1
|
Meresa BK, Ayimut KM, Weldemichael MY, Geberemedhin KH, Kassegn HH, Geberemikael BA, Egigu EM. Carbohydrate elicitor-induced plant immunity: Advances and prospects. Heliyon 2024; 10:e34871. [PMID: 39157329 PMCID: PMC11327524 DOI: 10.1016/j.heliyon.2024.e34871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
The perceived negative impacts of synthetic agrochemicals gave way to alternative, biological plant protection strategies. The deployment of induced resistance, comprising boosting the natural defense responses of plants, is one of those. Plants developed multi-component defense mechanisms to defend themselves against biotic and abiotic stresses. These are activated upon recognition of stress signatures via membrane-localized receptors. The induced immune responses enable plants to tolerate and limit the impact of stresses. A systemic cascade of signals enables plants to prime un-damaged tissues, which is crucial during secondary encounters with stress. Comparable stress tolerance mechanisms can be induced in plants by the application of carbohydrate elicitors such as chitin/chitosan, β-1,3-glucans, oligogalacturonides, cellodextrins, xyloglucans, alginates, ulvans, and carrageenans. Treating plants with carbohydrate-derived elicitors enable the plants to develop resistance appliances against diverse stresses. Some carbohydrates are also known to have been involved in promoting symbiotic signaling. Here, we review recent progresses on plant resistance elicitation effect of various carbohydrate elicitors and the molecular mechanisms of plant cell perception, cascade signals, and responses to cascaded cues. Besides, the molecular mechanisms used by plants to distinguish carbohydrate-induced immunity signals from symbiotic signals are discussed. The structure-activity relationships of the carbohydrate elicitors are also described. Furthermore, we forwarded future research outlooks that might increase the utilization of carbohydrate elicitors in agriculture in order to improve the efficacy of plant protection strategies.
Collapse
Affiliation(s)
- Birhanu Kahsay Meresa
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Kiros-Meles Ayimut
- Department of Crop and Horticultural Sciences, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Micheale Yifter Weldemichael
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Kalayou Hiluf Geberemedhin
- Department of Chemistry, College of Natural and Computational Sciences, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Hagos Hailu Kassegn
- Department of Food Science and Postharvest Technology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Bruh Asmelash Geberemikael
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Etsay Mesele Egigu
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| |
Collapse
|
2
|
Sharma M, Tisarum R, Kohli RK, Batish DR, Cha-Um S, Singh HP. Inroads into saline-alkaline stress response in plants: unravelling morphological, physiological, biochemical, and molecular mechanisms. PLANTA 2024; 259:130. [PMID: 38647733 DOI: 10.1007/s00425-024-04368-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/22/2024] [Indexed: 04/25/2024]
Abstract
MAIN CONCLUSION This article discusses the complex network of ion transporters, genes, microRNAs, and transcription factors that regulate crop tolerance to saline-alkaline stress. The framework aids scientists produce stress-tolerant crops for smart agriculture. Salinity and alkalinity are frequently coexisting abiotic limitations that have emerged as archetypal mediators of low yield in many semi-arid and arid regions throughout the world. Saline-alkaline stress, which occurs in an environment with high concentrations of salts and a high pH, negatively impacts plant metabolism to a greater extent than either stress alone. Of late, saline stress has been the focus of the majority of investigations, and saline-alkaline mixed studies are largely lacking. Therefore, a thorough understanding and integration of how plants and crops rewire metabolic pathways to repair damage caused by saline-alkaline stress is of particular interest. This review discusses the multitude of resistance mechanisms that plants develop to cope with saline-alkaline stress, including morphological and physiological adaptations as well as molecular regulation. We examine the role of various ion transporters, transcription factors (TFs), differentially expressed genes (DEGs), microRNAs (miRNAs), or quantitative trait loci (QTLs) activated under saline-alkaline stress in achieving opportunistic modes of growth, development, and survival. The review provides a background for understanding the transport of micronutrients, specifically iron (Fe), in conditions of iron deficiency produced by high pH. Additionally, it discusses the role of calcium in enhancing stress tolerance. The review highlights that to encourage biomolecular architects to reconsider molecular responses as auxiliary for developing tolerant crops and raising crop production, it is essential to (a) close the major gaps in our understanding of saline-alkaline resistance genes, (b) identify and take into account crop-specific responses, and (c) target stress-tolerant genes to specific crops.
Collapse
Affiliation(s)
- Mansi Sharma
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India
- Department of Environmental Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, 201310, Uttar Pradesh, India
| | - Rujira Tisarum
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Ravinder Kumar Kohli
- Department of Botany, Panjab University, Chandigarh, 160014, India
- Amity University, Mohali Campus, Sector 82A, Mohali, 140306, Punjab, India
| | - Daizy R Batish
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Suriyan Cha-Um
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Harminder Pal Singh
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India.
| |
Collapse
|
3
|
Gonzalez JP, Frandsen KEH, Kesten C. The role of intrinsic disorder in binding of plant microtubule-associated proteins to the cytoskeleton. Cytoskeleton (Hoboken) 2023; 80:404-436. [PMID: 37578201 DOI: 10.1002/cm.21773] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/15/2023]
Abstract
Microtubules (MTs) represent one of the main components of the eukaryotic cytoskeleton and support numerous critical cellular functions. MTs are in principle tube-like structures that can grow and shrink in a highly dynamic manner; a process largely controlled by microtubule-associated proteins (MAPs). Plant MAPs are a phylogenetically diverse group of proteins that nonetheless share many common biophysical characteristics and often contain large stretches of intrinsic protein disorder. These intrinsically disordered regions are determinants of many MAP-MT interactions, in which structural flexibility enables low-affinity protein-protein interactions that enable a fine-tuned regulation of MT cytoskeleton dynamics. Notably, intrinsic disorder is one of the major obstacles in functional and structural studies of MAPs and represents the principal present-day challenge to decipher how MAPs interact with MTs. Here, we review plant MAPs from an intrinsic protein disorder perspective, by providing a complete and up-to-date summary of all currently known members, and address the current and future challenges in functional and structural characterization of MAPs.
