondrial RNA PROCESSING FACTOR 4 support the generation of additional 5' termini of ccmB transcripts. PLANT MOLECULAR BIOLOGY 2017; 93:659-668. [PMID: 28229269 DOI: 10.1007/s11103-017-0591-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/09/2017] [Indexed: 06/06/2023]
Abstract
In plant mitochondria, the 5' ends of many transcripts are generated post-transcriptionally. We show that the pentatricopeptide repeat (PPR) protein RNA PROCESSING FACTOR 4 (RPF4) supports the generation of extra 5' ends of ccmB transcripts in Landsberg erecta (Ler) and a number of other Arabidopsis thaliana ecotypes. RPF4 was identified in Ler applying a forward genetic approach supported by complementation studies of ecotype Columbia (Col), which generates the Ler-type extra ccmB 5' termini only after the introduction of the RPF4 allele from Ler. Studies with chimeric RPF4 proteins composed of various parts of the RPF4 proteins from Ler and Col identified differences in the N-terminal and central PPR motifs that explain ecotype-specific variations in ccmB processing. These results fit well with binding site predictions in ccmB transcripts based on the known determinants of nucleotide base recognition by PPR motifs.
Collapse
Affiliation(s)
- Katrin Stoll
- Institut Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, 89069, Ulm, Germany
| | - Christian Jonietz
- Institut Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, 89069, Ulm, Germany
| | - Sarah Schleicher
- Institut Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, 89069, Ulm, Germany
| | - Catherine Colas des Francs-Small
- Australian Research Council 40 Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, WA, 6009, Australia
| | - Ian Small
- Australian Research Council 40 Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, WA, 6009, Australia
| | - Stefan Binder
- Institut Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, 89069, Ulm, Germany.
| |
Collapse
|
15
|
Binder S, Stoll K, Stoll B. Maturation of 5' ends of plant mitochondrial RNAs. PHYSIOLOGIA PLANTARUM 2016; 157:280-8. [PMID: 26833432 DOI: 10.1111/ppl.12423] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/11/2015] [Accepted: 12/15/2015] [Indexed: 05/26/2023]
Abstract
The generation of mature RNAs, i.e. mRNAs, rRNAs or tRNAs, is a complex process in all genetic systems. RNA-internal processes such as splicing or RNA editing, but also posttranscriptional processes modulating 5' and 3' termini of transcripts, contribute to RNA maturation. In this article, we focus on the posttranscriptional formation of 5' termini of mitochondrial RNAs in seed plants, with particular emphasis on the model plant species Arabidopsis thaliana (Arabidopsis). We will summarize the progress made in recent studies of proteins involved in this process. In addition, we will evaluate whether 5' processing proceeds endo- or exo-nucleolytically. Despite the considerable progress made, many details of this process remain unsolved. In particular, it is still unclear why there is frequent 5' processing of many mRNAs although impaired processing does not interfere with mitochondrial function and plant fitness. Thus, the importance of 5' processing for plant mitochondria is still puzzling.
