1
|
Gismondi M, Strologo L, Gabilondo J, Budde C, Drincovich MF, Bustamante C. Characterization of ZAT12 protein from Prunus persica: role in fruit chilling injury tolerance and identification of gene targets. PLANTA 2024; 261:14. [PMID: 39672956 DOI: 10.1007/s00425-024-04593-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024]
Abstract
MAIN CONCLUSION PpZAT12, a transcription factor differentially expressed in peach varieties with distinct susceptibility tochilling injury (CI), is a potential candidate gene for CI tolerance by regulating several identified gene targets. ZAT (zinc finger of Arabidopsis thaliana) proteins play roles in multiple abiotic stress tolerance in Arabidopsis and other species; however, there are few reports on these transcription factors (TFs) in fruit crops. This study aimed to evaluate PpZAT12, a C2H2 TF up-regulated in peach fruit by a heat treatment applied before postharvest cold storage for reducing chilling injury (CI) symptoms. Here, the expression of PpZAT12 in different tissues and fruits subjected to either postharvest heat or cold treatments, was evaluated in peach varieties with differential susceptibility to develop CI. PpZAT12 increased by cold storage in CI-resistant cultivars ('Elegant Lady' and 'Rojo 2'), while it was not modified in a cultivar susceptible to develop CI ('Flordaking'). Besides, we expressed PpZAT12 in Arabidopsis (35S::PpZAT12) and found that these plants show impaired plant growth and development, rendering small plants with senescence delay and aborted seeds. We applied a proteomic approach to decipher the peptides responding to PpZAT12 in Arabidopsis and found 348 differential expressed proteins (DEPs) relative to the wild type. Besides, comparing the DEPs between Arabidopsis plants expressing PpZAT12 or AtZAT12 (35S::AtZAT12) we found common and specific responses to these TFs. Based on the proteomic information obtained here and published data about AtZAT12, we searched ZAT12-targets in peach allowing the identification of a putative ZAT12 regulon in this species. The identified peach ZAT12-protein targets could underlie the differential susceptibility to CI among different peach varieties and can be used as future targets to improve adaptation to refrigeration in fleshy fruits.
Collapse
Affiliation(s)
- Mauro Gismondi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531 (2000), Rosario, Argentina.
| | - Laura Strologo
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531 (2000), Rosario, Argentina
| | - Julieta Gabilondo
- Estación Experimental San Pedro, Instituto Nacional de Tecnología Agropecuaria (INTA), Ruta Nacional No 9 Km 170, San Pedro, Argentina
| | - Claudio Budde
- Estación Experimental San Pedro, Instituto Nacional de Tecnología Agropecuaria (INTA), Ruta Nacional No 9 Km 170, San Pedro, Argentina
| | - María Fabiana Drincovich
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531 (2000), Rosario, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Claudia Bustamante
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531 (2000), Rosario, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
2
|
Lu Z, Su J, Fan H, Zhang X, Wang H, Guan Z, Fang W, Chen F, Zhang F. Insights into the genetic architecture of the reciprocal interspecific hybrids derived from Chrysanthemum dichrum and C. nankingense. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:75. [PMID: 39507485 PMCID: PMC11534950 DOI: 10.1007/s11032-024-01518-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
Chrysanthemums are versatile ornamental plants, and improving leaf and flower traits is an important breeding objective. Distant hybridization is a powerful method for plant breeding and genetic improvement, whereas the genetic basis in interspecific F1 progeny of chrysanthemums needs to be better understood for breeding purposes. In this study, the leaf and floral traits of the 273 reciprocal interspecific F1 hybrids of diploid C. dichrum (YSJ) and C. nankingense (JHN) were analyzed along with their SNP-derived genetic structure to elucidate the influence of differences in genetic background between the parents on the hybrid performance. We then performed a genome-wide association analysis (GWAS) to reveal the investigated traits' genomic loci and candidate genes. Considerable phenotypic variation (8.81% ~ 55.78%) and heterosis with transgressive segregation in both directions were observed in the reciprocal progenies. We observed a higher level of phenotypic variation in JHN × YSJ rather than in YSJ × JHN. Also, a significant reciprocal effect was observed for most examined traits. Based on the SNP data, we separated the hybrid progenies into three groups (I, II, and III), albeit imperfectly dependent on the cross directions, except for some reciprocal hybrids clustering into group II. Group I from YSJ × JHN and Group III from YSJ × JHN differed with contrasting F ST and π ratios, indicating the genetic changes in the reciprocal populations. The outcome of GWAS via the IIIVmrMLM method detected 339 significant quantitative trait nucleotides (QTNs) and 40 suggestive QTNs, and the phenotypic variation explained by a single QTN ranged from 0.26% to 7.42%. Within 100 kb upstream and downstream of the important QTNs, we discovered 49 known genes and 39 new candidate genes for the investigated leaf and floral traits. Our study provides profound insights into the genetic architecture of reciprocal hybrid progenies of chrysanthemum species, facilitating future breeding activities. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01518-0.
Collapse
Affiliation(s)
- Zhaowen Lu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Jiangshuo Su
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Honghong Fan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xuefeng Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Haibin Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Zhiyong Guan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Weimin Fang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Fei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| |
Collapse
|
3
|
Sainz MM, Sotelo-Silveira M, Filippi CV, Zardo S. Legume-rhizobia symbiosis: Translatome analysis. Genet Mol Biol 2024; 47Suppl 1:e20230284. [PMID: 38954532 PMCID: PMC11223499 DOI: 10.1590/1678-4685-gmb-2023-0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/31/2024] [Indexed: 07/04/2024] Open
Abstract
Leguminous plants can establish endosymbiotic relationships with nitrogen-fixing soil rhizobacteria. Bacterial infection and nodule organogenesis are two independent but highly coordinated genetic programs that are active during this interaction. These genetic programs can be regulated along all the stages of gene expression. Most of the studies, for both eukaryotes and prokaryotes, focused on the transcriptional regulation level determining the abundance of mRNAs. However, it has been demonstrated that mRNA levels only sometimes correlate with the abundance or activity of the coded proteins. For this reason, in the past two decades, interest in the role of translational control of gene expression has increased, since the subset of mRNA being actively translated outperforms the information gained only by the transcriptome. In the case of legume-rhizobia interactions, the study of the translatome still needs to be explored further. Therefore, this review aims to discuss the methodologies for analyzing polysome-associated mRNAs at the genome-scale and their contribution to studying translational control to understand the complexity of this symbiotic interaction. Moreover, the Dual RNA-seq approach is discussed for its relevance in the context of a symbiotic nodule, where intricate multi-species gene expression networks occur.
Collapse
Affiliation(s)
- María Martha Sainz
- Universidad de la República, Facultad de Agronomía, Departamento
de Biología Vegetal, Laboratorio de Bioquímica, Montevideo, Uruguay
| | - Mariana Sotelo-Silveira
- Universidad de la República, Facultad de Agronomía, Departamento
de Biología Vegetal, Laboratorio de Bioquímica, Montevideo, Uruguay
| | - Carla V. Filippi
- Universidad de la República, Facultad de Agronomía, Departamento
de Biología Vegetal, Laboratorio de Bioquímica, Montevideo, Uruguay
| | - Sofía Zardo
- Universidad de la República, Facultad de Agronomía, Departamento
de Biología Vegetal, Laboratorio de Bioquímica, Montevideo, Uruguay
| |
Collapse
|
4
|
Xu F, Wang L, Li Y, Shi J, Staiger D, Yu F. Phase separation of GRP7 facilitated by FERONIA-mediated phosphorylation inhibits mRNA translation to modulate plant temperature resilience. MOLECULAR PLANT 2024; 17:460-477. [PMID: 38327052 DOI: 10.1016/j.molp.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 01/07/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Changes in ambient temperature profoundly affect plant growth and performance. Therefore, the molecular basis of plant acclimation to temperature fluctuation is of great interest. In this study, we discovered that GLYCINE-RICH RNA-BINDING PROTEIN 7 (GRP7) contributes to cold and heat tolerance in Arabidopsis thaliana. We found that exposure to a warm temperature rapidly induces GRP7 condensates in planta, which can be reversed by transfer to a lower temperature. Cell biology and biochemical assays revealed that GRP7 undergoes liquid-liquid phase separation (LLPS) in vivo and in vitro. LLPS of GRP7 in the cytoplasm contributes to the formation of stress granules that recruit RNA, along with the translation machinery component eukaryotic initiation factor 4E1 (eIF4E1) and the mRNA chaperones COLD SHOCK PROTEIN 1 (CSP1) and CSP3, to inhibit translation. Moreover, natural variations in GRP7 affecting the residue phosphorylated by the receptor kinase FERONIA alter its capacity to undergo LLPS and correlate with the adaptation of some Arabidopsis accessions to a wider temperature range. Taken together, our findings illustrate the role of translational control mediated by GRP7 LLPS to confer plants with temperature resilience.