Collapse
Affiliation(s)
- Jordy Perez Gonzalez
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Kristian E H Frandsen
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Christopher Kesten
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
4
|
Pedretti M, Favretto F, Troilo F, Giovannoni M, Conter C, Mattei B, Dominici P, Travaglini-Allocatelli C, Di Matteo A, Astegno A. Role of myristoylation in modulating PCaP1 interaction with calmodulin. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108003. [PMID: 37717348 DOI: 10.1016/j.plaphy.2023.108003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/09/2023] [Accepted: 09/04/2023] [Indexed: 09/19/2023]
Abstract
Plasma membrane-associated Cation-binding Protein 1 (PCaP1) belongs to the plant-unique DREPP protein family with largely unknown biological functions but ascertained roles in plant development and calcium (Ca2+) signaling. PCaP1 is anchored to the plasma membrane via N-myristoylation and a polybasic cluster, and its N-terminal region can bind Ca2+/calmodulin (CaM). However, the molecular determinants of PCaP1-Ca2+-CaM interaction and the functional impact of myristoylation in the complex formation and Ca2+ sensitivity of CaM remained to be elucidated. Herein, we investigated the direct interaction between Arabidopsis PCaP1 (AtPCaP1) and CaM1 (AtCaM1) using both myristoylated and non-myristoylated peptides corresponding to the N-terminal region of AtPCaP1. ITC analysis showed that AtCaM1 forms a high affinity 1:1 complex with AtPCaP1 peptides and the interaction is strictly Ca2+-dependent. Spectroscopic and kinetic Ca2+ binding studies showed that the myristoylated peptide dramatically increased the Ca2+-binding affinity of AtCaM1 and slowed the Ca2+ dissociation rates from both the C- and N-lobes, thus suggesting that the myristoylation modulates the mechanism of AtPCaP1 recognition by AtCaM1. Furthermore, NMR and CD spectroscopy revealed that the structure of both the N- and C-lobes of Ca2+-AtCaM1 changes markedly in the presence of the myristoylated AtPCaP1 peptide, which assumes a helical structure in the final complex. Overall, our results indicate that AtPCaP1 biological function is strictly related to the presence of multiple ligands, i.e., the myristoyl moiety, Ca2+ ions and AtCaM1 and only a full characterization of their equilibria will allow for a complete molecular understanding of the putative role of PCaP1 as signal protein.
Collapse
Affiliation(s)
- Marco Pedretti
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Filippo Favretto
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Francesca Troilo
- CNR Institute of Molecular Biology and Pathology, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Moira Giovannoni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Carolina Conter
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Benedetta Mattei
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Paola Dominici
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | | | - Adele Di Matteo
- CNR Institute of Molecular Biology and Pathology, P.le Aldo Moro 5, 00185, Rome, Italy.
| | - Alessandra Astegno
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| |
Collapse
|
5
|
Ying S, Scheible W. A novel calmodulin-interacting Domain of Unknown Function 506 protein represses root hair elongation in Arabidopsis. PLANT, CELL & ENVIRONMENT 2022; 45:1796-1812. [PMID: 35312071 PMCID: PMC9314033 DOI: 10.1111/pce.14316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/13/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Domain of Unknown Function 506 proteins are ubiquitous in plants. The phosphorus (P) stress-inducible REPRESSOR OF EXCESSIVE ROOT HAIR GROWTH1 (AtRXR1) gene encodes the first characterized DUF506. AtRXR1 inhibits root hair elongation by interacting with RabD2c GTPase. However, functions of other P-responsive DUF506 genes are still missing. Here, we selected two additional P-inducible DUF506 genes for further investigation. The expression of both genes was induced by auxin. Under P-stress, At3g07350 gene expressed ubiquitously in seedlings, whereas At1g62420 (AtRXR3) expression was strongest in roots. AtRXR3 overexpressors and knockouts had shorter and longer root hairs, respectively. A functional AtRXR3-green fluorescent protein fusion localized to root epidermal cells. Chromatin immunoprecipitation and quantitative reverse-transcriptase-polymerase chain reaction revealed that AtRXR3 was transcriptionally activated by RSL4. Bimolecular fluorescence complementation and calmodulin (CaM)-binding assays showed that AtRXR3 interacted with CaM in the presence of Ca2+ . Moreover, cytosolic Ca2+ ([Ca2+ ]cyt ) oscillations in root hairs of rxr3 mutants exhibited elevated frequencies and dampened amplitudes compared to those of wild type. Thus, AtRXR3 is another DUF506 protein that attenuates P-limitation-induced root hair growth through mechanisms that involve RSL4 and interaction with CaM to modulate tip-focused [Ca2+ ]cyt oscillations.
Collapse
Affiliation(s)
- Sheng Ying
- Noble Research Institute LLCArdmoreOklahomaUSA
| | | |
Collapse
|
6
|
Engineering Climate-Change-Resilient Crops: New Tools and Approaches. Int J Mol Sci 2021; 22:ijms22157877. [PMID: 34360645 PMCID: PMC8346029 DOI: 10.3390/ijms22157877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022] Open
Abstract
Environmental adversities, particularly drought and nutrient limitation, are among the major causes of crop losses worldwide. Due to the rapid increase of the world's population, there is an urgent need to combine knowledge of plant science with innovative applications in agriculture to protect plant growth and thus enhance crop yield. In recent decades, engineering strategies have been successfully developed with the aim to improve growth and stress tolerance in plants. Most strategies applied so far have relied on transgenic approaches and/or chemical treatments. However, to cope with rapid climate change and the need to secure sustainable agriculture and biomass production, innovative approaches need to be developed to effectively meet these challenges and demands. In this review, we summarize recent and advanced strategies that involve the use of plant-related cyanobacterial proteins, macro- and micronutrient management, nutrient-coated nanoparticles, and phytopathogenic organisms, all of which offer promise as protective resources to shield plants from climate challenges and to boost stress tolerance in crops.
Collapse
|
7
|
Chen J, Zhou G, Dong Y, Qian X, Li J, Xu X, Huang H, Xu L, Li L. Screening of Key Proteins Affecting Floral Initiation of Saffron Under Cold Stress Using iTRAQ-Based Proteomics. FRONTIERS IN PLANT SCIENCE 2021; 12:644934. [PMID: 34046047 PMCID: PMC8144468 DOI: 10.3389/fpls.2021.644934] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/30/2021] [Indexed: 05/17/2023]
Abstract
BACKGROUND Saffron crocus (Crocus sativus) is an expensive and valuable species that presents preventive and curative effects. This study aimed to screen the key proteins affecting the floral initiation of saffron under cold stress and thus increasing yield by regulating the temperature. RESULTS Protein expression profiles in flowering and non-flowering saffron buds were established using isobaric tags for relative or absolute quantitation (iTRAQ). A total of 5,624 proteins were identified, and 201 differentially abundant protein species (DAPs) were further obtained between the flowering and non-flowering groups. The most important functions of the upregulated DAPs were "sucrose metabolic process," "lipid transport," "glutathione metabolic process," and "gene silencing by RNA." Downregulated DAPs were significantly enriched in "starch biosynthetic process" and several oxidative stress response pathways. Three new flower-related proteins, CsFLK, CseIF4a, and CsHUA1, were identified in this study. The following eight key genes were validated by real-time qPCR in flowering and non-flowering top buds from five different growth phases: floral induction- and floral organ development-related genes CsFLK, CseIF4A, CsHUA1, and CsGSTU7; sucrose synthase activity-related genes CsSUS1 and CsSUS2; and starch synthase activity-related genes CsGBSS1 and CsPU1. These findings demonstrate the important roles played by sucrose/starch biosynthesis pathways in floral development at the mRNA level. During normal floral organ development, the sucrose contents in the top buds of saffron increased, and the starch contents decreased. In contrast, non-flowering buds showed significantly decreased sucrose contents under cold stress and no significant changes in starch contents compared with those in the dormancy stage. CONCLUSION In this report, the protein profiles of saffron under cold stress and a normal environment were revealed for the first time by iTRAQ. A possible "reactive oxygen species-antioxidant system-starch/sugar interconversion flowering pathway" was established to explain the phenomenon that saffron does not bloom due to low temperature treatment.