Collapse
Affiliation(s)
- Stefan Binder
- Institut Molekulare Botanik, Universität Ulm, Ulm, D-89069, Germany
| | - Katrin Stoll
- Institut Molekulare Botanik, Universität Ulm, Ulm, D-89069, Germany
| | - Birgit Stoll
- Institut Molekulare Botanik, Universität Ulm, Ulm, D-89069, Germany
| |
Collapse
|
16
|
Fujii S, Suzuki T, Giegé P, Higashiyama T, Koizuka N, Shikanai T. The Restorer-of-fertility-like 2 pentatricopeptide repeat protein and RNase P are required for the processing of mitochondrial orf291 RNA in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:504-13. [PMID: 27122350 DOI: 10.1111/tpj.13185] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/14/2016] [Indexed: 05/27/2023]
Abstract
Eukaryotes harbor mitochondria obtained via ancient symbiosis events. The successful evolution of energy production in mitochondria has been dependent on the control of mitochondrial gene expression by the nucleus. In flowering plants, the nuclear-encoded pentatricopeptide repeat (PPR) superfamily proteins are widely involved in mitochondrial RNA metabolism. Here, we show that an Arabidopsis nuclear-encoded RNA-binding protein, Restorer-of-fertility-like PPR protein 2 (RFL2), is required for RNA degradation of the mitochondrial orf291 transcript via endonucleolytic cleavage of the transcript in the middle of its reading frame. Both in vivo and in vitro, this RNA cleavage requires the activity of mitochondrial proteinaceous RNase P, which is possibly recruited to the site by RFL2. The site of RNase P cleavage likely forms a tRNA-like structure in the orf291 transcript. This study presents an example of functional collaboration between a PPR protein and an endonuclease in RNA cleavage. Furthermore, we show that the RFL2-binding region within the orf291 gene is hypervariable in the family Brassicaceae, possibly correlated with the rapid evolution of the RNA-recognition interfaces of the RFL proteins.
Collapse
Affiliation(s)
- Sota Fujii
- Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Takamasa Suzuki
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
- Japan Science and Technology Agency, ERATO, Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Philippe Giegé
- Institut de Biologie Moléculaire des Plantes, 12 Rue du Général Zimmer, Strasbourg, 67084, France
| | - Tetsuya Higashiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
- Japan Science and Technology Agency, ERATO, Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
- WPI-ITbM, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Nobuya Koizuka
- Faculty of Agriculture, Tamagawa University, 6-1-1 Tamagawa-Gakuen, Machida, Tokyo, 194-8610, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
- CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo, 102-0076, Japan
| |
Collapse
|
17
|
Ruwe H, Wang G, Gusewski S, Schmitz-Linneweber C. Systematic analysis of plant mitochondrial and chloroplast small RNAs suggests organelle-specific mRNA stabilization mechanisms. Nucleic Acids Res 2016; 44:7406-17. [PMID: 27235415 PMCID: PMC5009733 DOI: 10.1093/nar/gkw466] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/14/2016] [Indexed: 11/13/2022] Open
Abstract
Land plant organellar genomes encode a small number of genes, many of which are essential for respiration and photosynthesis. Organellar gene expression is characterized by a multitude of RNA processing events that lead to stable, translatable transcripts. RNA binding proteins (RBPs), have been shown to generate and protect transcript termini and eventually induce the accumulation of short RNA footprints. We applied knowledge of such RBP-derived footprints to develop software (sRNA miner) that enables identification of RBP footprints, or other clusters of small RNAs, in organelles. We used this tool to determine mitochondrial and chloroplast cosRNAs (clustered organellar sRNAs) in Arabidopsis. We found that in mitochondria, cosRNAs coincide with transcript 3'-ends, but are largely absent from 5'-ends. In chloroplasts this bias is absent, suggesting a different mode of 5' processing, possibly owing to different sets of RNases. Furthermore, we identified a large number of cosRNAs that represent silenced insertions of mitochondrial DNA in the nuclear genome of Arabidopsis. Steady-state RNA analyses demonstrate that cosRNAs display differential accumulation during development. Finally, we demonstrate that the chloroplast RBP PPR10 associates in vivo with its cognate cosRNA. A hypothetical role of cosRNAs as competitors of mRNAs for PPR proteins is discussed.