Collapse
Affiliation(s)
- Fan Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, P.R. China
| | - Long Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, P.R. China; State Key Laboratory of Hybrid Rice, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, P.R. China
| | - Yingbin Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, P.R. China
| | - Junfeng Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, P.R. China
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, P.R. China.
| |
Collapse
|
5
|
Yang Y, Zhou T, Xu J, Wang Y, Pu Y, Qu Y, Sun G. Genome-Wide Identification and Expression Analysis Unveil the Involvement of the Cold Shock Protein (CSP) Gene Family in Cotton Hypothermia Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:643. [PMID: 38475489 DOI: 10.3390/plants13050643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/10/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024]
Abstract
Cold shock proteins (CSPs) are DNA/RNA binding proteins with crucial regulatory roles in plant growth, development, and stress responses. In this study, we employed bioinformatics tools to identify and analyze the physicochemical properties, conserved domains, gene structure, phylogenetic relationships, cis-acting elements, subcellular localization, and expression patterns of the cotton CSP gene family. A total of 62 CSP proteins were identified across four cotton varieties (Gossypium arboreum, Gossypium raimondii, Gossypium barbadense, Gossypium hirsutum) and five plant varieties (Arabidopsis thaliana, Brassica chinensis, Camellia sinensis, Triticum aestivum, and Oryza sativa). Phylogenetic analysis categorized cotton CSP proteins into three evolutionary branches, revealing similar gene structures and motif distributions within each branch. Analysis of gene structural domains highlighted the conserved CSD and CCHC domains across all cotton CSP families. Subcellular localization predictions indicated predominant nuclear localization for CSPs. Examination of cis-elements in gene promoters revealed a variety of elements responsive to growth, development, light response, hormones, and abiotic stresses, suggesting the potential regulation of the cotton CSP family by different hormones and their involvement in diverse stress responses. RT-qPCR results suggested that GhCSP.A1, GhCSP.A2, GhCSP.A3, and GhCSP.A7 may play roles in cotton's response to low-temperature stress. In conclusion, our findings underscore the significant role of the CSP gene family in cotton's response to low-temperature stress, providing a foundational basis for further investigations into the functional aspects and molecular mechanisms of cotton's response to low temperatures.
Collapse
Affiliation(s)
- Yejun Yang
- College of Agronomy, Shanxi Agricultural University, Jinzhong 030800, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ting Zhou
- College of Agronomy, Shanxi Agricultural University, Jinzhong 030800, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianglin Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yongqiang Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yuanchun Pu
- Institute of Western Agriculture, The Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Yunfang Qu
- College of Agronomy, Shanxi Agricultural University, Jinzhong 030800, China
| | - Guoqing Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
6
|
Dai X, Zhang Y, Xu X, Ran M, Zhang J, Deng K, Ji G, Xiao L, Zhou X. Transcriptome and functional analysis revealed the intervention of brassinosteroid in regulation of cold induced early flowering in tobacco. FRONTIERS IN PLANT SCIENCE 2023; 14:1136884. [PMID: 37063233 PMCID: PMC10102362 DOI: 10.3389/fpls.2023.1136884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Cold environmental conditions may often lead to the early flowering of plants, and the mechanism by cold-induced flowering remains poorly understood. Microscopy analysis in this study demonstrated that cold conditioning led to early flower bud differentiation in two tobacco strains and an Agilent Tobacco Gene Expression microarray was adapted for transcriptomic analysis on the stem tips of cold treated tobacco to gain insight into the molecular process underlying flowering in tobacco. The transcriptomic analysis showed that cold treatment of two flue-cured tobacco varieties (Xingyan 1 and YunYan 85) yielded 4176 and 5773 genes that were differentially expressed, respectively, with 2623 being commonly detected. Functional distribution revealed that the differentially expressed genes (DEGs) were mainly enriched in protein metabolism, RNA, stress, transport, and secondary metabolism. Genes involved in secondary metabolism, cell wall, and redox were nearly all up-regulated in response to the cold conditioning. Further analysis demonstrated that the central genes related to brassinosteroid biosynthetic pathway, circadian system, and flowering pathway were significantly enhanced in the cold treated tobacco. Phytochemical measurement and qRT-PCR revealed an increased accumulation of brassinolide and a decreased expression of the flowering locus c gene. Furthermore, we found that overexpression of NtBRI1 could induce early flowering in tobacco under normal condition. And low-temperature-induced early flowering in NtBRI1 overexpression plants were similar to that of normal condition. Consistently, low-temperature-induced early flowering is partially suppressed in NtBRI1 mutant. Together, the results suggest that cold could induce early flowering of tobacco by activating brassinosteroid signaling.
Collapse
Affiliation(s)
- Xiumei Dai
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Yan Zhang
- Chongqing Tobacco Science Research Institute, Chongqing, China
| | - Xiaohong Xu
- Chongqing Tobacco Science Research Institute, Chongqing, China
| | - Mao Ran
- Chongqing Tobacco Science Research Institute, Chongqing, China
| | - Jiankui Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Kexuan Deng
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Guangxin Ji
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Lizeng Xiao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Xue Zhou
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| |
Collapse
|
7
|
Wang L, Xu F, Yu F. Two environmental signal-driven RNA metabolic processes: Alternative splicing and translation. PLANT, CELL & ENVIRONMENT 2023; 46:718-732. [PMID: 36609800 DOI: 10.1111/pce.14537] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Plants live in fixed locations and have evolved adaptation mechanisms that integrate multiple responses to various environmental signals. Among the different components of these response pathways, receptors/sensors represent nodes that recognise environmental signals. Additionally, RNA metabolism plays an essential role in the regulation of gene expression and protein synthesis. With the development of RNA biotechnology, recent advances have been made in determining the roles of RNA metabolism in response to different environmental signals-especially the roles of alternative splicing and translation. In this review, we discuss recent progress in research on how the environmental adaptation mechanisms in plants are affected at the posttranscriptional level. These findings improve our understanding of the mechanism through which plants adapt to environmental changes by regulating the posttranscriptional level and are conducive for breeding stress-tolerant plants to cope with dynamic and rapidly changing environments.
Collapse
Affiliation(s)
- Long Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
| | - Fan Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| |
Collapse
|
8
|
RNA-binding proteins and their role in translational regulation in plants. Essays Biochem 2022; 66:87-97. [PMID: 35612383 DOI: 10.1042/ebc20210069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 12/16/2022]
Abstract
Translation is a fundamental process for life that needs to be finely adapted to the energetical, developmental and environmental conditions; however, the molecular mechanisms behind such adaptation are not yet fully understood. By directly recognizing and binding to cis-elements present in their target mRNAs, RBPs govern all post-transcriptional regulatory processes. They orchestrate the balance between mRNA stability, storage, decay, and translation of their client mRNAs, playing a crucial role in the modulation of gene expression. In the last years exciting discoveries have been made regarding the roles of RBPs in fine-tuning translation. In this review, we focus on how these RBPs recognize their targets and modulate their translation, highlighting the complex and diverse molecular mechanisms implicated. Since the repertoire of RBPs keeps growing, future research promises to uncover new fascinating means of translational modulation, and thus, of gene expression.
Collapse
|
9
|
Sreeratree J, Butsayawarapat P, Chaisan T, Somta P, Juntawong P. RNA-Seq Reveals Waterlogging-Triggered Root Plasticity in Mungbean Associated with Ethylene and Jasmonic Acid Signal Integrators for Root Regeneration. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070930. [PMID: 35406910 PMCID: PMC9002673 DOI: 10.3390/plants11070930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 05/26/2023]
Abstract
Global climate changes increase the frequency and intensity of heavy precipitation events, which result in flooding or soil waterlogging. One way to overcome these low-oxygen stresses is via modifying the plant root system to improve internal aeration. Here, we used a comparative RNA-seq based transcriptomic approach to elucidate the molecular mechanisms of waterlogging-triggered root plasticity in mungbean (Vigna radiata), a major grain legume cultivated in Asia. Two mungbean varieties with contrasting waterlogging tolerance due to the plasticity of the root system architecture were subjected to short-term and long-term waterlogging. Then, RNA-seq was performed. Genes highly expressed in both genotypes under short-term waterlogging are related to glycolysis and fermentation. Under long-term waterlogging, the expression of these genes was less induced in the tolerant variety, suggesting it had effectively adapted to waterlogging via enhancing root plasticity. Remarkably, under short-term waterlogging, the expression of several transcription factors that serve as integrators for ethylene and jasmonic acid signals controlling root stem cell development was highly upregulated only in the tolerant variety. Sequentially, root development-related genes were more expressed in the tolerant variety under long-term waterlogging. Our findings suggest that ethylene and jasmonic acids may contribute to waterlogging-triggered root plasticity by relaying environmental signals to reprogram root regeneration. This research provides the basis for the breeding and genetic engineering of waterlogging-tolerant crops in the future.
Collapse
Affiliation(s)
- Jaruwan Sreeratree
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (J.S.); (P.B.)
| | - Pimprapai Butsayawarapat
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (J.S.); (P.B.)
| | - Tanapon Chaisan
- Department of Agronomy, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand;
| | - Prakit Somta
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand;
| | - Piyada Juntawong
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (J.S.); (P.B.)