Collapse
Affiliation(s)
- Jing Chen
- Huzhou Central Hospital, Affiliated Hospital of Huzhou Normal University, Huzhou, China
- Huzhou Hospital, Zhejiang University, Huzhou, China
| | - Guifen Zhou
- Department of Chinese Medicine, Zhejiang University of Traditional Chinese Medicine, Hangzhou, China
| | - Yan Dong
- Hospital of Chinese Medicine of Changxing County, Huzhou, China
| | - Xiaodong Qian
- Huzhou Central Hospital, Affiliated Hospital of Huzhou Normal University, Huzhou, China
- Huzhou Hospital, Zhejiang University, Huzhou, China
| | - Jing Li
- Huzhou Central Hospital, Affiliated Hospital of Huzhou Normal University, Huzhou, China
- Huzhou Hospital, Zhejiang University, Huzhou, China
| | - Xuting Xu
- Huzhou Central Hospital, Affiliated Hospital of Huzhou Normal University, Huzhou, China
- Huzhou Hospital, Zhejiang University, Huzhou, China
| | - Huilian Huang
- Huzhou Central Hospital, Affiliated Hospital of Huzhou Normal University, Huzhou, China
- Huzhou Hospital, Zhejiang University, Huzhou, China
| | - Limin Xu
- Huzhou Central Hospital, Affiliated Hospital of Huzhou Normal University, Huzhou, China
- Huzhou Hospital, Zhejiang University, Huzhou, China
| | - Liqin Li
- Huzhou Central Hospital, Affiliated Hospital of Huzhou Normal University, Huzhou, China
- Huzhou Hospital, Zhejiang University, Huzhou, China
- *Correspondence: Liqin Li,
| |
Collapse
|
8
|
Kato M, Tsuge T, Maeshima M, Aoyama T. Arabidopsis PCaP2 modulates the phosphatidylinositol 4,5-bisphosphate signal on the plasma membrane and attenuates root hair elongation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:610-625. [PMID: 30604455 DOI: 10.1111/tpj.14226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 05/22/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2 ] serves as a subcellular signal on the plasma membrane, mediating various cell-polarized phenomena including polar cell growth. Here, we investigated the involvement of Arabidopsis thaliana PCaP2, a plant-unique plasma membrane protein with phosphoinositide-binding activity, in PtdIns(4,5)P2 signaling for root hair tip growth. The long-root-hair phenotype of the pcap2 knockdown mutant was found to stem from its higher average root hair elongation rate compared with the wild type and to counteract the low average rate caused by a defect in the PtdIns(4,5)P2 -producing enzyme gene PIP5K3. On the plasma membrane of elongating root hairs, the PCaP2 promoter-driven PCaP2-green fluorescent protein (GFP), which complemented the pcap2 mutant phenotype, overlapped with the PtdIns(4,5)P2 marker 2xCHERRY-2xPHPLC in the subapical region, but not at the apex, suggesting that PCaP2 attenuates root hair elongation via PtdIns(4,5)P2 signaling on the subapical plasma membrane. Consistent with this, a GFP fusion with the PCaP2 phosphoinositide-binding domain PCaP2N23 , root hair-specific overexpression of which caused a low average root hair elongation rate, localized more intense to the subapical plasma membrane than to the apical plasma membrane similar to PCaP2-GFP. Inducibly overexpressed PCaP2-GFP, but not its derivative lacking the PCaP2N23 domain, replaced 2xCHERRY-2xPHPLC on the plasma membrane in root meristematic epidermal cells, and suppressed FM4-64 internalization in elongating root hairs. Moreover, inducibly overexpressed PCaP2 arrested an endocytic process of PIN2-GFP recycling. Based on these results, we conclude that PCaP2 functions as a negative modulator of PtdIns(4,5)P2 signaling on the subapical plasma membrane probably through competitive binding to PtdIns(4,5)P2 and attenuates root hair elongation.
Collapse
Affiliation(s)
- Mariko Kato
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Tomohiko Tsuge
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Masayoshi Maeshima
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, Aichi, 464-8601, Japan
| | - Takashi Aoyama
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
9
|
Tanaka-Takada N, Kobayashi A, Takahashi H, Kamiya T, Kinoshita T, Maeshima M. Plasma Membrane-Associated Ca2+-Binding Protein PCaP1 is Involved in Root Hydrotropism of Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2019; 60:1331-1341. [PMID: 30828737 DOI: 10.1093/pcp/pcz042] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/21/2019] [Indexed: 05/26/2023]
Abstract
Root hydrotropism is an essential growth response to water potential gradients in plants. To understand the mechanism, fundamental elements such as MIZU-KUSSEI 1 (MIZ1) have been investigated extensively. We investigated the physiological role of a plasma membrane-associated cation-binding protein (PCaP1) and examined the effect of PCaP1 loss-of-function mutations on root hydrotropism. pcap1 knockout mutants showed a defect in root bending as a hydrotropic response, although gravitropism was normal in pcap1 mutants. When pcap1 seedlings were treated with abscisic acid, a negative regulator of gravitropism, the seedlings showed normal gravitropism. The hydrotropism defect in pcap1 mutants was clearly rescued by introducing the genomic sequence of PCaP1 with an endodermis-specific promoter. Analysis of PCaP1-greenfluorescent protein-expressing roots by confocal laser scanning microscopy revealed that PCaP1 was stably associated with the plasma membrane in most cells, but in the cytoplasm of endodermal cells at the bending region. Furthermore, we prepared a transgenic line overexpressing MIZ1 on the pcap1 background and found that the pcap1 hydrotropism defect was rescued. Our results indicate that PCaP1 in the endodermal cells of the root elongation zone is involved in the hydrotropic response. We suggest that PCaP1 contributes to hydrotropism through a MIZ1-independent pathway or as one of the upstream components that transduce water potential signals to MIZ1.
