1
|
Rahul PV, Yadukrishnan P, Sasidharan A, Datta S. The B-box protein BBX13/COL15 suppresses photoperiodic flowering by attenuating the action of CONSTANS in Arabidopsis. PLANT, CELL & ENVIRONMENT 2024; 47:5358-5371. [PMID: 39189944 DOI: 10.1111/pce.15120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/09/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
The optimal timing of transition from vegetative to floral reproductive phase is critical for plant productivity and agricultural yields. Light plays a decisive role in regulating this transition. The B-box (BBX) family of transcription factors regulates several light-mediated developmental processes in plants, including flowering. Here, we identify a previously uncharacterized group II BBX family member, BBX13/COL15, as a negative regulator of flowering under long-day conditions. BBX13 is primarily expressed in the leaf vasculature, buds, and flowers, showing a similar spatial expression pattern to the major flowering time regulators CO and FT. bbx13 mutants flower early, while BBX13-overexpressors exhibit delayed flowering under long days. Genetic analyses showed that BBX13 acts upstream to CO and FT and negatively regulates their expression. BBX13 physically interacts with CO and inhibits the CO-mediated transcriptional activation of FT. In addition, BBX13 directly binds to the CORE2 motif on the FT promoter, where CO also binds. Chromatin immunoprecipitation data indicates that BBX13 reduces the in vivo binding of CO on the FT promoter. Through luciferase assay, we found that BBX13 inhibits the CO-mediated transcriptional activation of FT. Together, these findings suggest that BBX13/COL15 represses flowering in Arabidopsis by attenuating the binding of CO on the FT promoter.
Collapse
Affiliation(s)
- Puthan Valappil Rahul
- Plant Cell and Developmental Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhauri, Madhya Pradesh, India
| | - Premachandran Yadukrishnan
- Plant Cell and Developmental Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhauri, Madhya Pradesh, India
| | - Anagha Sasidharan
- Plant Cell and Developmental Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhauri, Madhya Pradesh, India
| | - Sourav Datta
- Plant Cell and Developmental Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhauri, Madhya Pradesh, India
| |
Collapse
|
2
|
de Los Reyes P, Serrano-Bueno G, Romero-Campero FJ, Gao H, Romero JM, Valverde F. CONSTANS alters the circadian clock in Arabidopsis thaliana. MOLECULAR PLANT 2024; 17:1204-1220. [PMID: 38894538 DOI: 10.1016/j.molp.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 04/23/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Plants are sessile organisms that have acquired highly plastic developmental strategies to adapt to the environment. Among these processes, the floral transition is essential to ensure reproductive success and is finely regulated by several internal and external genetic networks. The photoperiodic pathway, which controls plant response to day length, is one of the most important pathways controlling flowering. In Arabidopsis photoperiodic flowering, CONSTANS (CO) is the central gene activating the expression of the florigen FLOWERING LOCUS T (FT) in the leaves at the end of a long day. The circadian clock strongly regulates CO expression. However, to date, no evidence has been reported regarding a feedback loop from the photoperiod pathway back to the circadian clock. Using transcriptional networks, we have identified relevant network motifs regulating the interplay between the circadian clock and the photoperiod pathway. Gene expression, chromatin immunoprecipitation experiments, and phenotypic analysis allowed us to elucidate the role of CO over the circadian clock. Plants with altered CO expression showed a different internal clock period, measured by daily leaf rhythmic movements. We showed that CO upregulates the expression of key genes related to the circadian clock, such as CCA1, LHY, PRR5, and GI, at the end of a long day by binding to specific sites on their promoters. Moreover, a high number of PRR5-repressed target genes are upregulated by CO, and this could explain the phase transition promoted by CO. The CO-PRR5 complex interacts with the bZIP transcription factor HY5 and helps to localize the complex in the promoters of clock genes. Taken together, our results indicate that there may be a feedback loop in which CO communicates back to the circadian clock, providing seasonal information to the circadian system.