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| |
Collapse
|
10
|
Li C, Hou N, Fang N, He J, Ma Z, Ma F, Guan Q, Li X. Cold shock protein 3 plays a negative role in apple drought tolerance by regulating oxidative stress response. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:83-92. [PMID: 34627025 DOI: 10.1016/j.plaphy.2021.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/12/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
As RNA chaperones, cold shock proteins (CSPs) are essential for cold adaptation. Although the functions of CSPs in cold response have been demonstrated in several species, the roles of CSPs in response to drought are largely unknown. Here, we demonstrated that MdCSP3, a downstream target gene of MdMYB88 and MdMYB124, contributes to drought tolerance in apple (Malus × domestica). MdCSP3 responds to various abiotic stresses, including drought, cold, heat, and salt stress. Compared with non-transgenic apple GL-3, the MdCSP3 overexpressing plants exhibit significantly lower drought resistance and a reduced capacity for ROS scavenging by the regulation of antioxidant enzymes SOD, CAT, and POD. Additionally, RNA-seq data shows that MdCSP3 regulates expression of genes involved in oxidative stress response. Taken together, our results demonstrate the functions of MdCSP3 in apple drought tolerance, and this finding provides a new direction for breeding of drought resistant apple.
Collapse
Affiliation(s)
- Chaoshuo Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Nan Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Nan Fang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Ziqing Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| | - Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
11
|
Salazar-Díaz K, Aquino-Luna M, Hernández-Lucero E, Nieto-Rivera B, Pulido-Torres MA, Jorge-Pérez JH, Gavilanes-Ruiz M, Dinkova TD. Arabidopsis thaliana eIF4E1 and eIF(iso)4E Participate in Cold Response and Promote Translation of Some Stress-Related mRNAs. FRONTIERS IN PLANT SCIENCE 2021; 12:698585. [PMID: 34659280 PMCID: PMC8514651 DOI: 10.3389/fpls.2021.698585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Plant defense and adaptation to adverse environmental conditions rely on gene expression control, such as mRNA transcription, processing, stability, and translation. Sudden temperature changes are common in the era of global warming; thus, understanding plant acclimation responses at the molecular level becomes imperative. mRNA translation initiation regulation has a pivotal role in achieving the synthesis of the appropriate battery of proteins needed to cope with temperature stress. In this study, we analyzed the role of translation initiation factors belonging to the eIF4E family in Arabidopsis acclimation to cold temperatures and freezing tolerance. Using knockout (KO) and overexpressing mutants of AteIF4E1 or AteIF(iso)4E, we found that AteIF4E1 but not AteIF(iso)4E overexpressing lines displayed enhanced tolerance to freezing without previous acclimation at 4°C. However, KO mutant lines, eif(iso)4e-1 and eif4e1-KO, were more sensitive to the stress. Cold acclimation in wild-type plants was accompanied by increased levels of eIF4E1 and eIF(iso)4E transcript levels, polysomes (P) enrichment, and shifts of these factors from translationally non-active to active fractions. Transcripts, previously found as candidates for eIF(iso)4E or eIF4E1 selective translation, changed their distribution in both P and total RNA in the presence of cold. Some of these transcripts changed their polysomal distribution in the mutant and one eIF4E1 overexpressing line. According to this, we propose a role of eIF4E1 and eIF(iso)4E in cold acclimation and freezing tolerance by regulating the expression of stress-related genes.
Collapse
|
12
|
Martinez-Seidel F, Beine-Golovchuk O, Hsieh YC, Eshraky KE, Gorka M, Cheong BE, Jimenez-Posada EV, Walther D, Skirycz A, Roessner U, Kopka J, Pereira Firmino AA. Spatially Enriched Paralog Rearrangements Argue Functionally Diverse Ribosomes Arise during Cold Acclimation in Arabidopsis. Int J Mol Sci 2021; 22:6160. [PMID: 34200446 PMCID: PMC8201131 DOI: 10.3390/ijms22116160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/23/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022] Open
Abstract
Ribosome biogenesis is essential for plants to successfully acclimate to low temperature. Without dedicated steps supervising the 60S large subunits (LSUs) maturation in the cytosol, e.g., Rei-like (REIL) factors, plants fail to accumulate dry weight and fail to grow at suboptimal low temperatures. Around REIL, the final 60S cytosolic maturation steps include proofreading and assembly of functional ribosomal centers such as the polypeptide exit tunnel and the P-Stalk, respectively. In consequence, these ribosomal substructures and their assembly, especially during low temperatures, might be changed and provoke the need for dedicated quality controls. To test this, we blocked ribosome maturation during cold acclimation using two independent reil double mutant genotypes and tested changes in their ribosomal proteomes. Additionally, we normalized our mutant datasets using as a blank the cold responsiveness of a wild-type Arabidopsis genotype. This allowed us to neglect any reil-specific effects that may happen due to the presence or absence of the factor during LSU cytosolic maturation, thus allowing us to test for cold-induced changes that happen in the early nucleolar biogenesis. As a result, we report that cold acclimation triggers a reprogramming in the structural ribosomal proteome. The reprogramming alters the abundance of specific RP families and/or paralogs in non-translational LSU and translational polysome fractions, a phenomenon known as substoichiometry. Next, we tested whether the cold-substoichiometry was spatially confined to specific regions of the complex. In terms of RP proteoforms, we report that remodeling of ribosomes after a cold stimulus is significantly constrained to the polypeptide exit tunnel (PET), i.e., REIL factor binding and functional site. In terms of RP transcripts, cold acclimation induces changes in RP families or paralogs that are significantly constrained to the P-Stalk and the ribosomal head. The three modulated substructures represent possible targets of mechanisms that may constrain translation by controlled ribosome heterogeneity. We propose that non-random ribosome heterogeneity controlled by specialized biogenesis mechanisms may contribute to a preferential or ultimately even rigorous selection of transcripts needed for rapid proteome shifts and successful acclimation.
Collapse
Affiliation(s)
- Federico Martinez-Seidel
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia;
| | - Olga Beine-Golovchuk
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
- Heidelberg University, Biochemie-Zentrum, Nuclear Pore Complex and Ribosome Assembly, 69120 Heidelberg, Germany
| | - Yin-Chen Hsieh
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
- Institute for Arctic and Marine Biology, UiT Arctic University of Norway, 9037 Tromsø, Norway
| | - Kheloud El Eshraky
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| | - Michal Gorka
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| | - Bo-Eng Cheong
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia;
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Malaysia
| | - Erika V. Jimenez-Posada
- Grupo de Biotecnología-Productos Naturales, Universidad Tecnológica de Pereira, Pereira 660003, Colombia;
- Emerging Infectious Diseases and Tropical Medicine Research Group—Sci-Help, Pereira 660009, Colombia
| | - Dirk Walther
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| | - Aleksandra Skirycz
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| | - Ute Roessner
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia;
| | - Joachim Kopka
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| | - Alexandre Augusto Pereira Firmino
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| |
Collapse
|
13
|
Ma L, Cheng K, Li J, Deng Z, Zhang C, Zhu H. Roles of Plant Glycine-Rich RNA-Binding Proteins in Development and Stress Responses. Int J Mol Sci 2021; 22:ijms22115849. [PMID: 34072567 PMCID: PMC8198583 DOI: 10.3390/ijms22115849] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 01/02/2023] Open
Abstract
In recent years, much progress has been made in elucidating the functional roles of plant glycine-rich RNA-binding proteins (GR-RBPs) during development and stress responses. Canonical GR-RBPs contain an RNA recognition motif (RRM) or a cold-shock domain (CSD) at the N-terminus and a glycine-rich domain at the C-terminus, which have been associated with several different RNA processes, such as alternative splicing, mRNA export and RNA editing. However, many aspects of GR-RBP function, the targeting of their RNAs, interacting proteins and the consequences of the RNA target process are not well understood. Here, we discuss recent findings in the field, newly defined roles for GR-RBPs and the actions of GR-RBPs on target RNA metabolism.
Collapse
Affiliation(s)
- Liqun Ma
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.M.); (K.C.); (J.L.); (Z.D.)
| | - Ke Cheng
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.M.); (K.C.); (J.L.); (Z.D.)
| | - Jinyan Li
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.M.); (K.C.); (J.L.); (Z.D.)
| | - Zhiqi Deng
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.M.); (K.C.); (J.L.); (Z.D.)
| | - Chunjiao Zhang
- Supervision, Inspection & Testing Center of Agricultural Products Quality, Ministry of Agriculture and Rural Affairs, Beijing 100083, China;
| | - Hongliang Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.M.); (K.C.); (J.L.); (Z.D.)
- Correspondence:
| |
Collapse
|
14
|
Burjoski V, Reddy ASN. The Landscape of RNA-Protein Interactions in Plants: Approaches and Current Status. Int J Mol Sci 2021; 22:2845. [PMID: 33799602 PMCID: PMC7999938 DOI: 10.3390/ijms22062845] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 12/28/2022] Open
Abstract
RNAs transmit information from DNA to encode proteins that perform all cellular processes and regulate gene expression in multiple ways. From the time of synthesis to degradation, RNA molecules are associated with proteins called RNA-binding proteins (RBPs). The RBPs play diverse roles in many aspects of gene expression including pre-mRNA processing and post-transcriptional and translational regulation. In the last decade, the application of modern techniques to identify RNA-protein interactions with individual proteins, RNAs, and the whole transcriptome has led to the discovery of a hidden landscape of these interactions in plants. Global approaches such as RNA interactome capture (RIC) to identify proteins that bind protein-coding transcripts have led to the identification of close to 2000 putative RBPs in plants. Interestingly, many of these were found to be metabolic enzymes with no known canonical RNA-binding domains. Here, we review the methods used to analyze RNA-protein interactions in plants thus far and highlight the understanding of plant RNA-protein interactions these techniques have provided us. We also review some recent protein-centric, RNA-centric, and global approaches developed with non-plant systems and discuss their potential application to plants. We also provide an overview of results from classical studies of RNA-protein interaction in plants and discuss the significance of the increasingly evident ubiquity of RNA-protein interactions for the study of gene regulation and RNA biology in plants.