Collapse
Affiliation(s)
- Natsuki Tanaka-Takada
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Akie Kobayashi
- Laboratory of Plant Sennsory and Developmental Biology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hideyuki Takahashi
- Laboratory of Plant Sennsory and Developmental Biology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Takehiro Kamiya
- Laboratory of Plant Nutrition and Fertilizers, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| | - Masayoshi Maeshima
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
10
|
Hirano T, Sato MH. Diverse Physiological Functions of FAB1 and Phosphatidylinositol 3,5-Bisphosphate in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:274. [PMID: 30967882 PMCID: PMC6439278 DOI: 10.3389/fpls.2019.00274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
Biological membranes are predominantly composed of structural glycerophospholipids such as phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. Of the membrane glycerophospholipids, phosphatidylinositol (PtdIns) and its phosphorylated derivatives (phosphoinositides) constitute a minor fraction yet exert a wide variety of regulatory functions in eukaryotic cells. Phosphoinositides include PtdIns, three PtdIns monophosphates, three PtdIns bisphosphates, and one PtdIns triphosphate, in which the hydroxy groups of the inositol head group of PtdIns are phosphorylated by specific lipid kinases. Of all the phosphoinositides in eukaryotic cells, phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2] constitutes the smallest fraction, yet it is a crucial lipid in animal and yeast membrane trafficking systems. Here, we review the recent findings on the physiological functions of PtdIns(3,5)P2 and its enzyme-formation of aploid and binucleate cells (FAB1)-along with the regulatory proteins of FAB1 and the downstream effector proteins of PtdIns(3,5)P2 in Arabidopsis.
Collapse
|
11
|
Kölling M, Kumari P, Bürstenbinder K. Calcium- and calmodulin-regulated microtubule-associated proteins as signal-integration hubs at the plasma membrane-cytoskeleton nexus. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:387-396. [PMID: 30590729 DOI: 10.1093/jxb/ery397] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 12/06/2018] [Indexed: 05/09/2023]
Abstract
Plant growth and development are a genetically predetermined series of events but can change dramatically in response to environmental stimuli, involving perpetual pattern formation and reprogramming of development. The rate of growth is determined by cell division and subsequent cell expansion, which are restricted and controlled by the cell wall-plasma membrane-cytoskeleton continuum, and are coordinated by intricate networks that facilitate intra- and intercellular communication. An essential role in cellular signaling is played by calcium ions, which act as universal second messengers that transduce, integrate, and multiply incoming signals during numerous plant growth processes, in part by regulation of the microtubule cytoskeleton. In this review, we highlight recent advances in the understanding of calcium-mediated regulation of microtubule-associated proteins, their function at the microtubule cytoskeleton, and their potential role as hubs in crosstalk with other signaling pathways.
Collapse
Affiliation(s)
- Malte Kölling
- Leibniz Institute of Plant Biochemistry, Weinberg, Halle/Saale, Germany
| | - Pratibha Kumari
- Leibniz Institute of Plant Biochemistry, Weinberg, Halle/Saale, Germany
| | | |
Collapse
|
12
|
Physiological Functions of Phosphoinositide-Modifying Enzymes and Their Interacting Proteins in Arabidopsis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 30499079 DOI: 10.1007/5584_2018_295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
The integrity of cellular membranes is maintained not only by structural phospholipids such as phosphatidylcholine and phosphatidylethanolamine, but also by regulatory phospholipids, phosphatidylinositol phosphates (phosphoinositides). Although phosphoinositides constitute minor membrane phospholipids, they exert a wide variety of regulatory functions in all eukaryotic cells. They act as key markers of membrane surfaces that determine the biological integrity of cellular compartments to recruit various phosphoinositide-binding proteins. This review focuses on recent progress on the significance of phosphoinositides, their modifying enzymes, and phosphoinositide-binding proteins in Arabidopsis.
Collapse
|
13
|
Theerawitaya C, Yamada-Kato N, Singh HP, Cha-Um S, Takabe T. Isolation, expression, and functional analysis of developmentally regulated plasma membrane polypeptide 1 (DREPP1) in Sporobolus virginicus grown under alkali salt stress. PROTOPLASMA 2018; 255:1423-1432. [PMID: 29574487 DOI: 10.1007/s00709-018-1242-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
The plant specific DREPP proteins have been shown to bind Ca2+ and regulate the N-myristoylation signaling and microtubule polymerization in Arabidopsis thaliana. The information about DREPP proteins in other plants is, however, scarce. In the present study, we isolated the DREPP gene from a halophytic grass, Sporobolus virginicus, and tested whether the gene was involved in alkaline salt stress responses. The SvDREPP1 was cloned from S. virginicus by RACE methods. The isolated gene showed high homology to DREPP homologs from C4 grasses, Setaria italica, and Panicum hallii as well as rice (OsDREPP1). The encoded protein contained 202 amino acid residues. It was expressed in E. coli, and its biochemical properties were studied. It was observed that SvDREPP1 was not only Ca2+-binding protein, but also bind to calmodulin and microtubules. The SvDREPP1 mRNA expression in plants grown under alkaline salt stress was upregulated by 3.5 times over the control in leaf tissues after 48-h treatment, whereas it was increased for 6.0 times in the root tissues at 36 h. The data suggests the importance of SvDREPP1 in regulating alkali salt stress responses in the leaf tissues.
Collapse
Affiliation(s)
- Cattarin Theerawitaya
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Nana Yamada-Kato
- Research Institute, Meijo University, Tenpaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Harminder Pal Singh
- Department of Environment Studies, Faculty of Science, Panjab University, Chandigarh, 160014, India
| | - Suriyan Cha-Um
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Teruhiro Takabe
- Research Institute, Meijo University, Tenpaku-ku, Nagoya, Aichi, 468-8502, Japan.