Collapse
Affiliation(s)
- Pedro de Los Reyes
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain
| | - Gloria Serrano-Bueno
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain; Department of Plant Biochemistry and Molecular Biology, Universidad de Sevilla, Seville, Spain
| | - Francisco J Romero-Campero
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain; Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Seville, Spain
| | - He Gao
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jose M Romero
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain; Department of Plant Biochemistry and Molecular Biology, Universidad de Sevilla, Seville, Spain
| | - Federico Valverde
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
3
|
Liu A, Mair A, Matos JL, Vollbrecht M, Xu SL, Bergmann DC. bHLH transcription factors cooperate with chromatin remodelers to regulate cell fate decisions during Arabidopsis stomatal development. PLoS Biol 2024; 22:e3002770. [PMID: 39150946 DOI: 10.1371/journal.pbio.3002770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/28/2024] [Accepted: 07/26/2024] [Indexed: 08/18/2024] Open
Abstract
The development of multicellular organisms requires coordinated changes in gene expression that are often mediated by the interaction between transcription factors (TFs) and their corresponding cis-regulatory elements (CREs). During development and differentiation, the accessibility of CREs is dynamically modulated by the epigenome. How the epigenome, CREs, and TFs together exert control over cell fate commitment remains to be fully understood. In the Arabidopsis leaf epidermis, meristemoids undergo a series of stereotyped cell divisions, then switch fate to commit to stomatal differentiation. Newly created or reanalyzed scRNA-seq and ChIP-seq data confirm that stomatal development involves distinctive phases of transcriptional regulation and that differentially regulated genes are bound by the stomatal basic helix-loop-helix (bHLH) TFs. Targets of the bHLHs often reside in repressive chromatin before activation. MNase-seq evidence further suggests that the repressive state can be overcome and remodeled upon activation by specific stomatal bHLHs. We propose that chromatin remodeling is mediated through the recruitment of a set of physical interactors that we identified through proximity labeling-the ATPase-dependent chromatin remodeling SWI/SNF complex and the histone acetyltransferase HAC1. The bHLHs and chromatin remodelers localize to overlapping genomic regions in a hierarchical order. Furthermore, plants with stage-specific knockdown of the SWI/SNF components or HAC1 fail to activate specific bHLH targets and display stomatal development defects. Together, these data converge on a model for how stomatal TFs and epigenetic machinery cooperatively regulate transcription and chromatin remodeling during progressive fate specification.
Collapse
Affiliation(s)
- Ao Liu
- Howard Hughes Medical Institute, Stanford, California, United States of America
| | - Andrea Mair
- Howard Hughes Medical Institute, Stanford, California, United States of America
| | - Juliana L Matos
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Macy Vollbrecht
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Shou-Ling Xu
- Carnegie Institution for Science, Stanford, California, United States of America
- Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, California, United States of America
| | - Dominique C Bergmann
- Howard Hughes Medical Institute, Stanford, California, United States of America
- Department of Biology, Stanford University, Stanford, California, United States of America
| |
Collapse
|
4
|
Liu A, Mair A, Matos JL, Vollbrecht M, Xu SL, Bergmann DC. Cell Fate Programming by Transcription Factors and Epigenetic Machinery in Stomatal Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554515. [PMID: 37662219 PMCID: PMC10473704 DOI: 10.1101/2023.08.23.554515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The development of multi-cellular organisms requires coordinated changes in gene expression that are often mediated by the interaction between transcription factors (TFs) and their corresponding cis-regulatory elements (CREs). During development and differentiation, the accessibility of CREs is dynamically modulated by the epigenome. How the epigenome, CREs and TFs together exert control over cell fate commitment remains to be fully understood. In the Arabidopsis leaf epidermis, meristemoids undergo a series of stereotyped cell divisions, then switch fate to commit to stomatal differentiation. Newly created or reanalyzed scRNA-seq and ChIP-seq data confirm that stomatal development involves distinctive phases of transcriptional regulation and that differentially regulated genes are bound by the stomatal basic-helix-loop-helix (bHLH) TFs. Targets of the bHLHs often reside in repressive chromatin before activation. MNase-seq evidence further suggests that the repressive state can be overcome and remodeled upon activation by specific stomatal bHLHs. We propose that chromatin remodeling is mediated through the recruitment of a set of physical interactors that we identified through proximity labeling - the ATPase-dependent chromatin remodeling SWI/SNF complex and the histone acetyltransferase HAC1. The bHLHs and chromatin remodelers localize to overlapping genomic regions in a hierarchical order. Furthermore, plants with stage-specific knock-down of the SWI/SNF components or HAC1 fail to activate specific bHLH targets and display stomatal development defects. Together these data converge on a model for how stomatal TFs and epigenetic machinery cooperatively regulate transcription and chromatin remodeling during progressive fate specification.