Collapse
Affiliation(s)
- Hannes Ruwe
- Molekulare Genetik, Institut für Biologie, Humboldt-Universität zu Berlin, Philippstr. 11-13, 10115 Berlin, Germany
| | - Gongwei Wang
- Molekulare Genetik, Institut für Biologie, Humboldt-Universität zu Berlin, Philippstr. 11-13, 10115 Berlin, Germany
| | - Sandra Gusewski
- Molekulare Genetik, Institut für Biologie, Humboldt-Universität zu Berlin, Philippstr. 11-13, 10115 Berlin, Germany FU-Berlin, Fachbereich Biologie, Chemie, Pharmazie, Takustr. 3, 14195 Berlin, Germany
| | - Christian Schmitz-Linneweber
- Molekulare Genetik, Institut für Biologie, Humboldt-Universität zu Berlin, Philippstr. 11-13, 10115 Berlin, Germany
| |
Collapse
|
18
|
Stoll B, Binder S. Two NYN domain containing putative nucleases are involved in transcript maturation in Arabidopsis mitochondria. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:278-288. [PMID: 26711866 DOI: 10.1111/tpj.13111] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/11/2015] [Accepted: 12/14/2015] [Indexed: 06/05/2023]
Abstract
Plant mitochondrial transcripts frequently undergo maturation processes at their 5' ends. This almost completely enigmatic process requires the function of several proteins such as RNA processing factors, which are selectively involved in distinct 5' processing events. As RNA processing factors represent pentatricopeptide repeat proteins without apparent enzymatic function, it is hypothesized that a ribonuclease, most likely with endonucleolytic activity is involved in the 5' end maturation. We have now applied a reverse genetic approach to analyze the role of two potential mitochondrial nucleases, MNU1 and MNU2, in Arabidopsis thaliana. Both proteins contain several RNA-binding domains and NYN domains found in other endonucleases. A thorough analysis of various mitochondrial transcripts in MNU1 and MNU2 mutants revealed aberrant transcript pattern characterized by a decrease in mature RNA species often accompanied by an accumulation of larger, 5' extended precursor molecules. In addition, severely reduced amounts of nad9 mRNAs in the rpf2-1/mnu2-1 double mutant indicate a corporate function of RNA processing factor 2 and MNU2 in the maturation of these transcripts. However, the dramatic reduction of the nad9 mRNA is not reflected by the level of the corresponding Nad9 protein, which is found to be only moderately lowered. Collectively, our analysis strongly suggests a function of MNU1 and MNU2 in 5' processing of plant mitochondrial transcripts.
Collapse
Affiliation(s)
- Birgit Stoll
- Institut Molekulare Botanik, Universität Ulm, Ulm, D-89069, Germany
| | - Stefan Binder
- Institut Molekulare Botanik, Universität Ulm, Ulm, D-89069, Germany
| |
Collapse
|
19
|
Stoll K, Jonietz C, Binder S. In Arabidopsis thaliana two co-adapted cyto-nuclear systems correlate with distinct ccmC transcript sizes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:247-257. [PMID: 25399870 DOI: 10.1111/tpj.12724] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/29/2014] [Accepted: 11/04/2014] [Indexed: 06/04/2023]
Abstract
Plant mitochondrial transcripts undergo maturation processes at both termini. Although frequently observed, the post-transcriptional formation of mature 5' ends is still poorly understood. We now analyzed the processing of transcripts derived from the mitochondrial ccmC gene, coding for a component of the cytochrome c maturation system. In Arabidopsis thaliana (Arabidopsis) there are two mitochondrial ccmC configurations, discriminated by a 66-bp sequence segment located approximately 500 bp upstream of the ccmC gene. In Arabidopsis accessions these divergent mitochondrial genotypes correlate with the generation of two different 5' termini that map to positions around -484 in accession Columbia (Col ccmC genotype) or -390 in accession C24 relative to the translation start codon (C24 ccmC genotype). Previously we identified RNA PROCESSING FACTOR 3 (RPF3), a pentatricopeptide repeat (PPR) protein required for the maturation of ccmCmRNAs with -484 5' ends transcribed from the Col ccmC genotype. Now we identified several accessions defective in maturation of ccmC transcripts. Taking advantage of this natural genetic variation we identified RNA PROCESSING FACTOR 6 (RPF6), a PPR protein necessary for the generation of ccmCmRNAs with -390 5' ends transcribed from the C24 ccmC genotype. Both Col-type and C24-type accessions encode RPF3 and RPF6 so that they can process ccmC transcripts derived from the two different mitochondrial genotypes. These factors and their cognate RNA recognition sites in the different ccmC genotypes are an intriguing example for the evolution of two co-adapted cyto-nuclear systems required for the same process i.e. 5' maturation of ccmC transcripts.