- Graduate School of Environmental and Human Sciences, Meijo University, Nagoya, 468-8502, Japan.
| |
Collapse
|
14
|
Vosolsobě S, Schwarzerová K, Petrášek J. Determination of Plasma Membrane Partitioning for Peripherally-associated Proteins. J Vis Exp 2018. [PMID: 29985355 DOI: 10.3791/57837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
This method provides a fast approach for the determination of plasma membrane partitioning of any fluorescently-tagged peripherally-associated protein using the profiles of fluorescence intensity across the plasma membrane. Measured fluorescence profiles are fitted by a model for membrane and cytoplasm fluorescence distribution along a line applied perpendicularly to the cell periphery. This model is constructed from the fluorescence intensity values in reference cells expressing a fluorescently-tagged marker for cytoplasm and with FM 4-64-labeled plasma membrane. The method can be applied to various cell types and organisms; however, only plasma membranes of non-neighboring cells can be evaluated. This fast microscopy-based method is suitable for experiments, where subtle and dynamic changes of plasma membrane-associated markers are expected and need to be quantified, e.g., in the analysis of mutant versions of proteins, inhibitor treatments, and signal transduction observations. The method is implemented in a multi-platform R package that is coupled with an ImageJ macro that serves as a user-friendly interface.
Collapse
Affiliation(s)
- Stanislav Vosolsobě
- Department of Experimental Plant Biology, University of Science, Charles University;
| | | | - Jan Petrášek
- Department of Experimental Plant Biology, University of Science, Charles University
| |
Collapse
|
15
|
Wang X, Wang Y, Wang L, Liu H, Zhang B, Cao Q, Liu X, Bi S, Lv Y, Wang Q, Zhang S, He M, Tang S, Yao S, Wang C. Arabidopsis PCaP2 Functions as a Linker Between ABA and SA Signals in Plant Water Deficit Tolerance. FRONTIERS IN PLANT SCIENCE 2018; 9:578. [PMID: 29868051 PMCID: PMC5962825 DOI: 10.3389/fpls.2018.00578] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/13/2018] [Indexed: 05/29/2023]
Abstract
Water stress has a major influence on plant growth, development, and productivity. However, the cross-talk networks involved in drought tolerance are not well understood. Arabidopsis PCaP2 is a plasma membrane-associated Ca2+-binding protein. In this study, we employ qRT-PCR and β-glucuronidase (GUS) histochemical staining to demonstrate that PCaP2 expression was strongly induced in roots, cotyledons, true leaves, lateral roots, and whole plants under water deficit conditions. Compared with the wild type (WT) plants, PCaP2-overexpressing (PCaP2-OE) plants displayed enhanced water deficit tolerance in terms of seed germination, seedling growth, and plant survival status. On the contrary, PCaP2 mutation and reduction via PCaP2-RNAi rendered plants more sensitive to water deficit. Furthermore, PCaP2-RNAi and pcap2 seedlings showed shorter root hairs and lower relative water content compared to WT under normal conditions and these phenotypes were exacerbated under water deficit. Additionally, the expression of PCaP2 was strongly induced by exogenous abscisic acid (ABA) and salicylic acid (SA) treatments. PCaP2-OE plants showed insensitive to exogenous ABA and SA treatments, in contrast to the susceptible phenotypes of pcap2 and PCaP2-RNAi. It is well-known that SNF1-related kinase 2s (SnRK2s) and pathogenesis-related (PRs) are major factors that influence plant drought tolerance by ABA- and SA-mediated pathways, respectively. Interestingly, PCaP2 positively regulated the expression of drought-inducible genes (RD29A, KIN1, and KIN2), ABA-mediated drought responsive genes (SnRK2.2, -2.3, -2.6, ABF1, -2, -3, -4), and SA-mediated drought responsive genes (PR1, -2, -5) under water deficit, ABA, or SA treatments. Taken together, our results showed that PCaP2 plays an important and positive role in Arabidopsis water deficit tolerance by involving in response to both ABA and SA signals and regulating root hair growth. This study provides novel insights into the underlying cross-talk mechanisms of plants in response to water deficit stress.
Collapse
Affiliation(s)
- Xianling Wang
- College of Biological Science and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yu Wang
- College of Biological Science and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Lu Wang
- College of Biological Science and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Huan Liu
- College of Biological Science and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Bing Zhang
- College of Biological Science and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Qijiang Cao
- Department of Medicine, HE University School of Clinical Medicine, Shenyang, China
| | - Xinyu Liu
- College of Biological Science and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Shuangtian Bi
- College of Biological Science and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yanling Lv
- College of Biological Science and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Vegetable Research Institute of Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Qiuyang Wang
- College of Biological Science and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Shaobin Zhang
- College of Biological Science and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Ming He
- Vegetable Research Institute of Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Shuang Tang
- College of Biological Science and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Shuo Yao
- College of Biological Science and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Che Wang
- College of Biological Science and Biotechnology, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
16
|
Wang X, Wang L, Wang Y, Liu H, Hu D, Zhang N, Zhang S, Cao H, Cao Q, Zhang Z, Tang S, Song D, Wang C. Arabidopsis PCaP2 Plays an Important Role in Chilling Tolerance and ABA Response by Activating CBF- and SnRK2-Mediated Transcriptional Regulatory Network. FRONTIERS IN PLANT SCIENCE 2018; 9:215. [PMID: 29568301 PMCID: PMC5852069 DOI: 10.3389/fpls.2018.00215] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 02/05/2018] [Indexed: 05/07/2023]
Abstract
Chilling stress affects plant growth and productivity. However, the multi-underlying mechanisms of chilling tolerance are not well understood. Arabidopsis PCaP2 is involved in regulating the dynamic of microtubules (MTs) and F-actin and Ca2+-binding ability. Here, the results showed that the PCaP2 expression was highly induced in roots, cotyledons, true leaves, lateral roots and flowers under cold stress. Compared with the wild type, PCaP2-overexpressing plants displayed the enhanced tolerance, whereas its RNAi and mutant were more sensitive in seed germination, seedling and reproductive growth under chilling stress in Arabidopsis. In addition, PCaP2 was also a positive regulator of ABA signaling pathway by analyzing the expression of PCaP2 and the phenotypes of PCaP2-overexpressing, mutant and RNAi plants under ABA treatment. Interestingly, disruption of PCaP2 inhibited the expression of CBF1, -3 and CBF-target COR genes, while increased the CBF2 expression in response to cold or ABA. Moreover, we found that SnRK2s were involved in cold stress and PCaP2 mutants down-regulated the transcription level of SnRK2.2, -2.3 and SnRK2-mediated downstream genes including ABF2, RD29A, KIN1, KIN2, but up-regulated SnRK2.6, ABF1, -3, -4 in ABA and cold treatments. It is well-accepted that PCaP2 as a Ca2+-binding protein triggers the gene expression to enhance plant chilling tolerance. Our further studies showed that MT destabilizing activity of PCaP2, but not F-actin-severing function, may be involved in chilling stress. Taken together, our results highlight that PCaP2 plays an important role in chilling tolerance and ABA response by triggering the CBF- and SnRK2-meditated transcriptional regulatory pathways, providing novel evidences of underlying mechanisms of multi-pathways in chilling stress.