Collapse
Affiliation(s)
- Ao Liu
- Howard Hughes Medical Institute, Stanford, CA, USA 94305
| | - Andrea Mair
- Howard Hughes Medical Institute, Stanford, CA, USA 94305
| | - Juliana L Matos
- Department of Biology, Stanford University, Stanford, CA, USA 94305
- Current address: Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA 94720
| | - Macy Vollbrecht
- Department of Biology, Stanford University, Stanford, CA, USA 94305
| | - Shou-Ling Xu
- Carnegie Institution for Science, Stanford, CA, USA 94305
- Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, CA, USA 94305
| | - Dominique C Bergmann
- Howard Hughes Medical Institute, Stanford, CA, USA 94305
- Department of Biology, Stanford University, Stanford, CA, USA 94305
| |
Collapse
|
5
|
Serrano-Bueno G, de Los Reyes P, Chini A, Ferreras-Garrucho G, Sánchez de Medina-Hernández V, Boter M, Solano R, Valverde F. Regulation of floral senescence in Arabidopsis by coordinated action of CONSTANS and jasmonate signaling. MOLECULAR PLANT 2022; 15:1710-1724. [PMID: 36153646 DOI: 10.1016/j.molp.2022.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/08/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
In Arabidopsis, photoperiodic flowering is controlled by the regulatory hub gene CONSTANS (CO), whereas floral organ senescence is regulated by the jasmonates (JAs). Because these processes are chronologically ordered, it remains unknown whether there are common regulators of both processes. In this study, we discovered that CO protein accumulates in Arabidopsis flowers after floral induction, and it displays a diurnal pattern in floral organs different from that in the leaves. We observed that altered CO expression could affect flower senescence and abscission by interfering with JA response, as shown by petal-specific transcriptomic analysis as well as CO overexpression in JA synthesis and signaling mutants. We found that CO has a ZIM (ZINC-FINGER INFLORESCENCE MERISTEM) like domain that mediates its interaction with the JA response repressor JAZ3 (jasmonate ZIM-domain 3). Their interaction inhibits the repressor activity of JAZ3, resulting in activation of downstream transcription factors involved in promoting flower senescence. Furthermore, we showed that CO, JAZ3, and the E3 ubiquitin ligase COI1 (Coronatine Insensitive 1) could form a protein complex in planta, which promotes the degradation of both CO and JAZ3 in the presence of JAs. Taken together, our results indicate that CO, a key regulator of photoperiodic flowering, is also involved in promoting flower senescence and abscission by augmenting JA signaling and response. We propose that coordinated recruitment of photoperiodic and JA signaling pathways could be an efficient way for plants to chronologically order floral processes and ensure the success of offspring production.
Collapse
Affiliation(s)
- Gloria Serrano-Bueno
- Plant Development Group, Institute for Plant Biochemistry and Photosynthesis, CSIC-Universidad de Sevilla, 41092 Sevilla, Spain.
| | - Pedro de Los Reyes
- Plant Development Group, Institute for Plant Biochemistry and Photosynthesis, CSIC-Universidad de Sevilla, 41092 Sevilla, Spain
| | - Andrea Chini
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| | - Gabriel Ferreras-Garrucho
- Plant Development Group, Institute for Plant Biochemistry and Photosynthesis, CSIC-Universidad de Sevilla, 41092 Sevilla, Spain
| | | | - Marta Boter
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| | - Roberto Solano
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| | - Federico Valverde
- Plant Development Group, Institute for Plant Biochemistry and Photosynthesis, CSIC-Universidad de Sevilla, 41092 Sevilla, Spain.