Collapse
Affiliation(s)
- Katrin Stoll
- Institut Molekulare Botanik, Universität Ulm, D-89069, Ulm, Germany
| | | | | |
Collapse
|
20
|
Stoll B, Zendler D, Binder S. RNA processing factor 7 and polynucleotide phosphorylase are necessary for processing and stability of nad2 mRNA in Arabidopsis mitochondria. RNA Biol 2014; 11:968-76. [PMID: 25181358 DOI: 10.4161/rna.29781] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Post-transcriptional maturation of plant mitochondrial transcripts requires several steps. Among these, the generation of mature 5' ends is still one of the most enigmatic processes. Toward a characterization of proteins involved in 5' processing of mitochondrial transcripts in Arabidopsis (Arabidopsis thaliana), we now analyzed 5' maturation of nad2 transcripts. Based on natural genetic variation affecting 5' ends of nad2 transcripts in ecotype Can-0 and complementation studies we now identified RNA processing factor 7, which takes part in the generation of the 5' terminus of the mature nad2 mRNA. RPF7 is a relatively short regular P-class pentatricopeptide repeat protein comprising seven canonical P repeats and a single short S repeat. The corresponding allele in Can-0 encodes a truncated version of this protein lacking two C-terminal repeats, which are essential for the function of RPF7. Furthermore we established transgenic plants expressing artifical microRNAs targeting the mitochondrial polynucleotide phosphorylase (PNPase), which results in substantial reduction of the PNPase mRNA levels and strong knockdown of this gene. Detailed quantitative studies of 5' and 3' extended nad2 precursor RNAs in these knockdown plants as well as in the rpf7-1 knockout mutant suggest that 5' processing contributes to the stability of mitochondrial transcripts in plants.
Collapse
Affiliation(s)
- Birgit Stoll
- Institut Molekulare Botanik, Universität Ulm, Germany
| | | | - Stefan Binder
- Institut Molekulare Botanik, Universität Ulm, Germany
| |
Collapse
|
21
|
Hammani K, Giegé P. RNA metabolism in plant mitochondria. TRENDS IN PLANT SCIENCE 2014; 19:380-9. [PMID: 24462302 DOI: 10.1016/j.tplants.2013.12.008] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/11/2013] [Accepted: 12/19/2013] [Indexed: 05/02/2023]
Abstract
Mitochondria are essential for the eukaryotic cell and are derived from the endosymbiosis of an α-proteobacterial ancestor. Compared to other eukaryotes, RNA metabolism in plant mitochondria is complex and combines bacterial-like traits with novel features that evolved in the host cell. These complex RNA processes are regulated by families of nucleus-encoded RNA-binding proteins. Transcription is particularly relaxed and is initiated from multiple promoters covering the entire genome. The variety of RNA precursors accumulating in mitochondria highlights the importance of post-transcriptional processes to determine the size and abundance of transcripts. Here we review RNA metabolism in plant mitochondria, from RNA transcription to translation, with a special focus on their unique features that are controlled by trans-factors.