Collapse
Affiliation(s)
- Xianling Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Lu Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yu Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Huan Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Dan Hu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Ning Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Shaobin Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Huiying Cao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Qijiang Cao
- Department of Medicine, HE University School of Clinical Medicine, Shenyang, China
| | - Zhihong Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Shuang Tang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Dandan Song
- Luoyang High-Tech Zone No. 2 Experimental School, Henan, China
| | - Che Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Che Wang,
| |
Collapse
|
17
|
Uno H, Tanaka-Takada N, Sato R, Maeshima M. Enhancement of cell wall protein SRPP expression during emergent root hair development in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2017; 12:e1368940. [PMID: 28837399 PMCID: PMC5647948 DOI: 10.1080/15592324.2017.1368940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 06/07/2023]
Abstract
SRPP is a protein expressed in seeds and root hairs and is significantly induced in root hairs under phosphate (Pi)-deficient conditions. Root hairs in the knockout mutant srpp-1 display defects, i.e., suppression of cell growth and cell death. Here, we analyzed the expression profile of SRPP during cell elongation of root hairs and compared the transcript levels in several mutants with short root hairs. The mRNA level was increased in wild-type plants and decreased in mutants with short root hairs. Induction of SRPP expression by Pi starvation occurred one or two days later than induction of Pi-deficient sensitive genes, such as PHT1 and PHF1. These results indicate that the expression of SRPP is coordinated with root hair elongation. We hypothesize that SRPP is essential for structural robustness of the cell walls of root hairs.
Collapse
Affiliation(s)
- Hiroshi Uno
- Laboratory of Cell Dynamics, Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Natsuki Tanaka-Takada
- Laboratory of Cell Dynamics, Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, UK
| | - Ryosuke Sato
- Laboratory of Cell Dynamics, Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Masayoshi Maeshima
- Laboratory of Cell Dynamics, Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
18
|
Evolutionary plasticity of plasma membrane interaction in DREPP family proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:686-697. [DOI: 10.1016/j.bbamem.2017.01.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/09/2017] [Accepted: 01/11/2017] [Indexed: 01/10/2023]
|
19
|
Niczyj M, Champagne A, Alam I, Nader J, Boutry M. Expression of a constitutively activated plasma membrane H +-ATPase in Nicotiana tabacum BY-2 cells results in cell expansion. PLANTA 2016; 244:1109-1124. [PMID: 27444008 DOI: 10.1007/s00425-016-2571-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/11/2016] [Indexed: 06/06/2023]
Abstract
MAIN CONCLUSION Increased acidification of the external medium by an activated H + -ATPase results in cell expansion, in the absence of upstream activating signaling. The plasma membrane H+-ATPase couples ATP hydrolysis with proton transport outside the cell, and thus creates an electrochemical gradient, which energizes secondary transporters. According to the acid growth theory, this enzyme is also proposed to play a major role in cell expansion, by acidifying the external medium and so activating enzymes that are involved in cell wall-loosening. However, this theory is still debated. To challenge it, we made use of a plasma membrane H+-ATPase isoform from Nicotiana plumbaginifolia truncated from its C-terminal auto-inhibitory domain (ΔCPMA4), and thus constitutively activated. This protein was expressed in Nicotiana tabacum BY-2 suspension cells using a heat shock inducible promoter. The characterization of several independent transgenic lines showed that the expression of activated ΔCPMA4 resulted in a reduced external pH by 0.3-1.2 units, as well as in an increased H+-ATPase activity by 77-155 % (ATP hydrolysis), or 70-306 % (proton pumping) of isolated plasma membranes. In addition, ΔCPMA4-expressing cells were 17-57 % larger than the wild-type cells and displayed abnormal shapes. A proteomic comparison of plasma membranes isolated from ΔCPMA4-expressing and wild-type cells revealed the altered abundance of several proteins involved in cell wall synthesis, transport, and signal transduction. In conclusion, the data obtained in this work showed that H+-ATPase activation is sufficient to induce cell expansion and identified possible actors which intervene in this process.
Collapse
Affiliation(s)
- Marta Niczyj
- Institute of Life Sciences, University of Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Antoine Champagne
- Institute of Life Sciences, University of Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Iftekhar Alam
- Institute of Life Sciences, University of Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Joseph Nader
- Institute of Life Sciences, University of Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Marc Boutry
- Institute of Life Sciences, University of Louvain, 1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
20
|
Nagata C, Miwa C, Tanaka N, Kato M, Suito M, Tsuchihira A, Sato Y, Segami S, Maeshima M. A novel-type phosphatidylinositol phosphate-interactive, Ca-binding protein PCaP1 in Arabidopsis thaliana: stable association with plasma membrane and partial involvement in stomata closure. JOURNAL OF PLANT RESEARCH 2016; 129:539-50. [PMID: 26979064 DOI: 10.1007/s10265-016-0787-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 11/25/2015] [Indexed: 05/26/2023]
Abstract
The Ca(2+)-binding protein-1 (PCaP1) of Arabidopsis thaliana is a new type protein that binds to phosphatidylinositol phosphates and Ca(2+)-calmodulin complex as well as free Ca(2+). Although biochemical properties, such as binding to ligands and N-myristoylation, have been revealed, the intracellular localization, tissue and cell specificity, integrity of membrane association and physiological roles of PCaP1 are unknown. We investigated the tissue and intracellular distribution of PCaP1 by using transgenic lines expressing PCaP1 linked with a green fluorescence protein (GFP) at the carboxyl terminus of PCaP1. GFP fluorescence was obviously detected in most tissues including root, stem, leaf and flower. In these tissues, PCaP1-GFP signal was observed predominantly in the plasma membrane even under physiological stress conditions but not in other organelles. The fluorescence was detected in the cytosol when the 25-residue N-terminal sequence was deleted from PCaP1 indicating essential contribution of N-myristoylation to the plasma membrane anchoring. Fluorescence intensity of PCaP1-GFP in roots was slightly decreased in seedlings grown in medium supplemented with high concentrations of iron for 1 week and increased in those grown with copper. In stomatal guard cells, PCaP1-GFP was strictly, specifically localized to the plasma membrane at the epidermal-cell side but not at the pore side. A T-DNA insertion mutant line of PCaP1 did not show marked phenotype in a life cycle except for well growth under high CO2 conditions. However, stomata of the mutant line did not close entirely even in high osmolarity, which usually induces stomata closure. These results suggest that PCaP1 is involved in the stomatal movement, especially closure process, in leaves and response to excessive copper in root and leaf as a mineral nutrient as a physiological role.