| |
Collapse
|
6
|
Zhang J, Wang X, Han L, Zhang J, Xie Y, Li J, Wang ZY, Wen J, Mysore KS, Zhou C. The formation of stipule requires the coordinated actions of the legume orthologs of Arabidopsis BLADE-ON-PETIOLE and LEAFY. THE NEW PHYTOLOGIST 2022; 236:1512-1528. [PMID: 36031740 DOI: 10.1111/nph.18445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Stipule morphology is a classical botanical key character used in plant identification. Stipules are considerably diverse in size, function and architecture, such as leaf-like stipules, spines or tendrils. However, the molecular mechanism that regulates stipule identity remains largely unknown. We isolated mutants with abnormal stipules. The mutated gene encodes the NODULE ROOT1 (MtNOOT1), which is the ortholog of BLADE-ON-PETIOLE (BOP) in Medicago truncatula. We also obtained mutants of MtNOOT2, the homolog of MtNOOT1, but they do not show obvious defects in stipules. The mtnoot1 mtnoot2 double mutant shows a higher proportion of transformation from stipules to leaflet-like stipules than the single mutants, suggesting that they redundantly determine stipule identity. Further investigations show that MtNOOTs control stipule initiation together with SINGLE LEAFLET1 (SGL1), which functions in development of lateral leaflets. Increasing SGL1 activity in mtnoot1 mtnoot2 is sufficient for the transformation of stipules to leaves. Moreover, MtNOOTs inhibit SGL1 expression during stipule development, which is probably conserved in legume species. Our study proposes a genetic regulatory model for stipule development, specifically with regard to the MtNOOTs-SGL1 module, which functions in two phases of stipule development, first in the control of stipule initiation and second in stipule patterning.
Collapse
Affiliation(s)
- Juanjuan Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Xiao Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Lu Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Jing Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Yangyang Xie
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Jie Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Zeng-Yu Wang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jiangqi Wen
- Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Kirankumar S Mysore
- Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| |
Collapse
|
7
|
Light regulates stomatal development by modulating paracrine signaling from inner tissues. Nat Commun 2021; 12:3403. [PMID: 34099707 PMCID: PMC8184810 DOI: 10.1038/s41467-021-23728-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/13/2021] [Indexed: 11/09/2022] Open
Abstract
Developmental outcomes are shaped by the interplay between intrinsic and external factors. The production of stomata—essential pores for gas exchange in plants—is extremely plastic and offers an excellent system to study this interplay at the cell lineage level. For plants, light is a key external cue, and it promotes stomatal development and the accumulation of the master stomatal regulator SPEECHLESS (SPCH). However, how light signals are relayed to influence SPCH remains unknown. Here, we show that the light-regulated transcription factor ELONGATED HYPOCOTYL 5 (HY5), a critical regulator for photomorphogenic growth, is present in inner mesophyll cells and directly binds and activates STOMAGEN. STOMAGEN, the mesophyll-derived secreted peptide, in turn stabilizes SPCH in the epidermis, leading to enhanced stomatal production. Our work identifies a molecular link between light signaling and stomatal development that spans two tissue layers and highlights how an environmental signaling factor may coordinate growth across tissue types. Light promotes stomatal development in plants. Here Wang et al. show that light stimulates stomatal development via the HY5 transcription factor which induces expression of STOMAGEN, a mesophyll-derived secreted peptide, that in turn leads to stabilization of a master regulator of stomatal development in the epidermis.