Collapse
Affiliation(s)
| | - Anireddy S. N. Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA;
| |
Collapse
|
15
|
Fonouni-Farde C, Ariel F, Crespi M. Plant Long Noncoding RNAs: New Players in the Field of Post-Transcriptional Regulations. Noncoding RNA 2021; 7:12. [PMID: 33671131 PMCID: PMC8005961 DOI: 10.3390/ncrna7010012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 02/08/2023] Open
Abstract
The first reference to the "C-value paradox" reported an apparent imbalance between organismal genome size and morphological complexity. Since then, next-generation sequencing has revolutionized genomic research and revealed that eukaryotic transcriptomes contain a large fraction of non-protein-coding components. Eukaryotic genomes are pervasively transcribed and noncoding regions give rise to a plethora of noncoding RNAs with undeniable biological functions. Among them, long noncoding RNAs (lncRNAs) seem to represent a new layer of gene expression regulation, participating in a wide range of molecular mechanisms at the transcriptional and post-transcriptional levels. In addition to their role in epigenetic regulation, plant lncRNAs have been associated with the degradation of complementary RNAs, the regulation of alternative splicing, protein sub-cellular localization, the promotion of translation and protein post-translational modifications. In this review, we report and integrate numerous and complex mechanisms through which long noncoding transcripts regulate post-transcriptional gene expression in plants.
Collapse
Affiliation(s)
- Camille Fonouni-Farde
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Bat 630, 91192 Gif sur Yvette, France;
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Bat 630, 91192 Gif sur Yvette, France
| | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000 Santa Fe, Argentina;
| | - Martin Crespi
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Bat 630, 91192 Gif sur Yvette, France;
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Bat 630, 91192 Gif sur Yvette, France
| |
Collapse
|
16
|
Yu H, Kong X, Huang H, Wu W, Park J, Yun DJ, Lee BH, Shi H, Zhu JK. STCH4/REIL2 Confers Cold Stress Tolerance in Arabidopsis by Promoting rRNA Processing and CBF Protein Translation. Cell Rep 2021; 30:229-242.e5. [PMID: 31914389 DOI: 10.1016/j.celrep.2019.12.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/29/2019] [Accepted: 12/04/2019] [Indexed: 12/20/2022] Open
Abstract
Plants respond to cold stress by inducing the expression of transcription factors that regulate downstream genes to confer tolerance to freezing. We screened an Arabidopsis transfer DNA (T-DNA) insertion library and identified a cold-hypersensitive mutant, which we named stch4 (sensitive to chilling 4). STCH4/REIL2 encodes a ribosomal biogenesis factor that is upregulated upon cold stress. Overexpression of STCH4 confers chilling and freezing tolerance in Arabidopsis. The stch4 mutation reduces CBF protein levels and thus delayed the induction of C-repeat-binding factor (CBF) regulon genes. Ribosomal RNA processing is reduced in stch4 mutants, especially under cold stress. STCH4 associates with multiple ribosomal proteins, and these interactions are modulated by cold stress. These results suggest that the ribosome is a regulatory node for cold stress responses and that STCH4 promotes an altered ribosomal composition and functions in low temperatures to facilitate the translation of proteins important for plant growth and survival under cold stress.
Collapse
Affiliation(s)
- Hasi Yu
- Shanghai Center for Plant Stress Biology, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China; Institute of Plant Physiology and Ecology, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China; University of Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Xiangfeng Kong
- Shanghai Center for Plant Stress Biology, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China; University of Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Huan Huang
- Shanghai Center for Plant Stress Biology, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China; University of Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Wenwu Wu
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, 311300 Lin'an, Hangzhou, People's Republic of China
| | - Junghoon Park
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, South Korea
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, South Korea
| | - Byeong-Ha Lee
- Department of Life Science, Sogang University, Seoul 04107, South Korea
| | - Huazhong Shi
- Shanghai Center for Plant Stress Biology, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China; Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China; Institute of Plant Physiology and Ecology, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
17
|
Urquidi-Camacho RA, Lokdarshi A, von Arnim AG. Translational gene regulation in plants: A green new deal. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1597. [PMID: 32367681 PMCID: PMC9258721 DOI: 10.1002/wrna.1597] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 01/09/2023]
Abstract
The molecular machinery for protein synthesis is profoundly similar between plants and other eukaryotes. Mechanisms of translational gene regulation are embedded into the broader network of RNA-level processes including RNA quality control and RNA turnover. However, over eons of their separate history, plants acquired new components, dropped others, and generally evolved an alternate way of making the parts list of protein synthesis work. Research over the past 5 years has unveiled how plants utilize translational control to defend themselves against viruses, regulate translation in response to metabolites, and reversibly adjust translation to a wide variety of environmental parameters. Moreover, during seed and pollen development plants make use of RNA granules and other translational controls to underpin developmental transitions between quiescent and metabolically active stages. The economics of resource allocation over the daily light-dark cycle also include controls over cellular protein synthesis. Important new insights into translational control on cytosolic ribosomes continue to emerge from studies of translational control mechanisms in viruses. Finally, sketches of coherent signaling pathways that connect external stimuli with a translational response are emerging, anchored in part around TOR and GCN2 kinase signaling networks. These again reveal some mechanisms that are familiar and others that are different from other eukaryotes, motivating deeper studies on translational control in plants. This article is categorized under: Translation > Translation Regulation RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Ricardo A. Urquidi-Camacho
- UT-ORNL Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN 37996
| | - Ansul Lokdarshi
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Albrecht G von Arnim
- Department of Biochemistry & Cellular and Molecular Biology and UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996
| |
Collapse
|
18
|
Pleiotropic roles of cold shock proteins with special emphasis on unexplored cold shock protein member of Plasmodium falciparum. Malar J 2020; 19:382. [PMID: 33109193 PMCID: PMC7592540 DOI: 10.1186/s12936-020-03448-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
The cold shock domain (CSD) forms the hallmark of the cold shock protein family that provides the characteristic feature of binding with nucleic acids. While much of the information is available on bacterial, plants and human cold shock proteins, their existence and functions in the malaria parasite remains undefined. In the present review, the available information on functions of well-characterized cold shock protein members in different organisms has been collected and an attempt was made to identify the presence and role of cold shock proteins in malaria parasite. A single Plasmodium falciparum cold shock protein (PfCoSP) was found in P. falciparum which is reported to be essential for parasite survival. Essentiality of PfCoSP underscores its importance in malaria parasite life cycle. In silico tools were used to predict the features of PfCoSP and to identify its homologues in bacteria, plants, humans, and other Plasmodium species. Modelled structures of PfCoSP and its homologues in Plasmodium species were compared with human cold shock protein 'YBOX-1' (Y-box binding protein 1) that provide important insights into their functioning. PfCoSP model was subjected to docking with B-form DNA and RNA to reveal a number of residues crucial for their interaction. Transcriptome analysis and motifs identified in PfCoSP implicate its role in controlling gene expression at gametocyte, ookinete and asexual blood stages of malaria parasite. Overall, this review emphasizes the functional diversity of the cold shock protein family by discussing their known roles in gene expression regulation, cold acclimation, developmental processes like flowering transition, and flower and seed development, and probable function in gametocytogenesis in case of malaria parasite. This enables readers to view the cold shock protein family comprehensively.
Collapse
|
19
|
Song H, Kim H, Hwang BH, Yi H, Hur Y. Natural variation in glycine-rich region of Brassica oleracea cold shock domain protein 5 (BoCSDP5) is associated with low temperature tolerance. Genes Genomics 2020; 42:1407-1417. [PMID: 33094377 DOI: 10.1007/s13258-020-01010-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Low temperature (LT) or cold stress is a major environmental stress that seriously affects plant growth and development, limiting crop productivity. Cold shock domain proteins (CSDPs), which are present in most living organism, are involved in RNA metabolisms influencing abiotic stress tolerance. OBJECTIVE The aims of this study are to identify target gene for LT-tolerance, like CSDPs, characterize genetics, and develop molecular marker distinguishing LT-tolerance in cabbage (Brassica oleracea var. capitata). METHODS Semi-quantitative RT-PCR or qRT-PCR was used in gene expression study. LT-tolerance was determined by electrolyte leakage and PCR with allelic specific primers. RESULTS Allelic variation was found in BoCSDP5 coding sequence (CDs) between LT-tolerant (BN106 and BN553) and -susceptible inbred lines (BN107 and BN554). LT-tolerant inbred lines contained variant type of BoCSDP5 (named as BoCSDP5v) which encodes extra CCHC zinc finger domain at C-terminus. Association of LT-tolerance with BoCSDP5v was confirmed by electrolyte leakage and segregation using genetic population derived from BN553 and BN554 cross. Allelic variation in BoCSDP5 gene does not influence the rate of gene expression, but produces different proteins with different number of CCHC zinc finger domains. LT-tolerance marker designed on the basis of polymorphism between BoCSDP5 and BoCSDP5v was confirmed with samples used in previous B. oleracea CIRCADIAN CLOCK ASSOCIATED 1 (BoCCA1) marker validation. CONCLUSIONS LT-tolerant allele (BoCSDP5v) is dominant and independent of CBF pathway, and sufficient to generate molecular markers to identify LT-tolerant cabbage when it is used in combination with another marker, like BoCCA1-derived one. Production and analysis of overexpressing plants of BoCSDP1, BoCSDP3, BoCSDP5 and BoCSDP5v will be required for elucidating the function of CCHC zinc finger domains in LT-tolerance.