Collapse
Affiliation(s)
- Chisako Nagata
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Chika Miwa
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Natsuki Tanaka
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Mariko Kato
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Momoe Suito
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Ayako Tsuchihira
- Discovery Research, RaQualia Pharma Inc, Nagoya, 464-8601, Japan
| | - Yori Sato
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Shoji Segami
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Masayoshi Maeshima
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan.
| |
Collapse
|
21
|
Yamada N, Theerawitaya C, Kageyama H, Cha-Um S, Takabe T. Expression of developmentally regulated plasma membrane polypeptide (DREPP2) in rice root tip and interaction with Ca(2+)/CaM complex and microtubule. PROTOPLASMA 2015; 252:1519-1527. [PMID: 25743039 DOI: 10.1007/s00709-015-0781-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/16/2015] [Indexed: 06/04/2023]
Abstract
The cytoplasmic free Ca(2+) could play an important role for salt tolerance in rice root (Oryza sativa L.). Here, we compared the expression profiles of two putative developmentally regulated plasma membrane polypeptides (DREPP1 and DREPP2) in rice roots of salt-tolerant cv. Pokkali and salt-sensitive cv. IR29. The messenger RNA (mRNA) for OsDREPP1 could be detected in all parts of root and did not change upon salt stress, whereas the mRNA for OsDREPP2 was detected only in root tips. The transcript level of OsDREPP2 first disappeared upon salt stress, then recovered in Pokkali, but not recovered in IR29. The gene-encoding OsDREPP2 was cloned from cv. Pokkali and expressed in Escherichia coli, and its biochemical properties were studied. It was found that OsDREPP2 is a Ca(2+)-binding protein and binds also to calmodulin (CaM) as well as microtubules. The mutation of Trp4 and Phe16 in OsDREPP2 to Ala decreased the binding of DREPP2 to Ca(2+)/CaM complex, indicating the N-terminal basic domain is involved for the binding. The binding of OsDREPP2 to microtubules was inhibited by Ca(2+)/CaM complex, while the binding of double-mutant OsDREPP2 protein to microtubules was not inhibited by Ca(2+)/CaM complex. We propose that CaM inhibits the binding of DREPP2 to cortical microtubules, causes the inhibition of microtubule depolymerization, and enhances the cell elongation.
Collapse
MESH Headings
- Calcium/metabolism
- Calmodulin/metabolism
- Cell Shape
- Cloning, Molecular
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Genotype
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Meristem/enzymology
- Meristem/genetics
- Meristem/growth & development
- Microtubules/metabolism
- Mutation
- Oryza/enzymology
- Oryza/genetics
- Oryza/growth & development
- Phenotype
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified/enzymology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/growth & development
- Protein Binding
- Protein Interaction Domains and Motifs
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Salt Tolerance/genetics
- Salt-Tolerant Plants/enzymology
- Salt-Tolerant Plants/genetics
- Salt-Tolerant Plants/growth & development
- Time Factors
Collapse
Affiliation(s)
- Nana Yamada
- Plant Physiology and Biochemistry Laboratory, BIOTEC, Pathumthani, 12120, Thailand
| | | | - Hakuto Kageyama
- Graduate School of Environmental and Human Sciences, Meijo University, Nagoya, 468-8502, Japan
| | - Suriyan Cha-Um
- Plant Physiology and Biochemistry Laboratory, BIOTEC, Pathumthani, 12120, Thailand
| | - Teruhiro Takabe
- Graduate School of Environmental and Human Sciences, Meijo University, Nagoya, 468-8502, Japan.
- Research Institute, Meijo University, Tenpaku-ku, Nagoya, Aichi, 468-8502, Japan.
| |
Collapse
|
22
|
Zhang Y, Kang E, Yuan M, Fu Y, Zhu L. PCaP2 regulates nuclear positioning in growing Arabidopsis thaliana root hairs by modulating filamentous actin organization. PLANT CELL REPORTS 2015; 34:1317-30. [PMID: 25929794 DOI: 10.1007/s00299-015-1789-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 03/23/2015] [Accepted: 03/31/2015] [Indexed: 05/10/2023]
Abstract
PCaP2 plays a key role in maintaining the nucleus at a relatively fixed distance from the apex during root hair growth by modulating actin filaments. During root hair growth, the nucleus localizes at a relatively fixed distance from the apex. In Arabidopsis thaliana, the position of the nucleus is mainly dependent on the configuration of microfilaments (filamentous actin). However, the mechanisms underlying the regulation of actin dynamics and organization for nuclear positioning are largely unknown. In the present study, we demonstrated that plasma membrane-associated Ca(2+) binding protein 2 (PCaP2) influences the position of the nucleus during root hair growth. Abnormal expression of PCaP2 in pcap2 and PCaP2 over-expression plants led to the disorganization of actin filaments, rather than microtubules, in the apex and sub-apical regions of root hairs, which resulted in aberrant root hair growth patterns and misplaced nuclei. Analyses using a PCaP2 mutant protein revealed that actin-severing activity is essential for the function of PCaP2 in root hairs. We demonstrated that PCaP2 plays a key role in maintaining nuclear position in growing root hairs by modulating actin filaments.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | | | | | | | | |
Collapse
|
23
|
Wada Y, Kusano H, Tsuge T, Aoyama T. Phosphatidylinositol phosphate 5-kinase genes respond to phosphate deficiency for root hair elongation in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:426-37. [PMID: 25477067 DOI: 10.1111/tpj.12741] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 11/22/2014] [Accepted: 11/25/2014] [Indexed: 05/07/2023]
Abstract
Plants drastically alter their root system architecture to adapt to different underground growth conditions. During phosphate (Pi) deficiency, most plants including Arabidopsis thaliana enhance the development of lateral roots and root hairs, resulting in bushy and hairy roots. To elucidate the signal pathway specific for the root hair elongation response to Pi deficiency, we investigated the expression of type-B phosphatidylinositol phosphate 5-kinase (PIP5K) genes, as a quantitative factor for root hair elongation in Arabidopsis. At young seedling stages, the PIP5K3 and PIP5K4 genes responded to Pi deficiency in steady-state transcript levels via PHR1-binding sequences (P1BSs) in their upstream regions. Both pip5k3 and pip5k4 single mutants, which exhibit short-root-hair phenotypes, remained responsive to Pi deficiency for root hair elongation; however the pip5k3pip5k4 double mutant exhibited shorter root hairs than the single mutants, and lost responsiveness to Pi deficiency at young seedling stages. In the tactical complementation line in which modified PIP5K3 and PIP5K4 genes with base substitutions in their P1BSs were co-introduced into the double mutant, root hairs of young seedlings had normal lengths under Pi-sufficient conditions, but were not responsive to Pi deficiency. From these results, we conclude that a Pi-deficiency signal is transferred to the pathway for root hair elongation via the PIP5K genes.