Collapse
|
8
|
Chan C, Zimmerli L. The Histone Demethylase IBM1 Positively Regulates Arabidopsis Immunity by Control of Defense Gene Expression. FRONTIERS IN PLANT SCIENCE 2019; 10:1587. [PMID: 31956325 PMCID: PMC6951416 DOI: 10.3389/fpls.2019.01587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/12/2019] [Indexed: 05/23/2023]
Abstract
Epigenetic modifications involve complex and sophisticated control over chromatin states and DNA methylation patterns, which are important for stress tolerance in plants. While the identification of epigenetic modulating enzymes keeps growing, such as MET1, for CG methylation; CMT3, DRM2, DRM3 for CHH methylation; and IBM1, SUVH4 for CHG methylation; the molecular roles of these regulators in specific physiological functions remain obscure. In a mutant screen, we identified IBM1 as a new player in plant immunity. The ibm1 mutants were hyper-susceptible to hemi-biotrophic bacteria Pseudomonas syringae. Accordingly, bacteria-induced up-regulation of PR1, PR2, and FRK1 defense markers was abolished in ibm1 mutants. Consistently, at the chromatin level, these defense marker genes showed enrichment of the inactivation mark, H3K9me2; while the activation mark H3K4me3 was reduced in ibm1 mutants. Immunoprecipitation of associated chromatin further demonstrated that IBM1 binds directly to the gene body of PR1, PR2, and FRK1. Taken together, these data suggest that IBM1 plays a critical role in modulating Arabidopsis immunity through direct regulation of defense gene expression. Notably, IBM1 maintains a permissive chromatin environment to ensure proper induction of defense genes under some biotic stress.
Collapse
|
9
|
Qi S, Lin Q, Feng X, Han H, Liu J, Zhang L, Wu S, Le J, Blumwald E, Hua X. IDD16 negatively regulates stomatal initiation via trans-repression of SPCH in Arabidopsis. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1446-1457. [PMID: 30623555 PMCID: PMC6576023 DOI: 10.1111/pbi.13070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/20/2018] [Accepted: 11/23/2018] [Indexed: 05/20/2023]
Abstract
In Arabidopsis, the initiation and proliferation of stomatal lineage cells is controlled by SPEECHLESS (SPCH). Phosphorylation of SPCH at the post-translational level has been reported to regulate stomatal development. Here we report that IDD16 acts as a negative regulator for stomatal initiation by directly regulating SPCH transcription. In Arabidopsis, IDD16 overexpression decreased abaxial stomatal density in a dose-dependent manner. Time course analysis revealed that the initiation of stomatal precursor cells in the IDD16-OE plants was severely inhibited. Consistent with these findings, the transcription of SPCH was greatly repressed in the IDD16-OE plants. In contrast, IDD16-RNAi transgenic line resulted in enhanced stomatal density, suggesting that IDD16 is an intrinsic regulator of stomatal development. ChIP analysis indicated that IDD16 could directly bind to the SPCH promoter. Furthermore, Arabidopsis plants overexpressing IDD16 exhibited significantly increased drought tolerance and higher integrated water use efficiency (WUE) due to reduction in leaf transpiration. Collectively, our results established that IDD16 negatively regulates stomatal initiation via trans-repression of SPCH, and thus provide a practical tool for increasing plant WUE through the manipulation of IDD16 expression.
Collapse
Affiliation(s)
- Shi‐Lian Qi
- Key Laboratory of Plant Resources and Beijing Botanical GardenInstitute of BotanyChinese Academy of SciencesBeijingChina
- College of HorticultureFujian Agriculture and Forestry UniversityFuzhouFujianChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qing‐Fang Lin
- Key Laboratory of Plant Resources and Beijing Botanical GardenInstitute of BotanyChinese Academy of SciencesBeijingChina
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujianChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xuan‐Jun Feng
- Key Laboratory of Plant Resources and Beijing Botanical GardenInstitute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Hui‐Ling Han
- Key Laboratory of Plant Resources and Beijing Botanical GardenInstitute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jie Liu
- Key Laboratory of Plant Resources and Beijing Botanical GardenInstitute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Liu Zhang
- College of Life SciencesFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Shuang Wu
- College of HorticultureFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Jie Le
- Key Laboratory of Plant Molecular PhysiologyCAS Center for Excellence in Molecular Plant SciencesInstitute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | | | - Xue‐Jun Hua
- Key Laboratory of Plant Resources and Beijing Botanical GardenInstitute of BotanyChinese Academy of SciencesBeijingChina
- College of Life SciencesZhejiang Sci‐Tech UniversityHangzhouZhejiangChina
| |
Collapse
|
10
|
Srivastava R, Li Z, Russo G, Tang J, Bi R, Muppirala U, Chudalayandi S, Severin A, He M, Vaitkevicius SI, Lawrence-Dill CJ, Liu P, Stapleton AE, Bassham DC, Brandizzi F, Howell SH. Response to Persistent ER Stress in Plants: A Multiphasic Process That Transitions Cells from Prosurvival Activities to Cell Death. THE PLANT CELL 2018; 30:1220-1242. [PMID: 29802214 PMCID: PMC6048783 DOI: 10.1105/tpc.18.00153] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 05/09/2023]