Collapse
Affiliation(s)
- Hayoung Song
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - HyeRan Kim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Byung-Ho Hwang
- Biotechnology and Breeding Institute of Asia Seed Co., Icheon-si, Gyeonggi-do, 17414, Republic of Korea
| | - Hankuil Yi
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Yoonkang Hur
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
20
|
Aceituno-Valenzuela U, Micol-Ponce R, Ponce MR. Genome-wide analysis of CCHC-type zinc finger (ZCCHC) proteins in yeast, Arabidopsis, and humans. Cell Mol Life Sci 2020; 77:3991-4014. [PMID: 32303790 PMCID: PMC11105112 DOI: 10.1007/s00018-020-03518-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/06/2020] [Accepted: 03/30/2020] [Indexed: 12/22/2022]
Abstract
The diverse eukaryotic proteins that contain zinc fingers participate in many aspects of nucleic acid metabolism, from DNA transcription to RNA degradation, post-transcriptional gene silencing, and small RNA biogenesis. These proteins can be classified into at least 30 types based on structure. In this review, we focus on the CCHC-type zinc fingers (ZCCHC), which contain an 18-residue domain with the CX2CX4HX4C sequence, where C is cysteine, H is histidine, and X is any amino acid. This motif, also named the "zinc knuckle", is characteristic of the retroviral Group Antigen protein and occurs alone or with other motifs. Many proteins containing zinc knuckles have been identified in eukaryotes, but only a few have been studied. Here, we review the available information on ZCCHC-containing factors from three evolutionarily distant eukaryotes-Saccharomyces cerevisiae, Arabidopsis thaliana, and Homo sapiens-representing fungi, plants, and metazoans, respectively. We performed systematic searches for proteins containing the CX2CX4HX4C sequence in organism-specific and generalist databases. Next, we analyzed the structural and functional information for all such proteins stored in UniProtKB. Excluding retrotransposon-encoded proteins and proteins harboring uncertain ZCCHC motifs, we found seven ZCCHC-containing proteins in yeast, 69 in Arabidopsis, and 34 in humans. ZCCHC-containing proteins mainly localize to the nucleus, but some are nuclear and cytoplasmic, or exclusively cytoplasmic, and one localizes to the chloroplast. Most of these factors participate in RNA metabolism, including transcriptional elongation, polyadenylation, translation, pre-messenger RNA splicing, RNA export, RNA degradation, microRNA and ribosomal RNA biogenesis, and post-transcriptional gene silencing. Several human ZCCHC-containing factors are derived from neofunctionalized retrotransposons and act as proto-oncogenes in diverse neoplastic processes. The conservation of ZCCHCs in orthologs of these three phylogenetically distant eukaryotes suggests that these domains have biologically relevant functions that are not well known at present.
Collapse
Affiliation(s)
- Uri Aceituno-Valenzuela
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain
| | - Rosa Micol-Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain.
| |
Collapse
|
21
|
Lou L, Ding L, Wang T, Xiang Y. Emerging Roles of RNA-Binding Proteins in Seed Development and Performance. Int J Mol Sci 2020; 21:ijms21186822. [PMID: 32957608 PMCID: PMC7555721 DOI: 10.3390/ijms21186822] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 02/01/2023] Open
Abstract
Seed development, dormancy, and germination are key physiological events that are not only important for seed generation, survival, and dispersal, but also contribute to agricultural production. RNA-binding proteins (RBPs) directly interact with target mRNAs and fine-tune mRNA metabolism by governing post-transcriptional regulation, including RNA processing, intron splicing, nuclear export, trafficking, stability/decay, and translational control. Recent studies have functionally characterized increasing numbers of diverse RBPs and shown that they participate in seed development and performance, providing significant insight into the role of RBP-mRNA interactions in seed processes. In this review, we discuss recent research progress on newly defined RBPs that have crucial roles in RNA metabolism and affect seed development, dormancy, and germination.
Collapse
|
22
|
Identification and Expression Analysis of Cold Shock Protein 3 (BcCSP3) in Non-Heading Chinese Cabbage ( Brassica rapa ssp. chinensis). PLANTS 2020; 9:plants9070890. [PMID: 32674472 PMCID: PMC7412364 DOI: 10.3390/plants9070890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/03/2020] [Accepted: 07/08/2020] [Indexed: 11/17/2022]
Abstract
A cold-related protein, cold shock protein 3 (BcCSP3), was isolated from non-heading Chinese cabbage in this study. BcCSP3 can encode 205 amino acids (aa) with an open reading frame (ORF) of 618 base pairs (bp). Multiple sequence alignment and phylogenetic tree analyses showed that BcCSP3 contains an N-terminal cold shock domain and is highly similar to AtCSP2, their kinship is recent. Real-time quantitative polymerase chain reaction (RT-qPCR) showed that the expression level of BcCSP3 in stems and leaves is higher than that in roots. Compared with other stress treatments, the change in BcCSP3 expression level was most pronounced under cold stress. In addition, a BcCSP3–GFP fusion protein was localized to the nucleus and cytoplasm. These results indicated that BcCSP3 may play an important role in response to cold stress in non-heading Chinese cabbage. This work may provide a reference for the identification and expression analysis of other CSP genes in non-heading Chinese cabbage.
Collapse
|
23
|
Lokdarshi A, Morgan PW, Franks M, Emert Z, Emanuel C, von Arnim AG. Light-Dependent Activation of the GCN2 Kinase Under Cold and Salt Stress Is Mediated by the Photosynthetic Status of the Chloroplast. FRONTIERS IN PLANT SCIENCE 2020; 11:431. [PMID: 32411155 PMCID: PMC7201089 DOI: 10.3389/fpls.2020.00431] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/24/2020] [Indexed: 05/12/2023]
Abstract
Regulation of cytosolic mRNA translation is a key node for rapid adaptation to environmental stress conditions. In yeast and animals, phosphorylation of the α-subunit of eukaryotic translation initiation factor eIF2 is the most thoroughly characterized event for regulating global translation under stress. In plants, the GCN2 kinase (General Control Nonderepressible-2) is the only known kinase for eIF2α. GCN2 is activated under a variety of stresses including reactive oxygen species (ROS). Here, we provide new evidence that the GCN2 kinase in Arabidopsis is also activated rapidly and in a light-dependent manner by cold and salt treatments. These treatments alone did not repress global mRNA ribosome loading in a major way. The activation of GCN2 was accompanied by a more oxidative environment and was attenuated by inhibitors of photosynthetic electron transport, suggesting that it is gated by the redox poise or the reactive oxygen status of the chloroplast. In keeping with these results, gcn2 mutant seedlings were more sensitive than wild type to both cold and salt in a root elongation assay. These data suggest that cold and salt stress may both affect the status of the cytosolic translation apparatus via the conserved GCN2-eIF2α module. The potential role of the GCN2 kinase pathway in the global repression of translation under abiotic stress is discussed.
Collapse
Affiliation(s)
- Ansul Lokdarshi
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Philip W. Morgan
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Michelle Franks
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Zoe Emert
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Catherine Emanuel
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Albrecht G. von Arnim
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
24
|
Budkina KS, Zlobin NE, Kononova SV, Ovchinnikov LP, Babakov AV. Cold Shock Domain Proteins: Structure and Interaction with Nucleic Acids. BIOCHEMISTRY (MOSCOW) 2020; 85:S1-S19. [DOI: 10.1134/s0006297920140011] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
25
|
Collum TD, Lutton E, Raines CD, Dardick C, Culver JN. Identification of phloem-associated translatome alterations during leaf development in Prunus domestica L. HORTICULTURE RESEARCH 2019; 6:16. [PMID: 30729006 PMCID: PMC6355854 DOI: 10.1038/s41438-018-0092-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 06/01/2023]
Abstract
Phloem plays a fundamental role in plants by transporting hormones, nutrients, proteins, RNAs, and carbohydrates essential for plant growth and development. However, the identity of the underlying phloem genes and pathways remain enigmatic especially in agriculturally important perennial crops, in part, due to the technical difficulty of phloem sampling. Here, we used two phloem-specific promoters and a translating ribosome affinity purification (TRAP) strategy to characterize the phloem translatome during leaf development at 2, 4, and 6 weeks post vernalization in plum (Prunus domestica L.). Results provide insight into the changing phloem processes that occur during leaf development. These processes included the early activation of DNA replication genes that are likely involved in phloem cell division during leaf expansion, as well as the upregulation of phloem genes associated with sink to source conversion, induction of defense processes, and signaling for reproduction. Combined these results reveal the dynamics of phloem gene expression during leaf development and establish the TRAP system as a powerful tool for studying phloem-specific functions and responses in trees.