Collapse
Affiliation(s)
- Yukika Wada
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | | | | | | |
Collapse
|
24
|
Abstract
Microtubules (MTs) are highly conserved polar polymers that are key elements of the eukaryotic cytoskeleton and are essential for various cell functions. αβ-tubulin, a heterodimer containing one structural GTP and one hydrolysable and exchangeable GTP, is the building block of MTs and is formed by the sequential action of several molecular chaperones. GTP hydrolysis in the MT lattice is mechanistically coupled with MT growth, thus giving MTs a metastable and dynamic nature. MTs adopt several distinct higher-order organizations that function in cell division and cell morphogenesis. Small molecular weight compounds that bind tubulin are used as herbicides and as research tools to investigate MT functions in plant cells. The de novo formation of MTs in cells requires conserved γ-tubulin-containing complexes and targeting/activating regulatory proteins that contribute to the geometry of MT arrays. Various MT regulators and tubulin modifications control the dynamics and organization of MTs throughout the cell cycle and in response to developmental and environmental cues. Signaling pathways that converge on the regulation of versatile MT functions are being characterized.
Collapse
Affiliation(s)
- Takashi Hashimoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan
- Address correspondence to
| |
Collapse
|
25
|
Tanaka N, Kato M, Tomioka R, Kurata R, Fukao Y, Aoyama T, Maeshima M. Characteristics of a root hair-less line of Arabidopsis thaliana under physiological stresses. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1497-512. [PMID: 24501179 PMCID: PMC3967087 DOI: 10.1093/jxb/eru014] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The plasma membrane-associated Ca(2+)-binding protein-2 of Arabidopsis thaliana is involved in the growth of root hair tips. Several transgenic lines that overexpress the 23 residue N-terminal domain of this protein under the control of the root hair-specific EXPANSIN A7 promoter lack root hairs completely. The role of root hairs under normal and stress conditions was examined in one of these root hair-less lines (NR23). Compared with the wild type, NR23 showed a 47% reduction in water absorption, decreased drought tolerance, and a lower ability to adapt to heat. Growth of NR23 was suppressed in media deficient in phosphorus, iron, calcium, zinc, copper, or potassium. Also, the content of an individual mineral in NR23 grown in normal medium, or in medium lacking a specific mineral, was relatively low. In wild-type plants, the primary and lateral roots produce numerous root hairs that become elongated under phosphate-deficient conditions; NR23 did not produce root hairs. Although several isoforms of the plasma membrane phosphate transporters including PHT1;1-PHT1;6 were markedly induced after growth in phosphate-deficient medium, the levels induced in NR23 were less than half those observed in the wild type. In phosphate-deficient medium, the amounts of acid phosphatase, malate, and citrate secreted from NR23 roots were 38, 9, and 16% of the levels secreted from wild-type roots. The present results suggest that root hairs play significant roles in the absorption of water and several minerals, secretion of acid phosphatase(s) and organic acids, and in penetration of the primary roots into gels.
Collapse
Affiliation(s)
- Natsuki Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464–8601, Japan
| | - Mariko Kato
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Rie Tomioka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464–8601, Japan
| | - Rie Kurata
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Yoichiro Fukao
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Takashi Aoyama
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Masayoshi Maeshima
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464–8601, Japan
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
26
|
Rodrigues RB, Sabat G, Minkoff BB, Burch HL, Nguyen TT, Sussman MR. Expression of a translationally fused TAP-tagged plasma membrane proton pump in Arabidopsis thaliana. Biochemistry 2014; 53:566-78. [PMID: 24397334 PMCID: PMC3985734 DOI: 10.1021/bi401096m] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The Arabidopsis thaliana plasma
membrane proton ATPase genes, AHA1 and AHA2, are the two most highly expressed isoforms of an 11 gene family
and are collectively essential for embryo development. We report the
translational fusion of a tandem affinity-purification tag to the
5′ end of the AHA1 open reading frame in a genomic clone. Stable
expression of TAP-tagged AHA1 in Arabidopsis rescues the embryonic lethal phenotype of endogenous double aha1/aha2 knockdowns. Western blots of SDS-PAGE and Blue
Native gels show enrichment of AHA1 in plasma membrane fractions and
indicate a hexameric quaternary structure. TAP-tagged AHA1 rescue
lines exhibited reduced vertical root growth. Analysis of the plasma
membrane and soluble proteomes identified several plasma membrane-localized
proteins with alterred abundance in TAP-tagged AHA1 rescue lines compared
to wild type. Using affinity-purification mass spectrometry, we uniquely
identified two additional AHA isoforms, AHA9 and AHA11, which copurified
with TAP-tagged AHA1. In conclusion, we have generated transgenic Arabidopsis lines in which a TAP-tagged AHA1 transgene
has complemented all essential endogenous AHA1 and AHA2 functions
and have shown that these plants can be used to purify AHA1 protein
and to identify in planta interacting proteins by
mass spectrometry.
Collapse
Affiliation(s)
- Rachel B Rodrigues
- Department of Biochemistry, Biotechnology Center, University of Wisconsin , 425 Henry Mall, Madison, Wisconsin 53706, United States
| | | | | | | | | | | |
Collapse
|
27
|
Hamada T. Microtubule organization and microtubule-associated proteins in plant cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 312:1-52. [PMID: 25262237 DOI: 10.1016/b978-0-12-800178-3.00001-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Plants have unique microtubule (MT) arrays, cortical MTs, preprophase band, mitotic spindle, and phragmoplast, in the processes of evolution. These MT arrays control the directions of cell division and expansion especially in plants and are essential for plant morphogenesis and developments. Organizations and functions of these MT arrays are accomplished by diverse MT-associated proteins (MAPs). This review introduces 10 of conserved MAPs in eukaryote such as γ-TuC, augmin, katanin, kinesin, EB1, CLASP, MOR1/MAP215, MAP65, TPX2, formin, and several plant-specific MAPs such as CSI1, SPR2, MAP70, WVD2/WDL, RIP/MIDD, SPR1, MAP18/PCaP, EDE1, and MAP190. Most of the studies cited in this review have been analyzed in the particular model plant, Arabidopsis thaliana. The significant knowledge of A. thaliana is the important established base to understand MT organizations and functions in plants.
Collapse
Affiliation(s)
- Takahiro Hamada
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan.
| |
Collapse
|