Abstract
The unfolded protein response (UPR) is a highly conserved response that protects plants from adverse environmental conditions. The UPR is elicited by endoplasmic reticulum (ER) stress, in which unfolded and misfolded proteins accumulate within the ER. Here, we induced the UPR in maize (Zea mays) seedlings to characterize the molecular events that occur over time during persistent ER stress. We found that a multiphasic program of gene expression was interwoven among other cellular events, including the induction of autophagy. One of the earliest phases involved the degradation by regulated IRE1-dependent RNA degradation (RIDD) of RNA transcripts derived from a family of peroxidase genes. RIDD resulted from the activation of the promiscuous ribonuclease activity of ZmIRE1 that attacks the mRNAs of secreted proteins. This was followed by an upsurge in expression of the canonical UPR genes indirectly driven by ZmIRE1 due to its splicing of Zmbzip60 mRNA to make an active transcription factor that directly upregulates many of the UPR genes. At the peak of UPR gene expression, a global wave of RNA processing led to the production of many aberrant UPR gene transcripts, likely tempering the ER stress response. During later stages of ER stress, ZmIRE1's activity declined, as did the expression of survival modulating genes, Bax inhibitor1 and Bcl-2-associated athanogene7, amid a rising tide of cell death. Thus, in response to persistent ER stress, maize seedlings embark on a course of gene expression and cellular events progressing from adaptive responses to cell death.
Collapse
Affiliation(s)
- Renu Srivastava
- Plant Sciences Institute, Iowa State University, Ames, Iowa 50011
| | - Zhaoxia Li
- Plant Sciences Institute, Iowa State University, Ames, Iowa 50011
| | - Giulia Russo
- MSU-DOE Plant Research Laboratories, Department of Plant Biology, East Lansing, Michigan 48824
| | - Jie Tang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Ran Bi
- Department of Statistics, Iowa State University, Ames, Iowa 50011
| | - Usha Muppirala
- Genome Informatics Facility, Iowa State University, Ames, Iowa 50011
| | | | - Andrew Severin
- Genome Informatics Facility, Iowa State University, Ames, Iowa 50011
| | - Mingze He
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Samuel I Vaitkevicius
- MSU-DOE Plant Research Laboratories, Department of Plant Biology, East Lansing, Michigan 48824
| | - Carolyn J Lawrence-Dill
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Peng Liu
- Department of Statistics, Iowa State University, Ames, Iowa 50011
| | - Ann E Stapleton
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina 28403
| | - Diane C Bassham
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Federica Brandizzi
- MSU-DOE Plant Research Laboratories, Department of Plant Biology, East Lansing, Michigan 48824
| | - Stephen H Howell
- Plant Sciences Institute, Iowa State University, Ames, Iowa 50011
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
11
|
Lau OS, Song Z, Zhou Z, Davies KA, Chang J, Yang X, Wang S, Lucyshyn D, Tay IHZ, Wigge PA, Bergmann DC. Direct Control of SPEECHLESS by PIF4 in the High-Temperature Response of Stomatal Development. Curr Biol 2018; 28:1273-1280.e3. [PMID: 29628371 DOI: 10.1016/j.cub.2018.02.054] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/12/2018] [Accepted: 02/20/2018] [Indexed: 11/18/2022]
Abstract
Environmental factors shape the phenotypes of multicellular organisms. The production of stomata-the epidermal pores required for gas exchange in plants-is highly plastic and provides a powerful platform to address environmental influence on cell differentiation [1-3]. Rising temperatures are already impacting plant growth, a trend expected to worsen in the near future [4]. High temperature inhibits stomatal production, but the underlying mechanism is not known [5]. Here, we show that elevated temperature suppresses the expression of SPEECHLESS (SPCH), the basic-helix-loop-helix (bHLH) transcription factor that serves as the master regulator of stomatal lineage initiation [6, 7]. Our genetic and expression analyses indicate that the suppression of SPCH and stomatal production is mediated by the bHLH transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), a core component of high-temperature signaling [8]. Importantly, we demonstrate that, upon exposure to high temperature, PIF4 accumulates in the stomatal precursors and binds to the promoter of SPCH. In addition, we find SPCH feeds back negatively to the PIF4 gene. We propose a model where warm-temperature-activated PIF4 binds and represses SPCH expression to restrict stomatal production at elevated temperatures. Our work identifies a molecular link connecting high-temperature signaling and stomatal development and reveals a direct mechanism by which production of a specific cell lineage can be controlled by a broadly expressed environmental signaling factor.