Collapse
Affiliation(s)
- Kamel Hammani
- Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - Philippe Giegé
- Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| |
Collapse
|
22
|
Arnal N, Quadrado M, Simon M, Mireau H. A restorer-of-fertility like pentatricopeptide repeat gene directs ribonucleolytic processing within the coding sequence of rps3-rpl16 and orf240a mitochondrial transcripts in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:134-145. [PMID: 24506331 DOI: 10.1111/tpj.12463] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/10/2014] [Accepted: 01/20/2014] [Indexed: 06/03/2023]
Abstract
The pentatricopeptide repeat (PPR) proteins represent a large family of RNA-binding proteins that have many roles in post-transcriptional RNA processes within plant organelles. Among the PPR proteins that target plant mitochondria, the restorer-of-fertility (Rf) proteins are characterized by their inhibitory action on mitochondrion-localized cytoplasmic male sterility (CMS) genes in various crop species. Close homologs to known Rfs from radish, petunia, and rice can be identified in most higher plant species and these proteins define the recognized subgroup of Rf-like (RFL) PPR proteins. In this paper we describe the function of the RFL9 gene from Arabidopsis thaliana, and show that it is associated with ribonucleolytic cleavages within the coding sequences of rps3-rpl16 and orf240a mitochondrial transcripts in the Col-0 accession. RFL9 therefore represents an Rf-like PPR gene that has the potential to compromise the function of an essential mitochondrial gene and whose function is also associated with a mitochondrial orf sharing significant homology with a proven CMS-causing orf. We observe that RFL9 is active in only a few Arabidopsis accessions genetically close to Col-0, which supports the idea that the genetic fixation of this gene represents a regional event in the recent evolution of Arabidopsis. Additionally, RFL9 counts among the RFL genes that are probably controlled by short regulatory RNAs, and our results provides a potential explanation for such control, which in the case of RFL9 might have evolved to limit its detrimental effect on rps3 expression.
Collapse
Affiliation(s)
- Nadège Arnal
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, F-78000, Versailles, France
| | | | | | | |
Collapse
|
23
|
Braun HP, Binder S, Brennicke A, Eubel H, Fernie AR, Finkemeier I, Klodmann J, König AC, Kühn K, Meyer E, Obata T, Schwarzländer M, Takenaka M, Zehrmann A. The life of plant mitochondrial complex I. Mitochondrion 2014; 19 Pt B:295-313. [PMID: 24561573 DOI: 10.1016/j.mito.2014.02.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/28/2014] [Accepted: 02/12/2014] [Indexed: 12/29/2022]
Abstract
The mitochondrial NADH dehydrogenase complex (complex I) of the respiratory chain has several remarkable features in plants: (i) particularly many of its subunits are encoded by the mitochondrial genome, (ii) its mitochondrial transcripts undergo extensive maturation processes (e.g. RNA editing, trans-splicing), (iii) its assembly follows unique routes, (iv) it includes an additional functional domain which contains carbonic anhydrases and (v) it is, indirectly, involved in photosynthesis. Comprising about 50 distinct protein subunits, complex I of plants is very large. However, an even larger number of proteins are required to synthesize these subunits and assemble the enzyme complex. This review aims to follow the complete "life cycle" of plant complex I from various molecular perspectives. We provide arguments that complex I represents an ideal model system for studying the interplay of respiration and photosynthesis, the cooperation of mitochondria and the nucleus during organelle biogenesis and the evolution of the mitochondrial oxidative phosphorylation system.
Collapse
Affiliation(s)
- Hans-Peter Braun
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany.
| | - Stefan Binder
- Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany
| | - Axel Brennicke
- Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany
| | - Holger Eubel
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Iris Finkemeier
- Plant Sciences, Ludwig Maximilians Universität München, Grosshadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| | - Jennifer Klodmann
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Ann-Christine König
- Plant Sciences, Ludwig Maximilians Universität München, Grosshadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| | - Kristina Kühn
- Institut für Biologie/Molekulare Zellbiologie der Pflanzen, Humboldt Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany
| | - Etienne Meyer
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Toshihiro Obata
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Markus Schwarzländer
- INRES - Chemical Signalling, Rheinische Friedrich-Wilhelms-Universität Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Mizuki Takenaka
- Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany
| | - Anja Zehrmann
- Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany
| |
Collapse
|
24
|
Abstract
Pentatricopeptide repeat (PPR) proteins constitute one of the largest protein families in land plants, with more than 400 members in most species. Over the past decade, much has been learned about the molecular functions of these proteins, where they act in the cell, and what physiological roles they play during plant growth and development. A typical PPR protein is targeted to mitochondria or chloroplasts, binds one or several organellar transcripts, and influences their expression by altering RNA sequence, turnover, processing, or translation. Their combined action has profound effects on organelle biogenesis and function and, consequently, on photosynthesis, respiration, plant development, and environmental responses. Recent breakthroughs in understanding how PPR proteins recognize RNA sequences through modular base-specific contacts will help match proteins to potential binding sites and provide a pathway toward designing synthetic RNA-binding proteins aimed at desired targets.