Collapse
Affiliation(s)
- Tamara D. Collum
- Institute for Bioscience and Biotechnology Research, College Park, MD USA
| | - Elizabeth Lutton
- USDA-ARS, Appalachian Fruit Research Laboratory, Kearneysville, WV USA
| | - C. Douglas Raines
- USDA-ARS, Appalachian Fruit Research Laboratory, Kearneysville, WV USA
| | | | - James N. Culver
- Institute for Bioscience and Biotechnology Research, College Park, MD USA
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD USA
| |
Collapse
|
26
|
Taranov VV, Zlobin NE, Evlakov KI, Shamustakimova AO, Babakov AV. Contribution of Eutrema salsugineum Cold Shock Domain Structure to the Interaction with RNA. BIOCHEMISTRY (MOSCOW) 2018; 83:1369-1379. [PMID: 30482148 DOI: 10.1134/s000629791811007x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Plant cold shock domain proteins (CSDPs) are DNA/RNA-binding proteins. CSDPs contain the conserved cold shock domain (CSD) in the N-terminal part and a varying number of the CCHC-type zinc finger (ZnF) motifs alternating with glycine-rich regions in the C-terminus. CSDPs exhibit RNA chaperone and RNA-melting activities due to their nonspecific interaction with RNA. At the same time, there are reasons to believe that CSDPs also interact with specific RNA targets. In the present study, we used three recombinant CSDPs from the saltwater cress plant (Eutrema salsugineum) - EsCSDP1, EsCSDP2, EsCSDP3 with 6, 2, and 7 ZnF motifs, respectively, and showed that their nonspecific interaction with RNA is determined by their C-terminal fragments. All three proteins exhibited high affinity to the single-stranded regions over four nucleotides long within RNA oligonucleotides. The presence of guanine in the single- or double-stranded regions was crucial for the interaction with CSDPs. Complementation test using E. coli BX04 cells lacking four cold shock protein genes (ΔcspA, ΔcspB, ΔcspE, ΔcspG) revealed that the specific binding of plant CSDPs with RNA is determined by CSD.
Collapse
Affiliation(s)
- V V Taranov
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, 127550, Russia
| | - N E Zlobin
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, 127550, Russia
| | - K I Evlakov
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, 127550, Russia
| | - A O Shamustakimova
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, 127550, Russia.
| | - A V Babakov
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, 127550, Russia.
| |
Collapse
|
27
|
Zlobin N, Evlakov K, Tikhonova O, Babakov A, Taranov V. RNA melting and RNA chaperone activities of plant cold shock domain proteins are not correlated. RNA Biol 2018; 15:1040-1046. [PMID: 30081762 DOI: 10.1080/15476286.2018.1506681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Cold shock domain proteins (CSDPs) participate in plant development and resistance, but the underlying molecular mechanisms are poorly understood. In this study, we demonstrated that the CSDPs, including EsCSDP1, EsCSDP2, and EsCSDP3, from the extremophyte Eutrema salsugineum possess all basic properties of RNA chaperones. EsCSDP1-3 melt secondary structures in RNAs with various nucleotide sequences and exhibit RNA chaperone activity in vitro. EsCSDP1 and EsCSDP3 were shown to have higher RNA melting activity, whereasile EsCSDP2 had higher RNA chaperone activity. We demonstrated that higher RNA melting activity correlates with the longer C-terminal fragment in many zinc finger motifs, whereas increased RNA chaperone activity was most likely due to the higher glycine content and RGG repeat number in the C-terminal fragment.
Collapse
Affiliation(s)
- Nikolay Zlobin
- a Laboratory of Plant Stress Tolerance, All-Russia Research Institute of Agricultural Biotechnology , Russian Academy of Sciences , Moscow , Russia
| | - Konstantin Evlakov
- b Laboratory of Synthesis and Analysis of Bioorganic Compounds , Institute of Biomedical Chemistry , Moscow , Russia
| | - Olga Tikhonova
- c Department of Proteomic Research and Mass Spectrometry , Institute of Biomedical Chemistry, Russian Academy of Sciences , Moscow , Russia
| | - Aleksey Babakov
- a Laboratory of Plant Stress Tolerance, All-Russia Research Institute of Agricultural Biotechnology , Russian Academy of Sciences , Moscow , Russia
| | - Vasiliy Taranov
- a Laboratory of Plant Stress Tolerance, All-Russia Research Institute of Agricultural Biotechnology , Russian Academy of Sciences , Moscow , Russia
| |
Collapse
|
28
|
Köster T, Meyer K. Plant Ribonomics: Proteins in Search of RNA Partners. TRENDS IN PLANT SCIENCE 2018; 23:352-365. [PMID: 29429586 DOI: 10.1016/j.tplants.2018.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/08/2018] [Accepted: 01/15/2018] [Indexed: 06/08/2023]
Abstract
Research into the regulation of gene expression underwent a shift from focusing on DNA-binding proteins as key transcriptional regulators to RNA-binding proteins (RBPs) that come into play once transcription has been initiated. RBPs orchestrate all RNA-processing steps in the cell. To obtain a global view of in vivo targets, the RNA complement associated with particular RBPs is determined via immunoprecipitation of the RBP and subsequent identification of bound RNAs via RNA-seq. Here, we describe technical advances in identifying RBP in vivo targets and their binding motifs. We provide an up-to-date view of targets of nucleocytoplasmic RBPs collected in arabidopsis. We also discuss current experimental limitations and provide an outlook on how the approaches may advance our understanding of post-transcriptional networks.
Collapse
Affiliation(s)
- Tino Köster
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany.
| | - Katja Meyer
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
29
|
Systems Approaches to Map In Vivo RNA–Protein Interactions in Arabidopsis thaliana. RNA TECHNOLOGIES 2018. [PMCID: PMC7122672 DOI: 10.1007/978-3-319-92967-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Proteins that specifically interact with mRNAs orchestrate mRNA processing steps all the way from transcription to decay. Thus, these RNA-binding proteins represent an important control mechanism to double check which proportion of nascent pre-mRNAs is ultimately available for translation into distinct proteins. Here, we discuss recent progress to obtain a systems-level understanding of in vivo RNA–protein interactions in the reference plant Arabidopsis thaliana using protein-centric and RNA-centric methods as well as combined protein binding site and structure probing.
Collapse
|
30
|
Schepetilnikov M, Ryabova LA. Auxin Signaling in Regulation of Plant Translation Reinitiation. FRONTIERS IN PLANT SCIENCE 2017; 8:1014. [PMID: 28659957 PMCID: PMC5469914 DOI: 10.3389/fpls.2017.01014] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/26/2017] [Indexed: 05/03/2023]
Abstract
The mRNA translation machinery directs protein production, and thus cell growth, according to prevailing cellular and environmental conditions. The target of rapamycin (TOR) signaling pathway-a major growth-related pathway-plays a pivotal role in optimizing protein synthesis in mammals, while its deregulation triggers uncontrolled cell proliferation and the development of severe diseases. In plants, several signaling pathways sensitive to environmental changes, hormones, and pathogens have been implicated in post-transcriptional control, and thus far phytohormones have attracted most attention as TOR upstream regulators in plants. Recent data have suggested that the coordinated actions of the phytohormone auxin, Rho-like small GTPases (ROPs) from plants, and TOR signaling contribute to translation regulation of mRNAs that harbor upstream open reading frames (uORFs) within their 5'-untranslated regions (5'-UTRs). This review will summarize recent advances in translational regulation of a specific set of uORF-containing mRNAs that encode regulatory proteins-transcription factors, protein kinases and other cellular controllers-and how their control can impact plant growth and development.
Collapse
Affiliation(s)
- Mikhail Schepetilnikov
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UPR 2357, Université de StrasbourgStrasbourg, France
| | - Lyubov A. Ryabova
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UPR 2357, Université de StrasbourgStrasbourg, France
| |
Collapse
|
31
|
Sablok G, Powell JJ, Kazan K. Emerging Roles and Landscape of Translating mRNAs in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1443. [PMID: 28919899 PMCID: PMC5585741 DOI: 10.3389/fpls.2017.01443] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 08/03/2017] [Indexed: 05/03/2023]
Abstract
Plants use a wide range of mechanisms to adapt to different environmental stresses. One of the earliest responses displayed under stress is rapid alterations in stress responsive gene expression that has been extensively analyzed through expression profiling such as microarrays and RNA-sequencing. Recently, expression profiling has been complemented with proteome analyses to establish a link between transcriptional and the corresponding translational changes. However, proteome profiling approaches have their own technical limitations. More recently, ribosome-associated mRNA profiling has emerged as an alternative and a robust way of identifying translating mRNAs, which are a set of mRNAs associated with ribosomes and more likely to contribute to proteome abundance. In this article, we briefly review recent studies that examined the processes affecting the abundance of translating mRNAs, their regulation during plant development and tolerance to stress conditions and plant factors affecting the selection of translating mRNA pools. This review also highlights recent findings revealing differential roles of alternatively spliced mRNAs and their translational control during stress adaptation. Overall, better understanding of processes involved in the regulation of translating mRNAs has obvious implications for improvement of stress tolerance in plants.