Collapse
Affiliation(s)
- On Sun Lau
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Zhuojun Song
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Zimin Zhou
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Kelli A Davies
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jessica Chang
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Xin Yang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Shenqi Wang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Doris Lucyshyn
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Irene Hui Zhuang Tay
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Philip A Wigge
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK; Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Dominique C Bergmann
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
12
|
Weimer AK, Matos JL, Sharma N, Patell F, Murray JAH, Dewitte W, Bergmann DC. Lineage- and stage-specific expressed CYCD7;1 coordinates the single symmetric division that creates stomatal guard cells. Development 2018; 145:dev.160671. [PMID: 29467245 DOI: 10.1242/dev.160671] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/13/2018] [Indexed: 11/20/2022]
Abstract
Plants, with cells fixed in place by rigid walls, often utilize spatial and temporally distinct cell division programs to organize and maintain organs. This leads to the question of how developmental regulators interact with the cell cycle machinery to link cell division events with particular developmental trajectories. In Arabidopsis leaves, the development of stomata, two-celled epidermal valves that mediate plant-atmosphere gas exchange, relies on a series of oriented stem cell-like asymmetric divisions followed by a single symmetric division. The stomatal lineage is embedded in a tissue in which other cells transition from proliferation to postmitotic differentiation earlier, necessitating stomatal lineage-specific factors to prolong competence to divide. We show that the D-type cyclin, CYCD7;1, is specifically expressed just prior to the symmetric guard cell-forming division, and that it is limiting for this division. Further, we find that CYCD7;1 is capable of promoting divisions in multiple contexts, likely through RBR1-dependent promotion of the G1/S transition, but that CYCD7;1 is regulated at the transcriptional level by cell type-specific transcription factors that confine its expression to the appropriate developmental window.
Collapse
Affiliation(s)
- Annika K Weimer
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Juliana L Matos
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Nidhi Sharma
- Howard Hughes Medical Institute (HHMI), Stanford University, Stanford, CA 94305, USA
| | - Farah Patell
- Cardiff School of Bioscience, Cardiff University, Cardiff CF10 3AX, UK.,Institute of Biotechnology, University of Cambridge, Cambridge CB2 1QT, UK
| | - James A H Murray
- Cardiff School of Bioscience, Cardiff University, Cardiff CF10 3AX, UK.,Institute of Biotechnology, University of Cambridge, Cambridge CB2 1QT, UK
| | - Walter Dewitte
- Cardiff School of Bioscience, Cardiff University, Cardiff CF10 3AX, UK.,Institute of Biotechnology, University of Cambridge, Cambridge CB2 1QT, UK
| | - Dominique C Bergmann
- Department of Biology, Stanford University, Stanford, CA 94305, USA .,Howard Hughes Medical Institute (HHMI), Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
13
|
Nolan T, Liu S, Guo H, Li L, Schnable P, Yin Y. Identification of Brassinosteroid Target Genes by Chromatin Immunoprecipitation Followed by High-Throughput Sequencing (ChIP-seq) and RNA-Sequencing. Methods Mol Biol 2018; 1564:63-79. [PMID: 28124247 DOI: 10.1007/978-1-4939-6813-8_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Brassinosteroids (BRs) play important roles in many growth and developmental processes. BRs signal to regulate BR-INSENSITIVE1-ETHYL METHANESULFONATE-SUPPRESSOR1 (BES1) and BRASSINAZOLE-RESISTANT1 (BZR1) transcription factors (TFs), which, in turn, regulate several hundreds of transcription factors (termed BES1/BZR1-targeted TFs or BTFs) and thousands of genes to mediate various BR responses. Chromatin Immunoprecipitation followed by high-throughput sequencing (ChIP-seq) with BES1/BZR1 and BTFs is an important approach to identify BR target genes. In combination with RNA-sequencing experiments, these genomic methods have become powerful tools to detect BR target genes and reveal transcriptional networks underlying BR-regulated processes.