Collapse
Affiliation(s)
- Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97405;
| | | |
Collapse
|
25
|
Surrogate mutants for studying mitochondrially encoded functions. Biochimie 2013; 100:234-42. [PMID: 23994752 DOI: 10.1016/j.biochi.2013.08.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 08/18/2013] [Indexed: 11/24/2022]
Abstract
Although chloroplast transformation is possible in some plant species, it is extremely difficult to create or select mutations in plant mitochondrial genomes, explaining why few genetic studies of mitochondrially encoded functions exist. In recent years it has become clear that many nuclear genes encode factors with key functions in organelle gene expression, and that often their action is restricted to a single organelle gene or transcript. Mutations in one of these nuclear genes thus leads to a specific primary defect in expression of a single organelle gene, and the nuclear mutation can be used as a surrogate for a phenotypically equivalent mutation in the organelle genome. These surrogate mutations often result in defective assembly of respiratory complexes, and lead to severe phenotypes including reduced growth and fertility, or even embryo-lethality. A wide collection of such mutants is now available, and this review summarises the progress in basic knowledge of mitochondrial biogenesis they have contributed to and points out areas where this resource has not been exploited yet.
Collapse
|
26
|
Binder S, Stoll K, Stoll B. P-class pentatricopeptide repeat proteins are required for efficient 5' end formation of plant mitochondrial transcripts. RNA Biol 2013; 10:1511-9. [PMID: 24184847 DOI: 10.4161/rna.26129] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
It is well recognized that flowering plants maintain a particularly broad spectrum of factors to support gene expression in mitochondria. Many of these factors are pentatricopeptide repeat (PPR) proteins that participate in virtually all processes dealing with RNA. One of these processes is the post-transcriptional generation of mature 5' termini of RNA. Several PPR proteins are required for efficient 5' maturation of mitochondrial mRNA and rRNA. These so-called RNA PROCESSING FACTORs (RPF) exclusively represent P-class PPR proteins, mainly composed of canonical PPR motifs without any extra domains. Applying the recent PPR-nucleotide recognition code, binding sites of RPF are predicted on the 5' leader sequences. The sequence-specific interaction of an RPF with one or a few RNA substrates probably directly or indirectly recruits an as-yet-unidentified endonuclease to the processing site(s). The identification and characterization of RPF is a major step toward the understanding of the role of 5' end maturation in flowering plant mitochondria.
Collapse
Affiliation(s)
- Stefan Binder
- Institut Molekulare Botanik; Universität Ulm; Ulm; Germany
| | - Katrin Stoll
- Institut Molekulare Botanik; Universität Ulm; Ulm; Germany
| | - Birgit Stoll
- Institut Molekulare Botanik; Universität Ulm; Ulm; Germany
| |
Collapse
|
27
|
Dahan J, Mireau H. The Rf and Rf-like PPR in higher plants, a fast-evolving subclass of PPR genes. RNA Biol 2013; 10:1469-76. [PMID: 23872480 DOI: 10.4161/rna.25568] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In the last years, a number of nuclear genes restoring cytoplasmic male sterility (CMS) have been cloned in various crop species. The majority of these genes have been shown to encode pentatricopeptide repeat proteins (PPR) that act by specifically suppressing the expression of sterility-causing mitochondrial transcripts. Functional analysis of these proteins has indicated that the inhibitory effects of restoring PPR (Rf-PPR) proteins involve various mechanisms, including RNA cleavage, RNA destabilization, or translation inhibition. Cross-species sequence comparison of PPR protein complements revealed that most plant genomes encode 10-30 Rf-like (RFL) proteins sharing high-sequence similarity with the identified Rf-PPRs from crops. Evolutionary analyses further showed that they constitute a monophyletic group apart in the PPR family, with peculiar evolution dynamic and constraints. Here we review recent data on RF-PPRs and present the latest discoveries on the RFL family, with prospects on the functionality and evolution of this peculiar subclass of PPR.