Collapse
Affiliation(s)
- Gaurav Sablok
- Finnish Museum of Natural HistoryHelsinki, Finland
- Department of Biosciences, Viikki Plant Science Center, University of HelsinkiHelsinki, Finland
- *Correspondence: Gaurav Sablok, Kemal Kazan,
| | - Jonathan J. Powell
- Commonwealth Scientific and Industrial Research Organization Agriculture, St. LuciaQLD, Australia
| | - Kemal Kazan
- Commonwealth Scientific and Industrial Research Organization Agriculture, St. LuciaQLD, Australia
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St. LuciaQLD, Australia
- *Correspondence: Gaurav Sablok, Kemal Kazan,
| |
Collapse
|
32
|
A Cold-Inducible DEAD-Box RNA Helicase from Arabidopsis thaliana Regulates Plant Growth and Development under Low Temperature. PLoS One 2016; 11:e0154040. [PMID: 27116354 PMCID: PMC4846089 DOI: 10.1371/journal.pone.0154040] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/07/2016] [Indexed: 01/29/2023] Open
Abstract
DEAD-box RNA helicases comprise a large family and are involved in a range of RNA processing events. Here, we identified one of the Arabidopsis thaliana DEAD-box RNA helicases, AtRH7, as an interactor of Arabidopsis COLD SHOCK DOMAIN PROTEIN 3 (AtCSP3), which is an RNA chaperone involved in cold adaptation. Promoter:GUS transgenic plants revealed that AtRH7 is expressed ubiquitously and that its levels of the expression are higher in rapidly growing tissues. Knockout mutant lines displayed several morphological alterations such as disturbed vein pattern, pointed first true leaves, and short roots, which resemble ribosome-related mutants of Arabidopsis. In addition, aberrant floral development was also observed in rh7 mutants. When the mutants were germinated at low temperature (12°C), both radicle and first leaf emergence were severely delayed; after exposure of seedlings to a long period of cold, the mutants developed aberrant, fewer, and smaller leaves. RNA blots and circular RT-PCR revealed that 35S and 18S rRNA precursors accumulated to higher levels in the mutants than in WT under both normal and cold conditions, suggesting the mutants are partially impaired in pre-rRNA processing. Taken together, the results suggest that AtRH7 affects rRNA biogenesis and plays an important role in plant growth under cold.
Collapse
|
33
|
Zlobin N, Evlakov K, Alekseev Y, Blagodatskikh K, Babakov A, Taranov V. High DNA melting activity of extremophyte Eutrema salsugineum cold shock domain proteins EsCSDP1 and EsCSDP3. Biochem Biophys Rep 2016; 5:502-508. [PMID: 28955858 PMCID: PMC5600361 DOI: 10.1016/j.bbrep.2016.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/31/2015] [Accepted: 02/04/2016] [Indexed: 10/27/2022] Open
Abstract
Plant cold shock domain proteins (CSDP) participate in maintenance of plant stress tolerance and in regulating their development. In the present paper we show that two out of three extremophyte plant Eutrema salsugineum proteins EsCSDP1-3, namely EsCSDP1 and EsCSDP3, possess high DNA-melting activity. DNA-melting activity of proteins was evaluated using molecular beacon assay in two ways: by measuring Tm parameter (the temperature at which half of the DNA beacon molecules is fully melted) and the beacon fluorescence at 4 °C. As the ratio protein/beacon was increased, a decrease in Tm was observed. Besides DNA-melting activity of full proteins, activity was measured for three isolated cold shock domains EsCSD1-3, C-terminal domain of EsCSDP1 (EsZnF1), as well as a mixture of EsCSD1 and EsZnF1. The Tm reduction efficiency of proteins formed the following sequence: EsCSDP3≈EsCSDP1>(EsCSD1+EsZnF1)>EsZnF1>EsCSDP2. Only full proteins EsCSDP3 and EsCSDP1 demonstrated DNA-melting activity at 4 °C. The presented experimental data indicate that i: interaction of EsCSDP1-3 with beacon single-stranded region is obligatory for efficient melting; ii: cold shock domain and C-terminal domain with zinc finger motifs should be present in one protein molecule to have high melting activity.
Collapse
Affiliation(s)
- Nikolai Zlobin
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Russia
| | - Konstantin Evlakov
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Russia
| | - Yakov Alekseev
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Russia
| | - Konstantin Blagodatskikh
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Russia
| | - Aleksei Babakov
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Russia
| | - Vasiliy Taranov
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Russia
| |
Collapse
|
34
|
Characterization of Two Dinoflagellate Cold Shock Domain Proteins. mSphere 2016; 1:mSphere00034-15. [PMID: 27303711 PMCID: PMC4863620 DOI: 10.1128/msphere.00034-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/05/2015] [Indexed: 01/16/2023] Open
Abstract
Dinoflagellate transcriptomes contain cold shock domain proteins as the major component of the proteins annotated as transcription factors. We show here that the major family of cold shock domain proteins in the dinoflagellate Lingulodinium do not bind specific sequences, suggesting that transcriptional control is not a predominant mechanism for regulating gene expression in this group of protists. Roughly two-thirds of the proteins annotated as transcription factors in dinoflagellate transcriptomes are cold shock domain-containing proteins (CSPs), an uncommon condition in eukaryotic organisms. However, no functional analysis has ever been reported for a dinoflagellate CSP, and so it is not known if they do in fact act as transcription factors. We describe here some of the properties of two CSPs from the dinoflagellate Lingulodinium polyedrum, LpCSP1 and LpCSP2, which contain a glycine-rich C-terminal domain and an N-terminal cold shock domain phylogenetically related to those in bacteria. However, neither of the two LpCSPs act like the bacterial CSP, since they do not functionally complement the Escherichia coli quadruple cold shock domain protein mutant BX04, and cold shock does not induce LpCSP1 and LpCSP2 to detectable levels, based on two-dimensional gel electrophoresis. Both CSPs bind to RNA and single-stranded DNA in a nonspecific manner in electrophoretic mobility shift assays, and both proteins also bind double-stranded DNA nonspecifically, albeit more weakly. These CSPs are thus unlikely to act alone as sequence-specific transcription factors. IMPORTANCE Dinoflagellate transcriptomes contain cold shock domain proteins as the major component of the proteins annotated as transcription factors. We show here that the major family of cold shock domain proteins in the dinoflagellate Lingulodinium do not bind specific sequences, suggesting that transcriptional control is not a predominant mechanism for regulating gene expression in this group of protists.
Collapse
|
35
|
Nemali KS, Bonin C, Dohleman FG, Stephens M, Reeves WR, Nelson DE, Castiglioni P, Whitsel JE, Sammons B, Silady RA, Anstrom D, Sharp RE, Patharkar OR, Clay D, Coffin M, Nemeth MA, Leibman ME, Luethy M, Lawson M. Physiological responses related to increased grain yield under drought in the first biotechnology-derived drought-tolerant maize. PLANT, CELL & ENVIRONMENT 2015; 38:1866-80. [PMID: 25210866 DOI: 10.1111/pce.12446] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/08/2014] [Accepted: 08/25/2014] [Indexed: 05/21/2023]
Abstract
Maize (Zea mays ssp. mays L.) is highly susceptible to drought stress. This work focused on whole-plant physiological mechanisms by which a biotechnology-derived maize event expressing bacterial cold shock protein B (CspB), MON 87460, increased grain yield under drought. Plants of MON 87460 and a conventional control (hereafter 'control') were tested in the field under well-watered (WW) and water-limited (WL) treatments imposed during mid-vegetative to mid-reproductive stages during 2009-2011. Across years, average grain yield increased by 6% in MON 87460 compared with control under WL conditions. This was associated with higher soil water content at 0.5 m depth during the treatment phase, increased ear growth, decreased leaf area, leaf dry weight and sap flow rate during silking, increased kernel number and harvest index in MON 87460 than the control. No consistent differences were observed under WW conditions. This indicates that MON 87460 acclimated better under WL conditions than the control by lowering leaf growth which decreased water use during silking, thereby eliciting lower stress under WL conditions. These physiological responses in MON 87460 under WL conditions resulted in increased ear growth during silking, which subsequently increased the kernel number, harvest index and grain yield compared to the control.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Rebecca A Silady
- Biology Department, Southern Connecticut State University, New Haven, CT, 06515, USA
| | | | - Robert E Sharp
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
| | - Osric R Patharkar
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
| | - David Clay
- Plant Science Department, South Dakota State University, Brookings, SD, 57007, USA
| | | | | | | | | | | |
Collapse
|
36
|
Browning KS, Bailey-Serres J. Mechanism of cytoplasmic mRNA translation. THE ARABIDOPSIS BOOK 2015; 13:e0176. [PMID: 26019692 PMCID: PMC4441251 DOI: 10.1199/tab.0176] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Protein synthesis is a fundamental process in gene expression that depends upon the abundance and accessibility of the mRNA transcript as well as the activity of many protein and RNA-protein complexes. Here we focus on the intricate mechanics of mRNA translation in the cytoplasm of higher plants. This chapter includes an inventory of the plant translational apparatus and a detailed review of the translational processes of initiation, elongation, and termination. The majority of mechanistic studies of cytoplasmic translation have been carried out in yeast and mammalian systems. The factors and mechanisms of translation are for the most part conserved across eukaryotes; however, some distinctions are known to exist in plants. A comprehensive understanding of the complex translational apparatus and its regulation in plants is warranted, as the modulation of protein production is critical to development, environmental plasticity and biomass yield in diverse ecosystems and agricultural settings.
Collapse
Affiliation(s)
- Karen S. Browning
- Department of Molecular Biosciences and Institute for Cell and Molecular Biology, University of Texas at Austin, Austin TX 78712-0165
- Both authors contributed equally to this work
| | - Julia Bailey-Serres
- Department of Botany and Plant Sciences and Center for Plant Cell Biology, University of California, Riverside, CA, 92521 USA
- Both authors contributed equally to this work
| |
Collapse
|
37
|
Palusa SG, Reddy ASN. Differential recruitment of splice variants from SR pre-mRNAs to polysomes during development and in response to stresses. PLANT & CELL PHYSIOLOGY 2015; 56:421-7. [PMID: 25637375 DOI: 10.1093/pcp/pcv010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We have previously shown that precursor mRNAs (pre-mRNAs) of serine/arginine-rich (SR) proteins are extensively alternatively spliced to generate approximately 100 distinct splice variants from 14 SR genes and that the splicing pattern of SR pre-mRNAs changes in different organs and in response to abiotic stresses. About half of the splice variants are potential targets of nonsense-mediated decay (NMD) and 25 splice forms were confirmed to be real NMD targets. However, it is not known whether (i) all splice variants are recruited to polysomes for translation; (ii) there is a preferential recruitment of specific splice isoforms to polysomes; and (iii) there is a differential recruitment of splice variants during development and in response to stresses. To address these questions, we analyzed the association of SR splice variants with polysomes from seedlings, different organs and seedlings exposed to heat and cold stress. In seedlings, about one-third of the splice variants (22 out of 72) are not recruited to polysomes. Among those associated with polysomes, the functional isoforms that code for full-length proteins and some candidate putative and confirmed NMD targets were identified. There was preferential recruitment of some splice forms over others. Predominant recruitment of functional isoforms along with a few NMD candidates was found in different organs. Furthermore, we observed differential recruitment of isoforms in different organs. Heat and cold stress enhanced or reduced recruitment of specific splice variants. Our studies reveal differential recruitment of SR splice variants to polysomes under normal conditions, during development and in response to stresses.
Collapse
Affiliation(s)
- Saiprasad Goud Palusa
- Department of Biology, Program in Molecular Plant Biology, Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Anireddy S N Reddy
- Department of Biology, Program in Molecular Plant Biology, Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
38
|
Juntawong P, Hummel M, Bazin J, Bailey-Serres J. Ribosome profiling: a tool for quantitative evaluation of dynamics in mRNA translation. Methods Mol Biol 2015; 1284:139-73. [PMID: 25757771 DOI: 10.1007/978-1-4939-2444-8_7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Translational regulation is important for plant growth, metabolism, and acclimation to environmental challenges. Ribosome profiling involves the nuclease digestion of mRNAs associated with ribosomes and mapping of the generated ribosome-protected footprints to transcripts. This is useful for investigation of translational regulation. Here we present a detailed method to generate, purify, and high-throughput-sequence ribosome footprints from Arabidopsis thaliana using two different isolation methods, namely, conventional differential centrifugation and the translating ribosome affinity purification (TRAP) technology. These methodologies provide researchers with an opportunity to quantitatively assess with high-resolution the translational activity of individual mRNAs by determination of the position and number of ribosomes in the corresponding mRNA. The results can provide insights into the translation of upstream open reading frames, alternatively spliced transcripts, short open reading frames, and other aspects of translation.
Collapse
Affiliation(s)
- Piyada Juntawong
- Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | | | | | | |
Collapse
|
39
|
Sorenson R, Bailey-Serres J. Rapid immunopurification of ribonucleoprotein complexes of plants. Methods Mol Biol 2015; 1284:209-19. [PMID: 25757774 DOI: 10.1007/978-1-4939-2444-8_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Hundreds of RNA binding proteins posttranscriptionally regulate gene expression, but relatively few have been characterized in plants. One successful approach to determine protein function has been to identify interacting molecules and the conditions of their association. The ribonucleoprotein immunopurification (RIP) assay facilitates the identification and quantitative comparison of RNA association to specific proteins under different experimental conditions. A variety of molecular techniques can be used to analyze the enriched RNAs, whether few as in the case of highly specific interactions, or many. Identification of associated RNAs can inform hypothesis generation about the processes or pathways regulated by the target protein. Downstream analysis of associated RNA sequences can lead to the identification of candidate motifs or features that mediate the protein-RNA interaction. We present a rapid method for RIP from tissues of plants that is suitable for experiments that require immediate tissue cryopreservation, such as monitoring a rapid response to an environmental stimulus.
Collapse
Affiliation(s)
- Reed Sorenson
- Center for Plant Cell Biology, University of California, Riverside, CA, 92521, USA
| | | |
Collapse
|
40
|
Translating Ribosome Affinity Purification (TRAP) followed by RNA sequencing technology (TRAP-SEQ) for quantitative assessment of plant translatomes. Methods Mol Biol 2015; 1284:185-207. [PMID: 25757773 DOI: 10.1007/978-1-4939-2444-8_9] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Translating Ribosome Affinity Purification (TRAP) is a technology to isolate the population of mRNAs associated with at least one 80S ribosome, referred as the translatome. TRAP is based on the expression of an epitope-tagged version of a ribosomal protein and the affinity purification of ribosomes and associated mRNAs using antibodies conjugated to agarose beads. Quantitative assessment of the translatome is achieved by direct RNA sequencing (RNA-SEQ), which provides accurate quantitation of ribosome-associated mRNAs and reveals alternatively spliced isoforms. Here we present a detailed procedure for TRAP, as well as a guide for preparation of RNA-SEQ libraries (TRAP-SEQ) and a primary data analysis. This methodology enables the study of translational dynamic by assessing rapid changes in translatomes, at organ or cell-type level, during development or in response to endogenous or exogenous stimuli.
Collapse
|
41
|
The structure, function and evolution of proteins that bind DNA and RNA. Nat Rev Mol Cell Biol 2014; 15:749-60. [PMID: 25269475 DOI: 10.1038/nrm3884] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Proteins that bind both DNA and RNA typify the ability of a single gene product to perform multiple functions. Such DNA- and RNA-binding proteins (DRBPs) have unique functional characteristics that stem from their specific structural features; these developed early in evolution and are widely conserved. Proteins that bind RNA have typically been considered as functionally distinct from proteins that bind DNA and studied independently. This practice is becoming outdated, in partly owing to the discovery of long non-coding RNAs (lncRNAs) that target DNA-binding proteins. Consequently, DRBPs were found to regulate many cellular processes, including transcription, translation, gene silencing, microRNA biogenesis and telomere maintenance.
Collapse
|
42
|
Translational dynamics revealed by genome-wide profiling of ribosome footprints in Arabidopsis. Proc Natl Acad Sci U S A 2013; 111:E203-12. [PMID: 24367078 DOI: 10.1073/pnas.1317811111] [Citation(s) in RCA: 292] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Translational regulation contributes to plasticity in metabolism and growth that enables plants to survive in a dynamic environment. Here, we used the precise mapping of ribosome footprints (RFs) on mRNAs to investigate translational regulation under control and sublethal hypoxia stress conditions in seedlings of Arabidopsis thaliana. Ribosomes were obtained by differential centrifugation or immunopurification and were digested with RNase I to generate footprint fragments that were deep-sequenced. Comparison of RF number and position on genic regions with fragmented total and polysomal mRNA illuminated numerous aspects of posttranscriptional and translational control under both growth conditions. When seedlings were oxygen-deprived, the frequency of ribosomes at the start codon was reduced, consistent with a global decline in initiation of translation. Hypoxia-up-regulated gene transcripts increased in polysome complexes during the stress, but the number of ribosomes per transcript relative to normoxic conditions was not enhanced. On the other hand, many mRNAs with limited change in steady-state abundance had significantly fewer ribosomes but with an overall similar distribution under hypoxia, consistent with restriction of initiation rather than elongation of translation. RF profiling also exposed the inhibitory effect of upstream ORFs on the translation of downstream protein-coding regions under normoxia, which was further modulated by hypoxia. The data document translation of alternatively spliced mRNAs and expose ribosome association with some noncoding RNAs. Altogether, we present an experimental approach that illuminates prevalent and nuanced regulation of protein synthesis under optimal and energy-limiting conditions.
Collapse
|