Collapse
Affiliation(s)
- Jennifer Dahan
- INRA; UMR1318; Institut Jean-Pierre Bourgin; RD10; Versailles, France; AgroParisTech; Institut Jean-Pierre Bourgin; RD10; Versailles, France
| | - Hakim Mireau
- INRA; UMR1318; Institut Jean-Pierre Bourgin; RD10; Versailles, France; AgroParisTech; Institut Jean-Pierre Bourgin; RD10; Versailles, France
| |
Collapse
|
28
|
Abstract
PPR proteins form a huge family in flowering plants and are involved in RNA maturation in plastids and mitochondria. These proteins are sequence-specific RNA-binding proteins that recruit the machinery of RNA processing. We summarize progress in the research on the functional mechanisms of divergent RNA maturation and on the mechanism by which RNA sequences are recognized. We further focus on two topics. RNA editing is an enigmatic process of RNA maturation in organelles, in which members of the PLS subfamily contribute to target site recognition. As the first topic, we speculate on why the PLS subfamily was selected by the RNA editing machinery. Second, we discuss how the regulation of plastid gene expression contributes to efficient photosynthesis. Although the molecular functions of PPR proteins have been studied extensively, information on the physiological significance of regulation by these proteins remains very limited.
Collapse
Affiliation(s)
| | - Sota Fujii
- Graduate School of Science; Kyoto University; Kyoto, Japan
| |
Collapse
|
29
|
Haïli N, Arnal N, Quadrado M, Amiar S, Tcherkez G, Dahan J, Briozzo P, Colas des Francs-Small C, Vrielynck N, Mireau H. The pentatricopeptide repeat MTSF1 protein stabilizes the nad4 mRNA in Arabidopsis mitochondria. Nucleic Acids Res 2013; 41:6650-63. [PMID: 23658225 PMCID: PMC3711453 DOI: 10.1093/nar/gkt337] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene expression in plant mitochondria involves a complex collaboration of transcription initiation and termination, as well as subsequent mRNA processing to produce mature mRNAs. In this study, we describe the function of the Arabidopsis mitochondrial stability factor 1 (MTSF1) gene and show that it encodes a pentatricopeptide repeat protein essential for the 3′-processing of mitochondrial nad4 mRNA and its stability. The nad4 mRNA is highly destabilized in Arabidopsis mtsf1 mutant plants, which consequently accumulates low amounts of a truncated form of respiratory complex I. Biochemical and genetic analyses demonstrated that MTSF1 binds with high affinity to the last 20 nucleotides of nad4 mRNA. Our data support a model for MTSF1 functioning in which its association with the last nucleotides of the nad4 3′ untranslated region stabilizes nad4 mRNA. Additionally, strict conservation of the MTSF1-binding sites strongly suggests that the protective function of MTSF1 on nad4 mRNA is conserved in dicots. These results demonstrate that the mRNA stabilization process initially identified in plastids, whereby proteins bound to RNA extremities constitute barriers to exoribonuclease progression occur in plant mitochondria to protect and concomitantly define the 3′ end of mature mitochondrial mRNAs. Our study also reveals that short RNA molecules corresponding to pentatricopeptide repeat-binding sites accumulate also in plant mitochondria.
Collapse
Affiliation(s)
- Nawel Haïli
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France, AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|