Collapse
Affiliation(s)
- Trevor Nolan
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011-3650, USA
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506-5502, USA
| | - Hongqing Guo
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011-3650, USA
| | - Lei Li
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011-3650, USA.,Harvard Medical School, Harvard University, Boston, MA, 02114-2790, USA
| | - Patrick Schnable
- Department of Agronomy, Iowa State University, Ames, IA, 50011-3650, USA
| | - Yanhai Yin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011-3650, USA.
| |
Collapse
|
14
|
Wang S, Lau OS. MOBE-ChIP: Probing Cell Type-Specific Binding Through Large-Scale Chromatin Immunoprecipitation. Methods Mol Biol 2018; 1689:167-176. [PMID: 29027174 DOI: 10.1007/978-1-4939-7380-4_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
In multicellular organisms, the initiation and maintenance of specific cell types often require the activity of cell type-specific transcriptional regulators. Understanding their roles in gene regulation is crucial but probing their DNA targets in vivo, especially in a genome-wide manner, remains a technical challenge with their limited expression. To improve the sensitivity of chromatin immunoprecipitation (ChIP) for detecting the cell type-specific signals, we have developed the Maximized Objects for Better Enrichment (MOBE)-ChIP, where ChIP is performed at a substantially larger experimental scale and under low background conditions. Here, we describe the procedure in the study of transcription factors in the model plant Arabidopsis. However, with some modifications, the technique should also be implemented in other systems. Besides cell type-specific studies, MOBE-ChIP can also be used as a general strategy to improve ChIP signals.
Collapse
Affiliation(s)
- Shenqi Wang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - On Sun Lau
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
| |
Collapse
|
15
|
Ingouff M, Selles B, Michaud C, Vu TM, Berger F, Schorn AJ, Autran D, Van Durme M, Nowack MK, Martienssen RA, Grimanelli D. Live-cell analysis of DNA methylation during sexual reproduction in Arabidopsis reveals context and sex-specific dynamics controlled by noncanonical RdDM. Genes Dev 2017; 31:72-83. [PMID: 28115468 PMCID: PMC5287115 DOI: 10.1101/gad.289397.116] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/28/2016] [Indexed: 12/22/2022]
Abstract
Cytosine methylation is a key epigenetic mark in many organisms, important for both transcriptional control and genome integrity. While relatively stable during somatic growth, DNA methylation is reprogrammed genome-wide during mammalian reproduction. Reprogramming is essential for zygotic totipotency and to prevent transgenerational inheritance of epimutations. However, the extent of DNA methylation reprogramming in plants remains unclear. Here, we developed sensors reporting with single-cell resolution CG and non-CG methylation in Arabidopsis. Live imaging during reproduction revealed distinct and sex-specific dynamics for both contexts. We found that CHH methylation in the egg cell depends on DOMAINS REARRANGED METHYLASE 2 (DRM2) and RNA polymerase V (Pol V), two main actors of RNA-directed DNA methylation, but does not depend on Pol IV. Our sensors provide insight into global DNA methylation dynamics at the single-cell level with high temporal resolution and offer a powerful tool to track CG and non-CG methylation both during development and in response to environmental cues in all organisms with methylated DNA, as we illustrate in mouse embryonic stem cells.
Collapse
Affiliation(s)
- Mathieu Ingouff
- Epigenetic Regulations and Seed Development, UMR232, Institut de Recherche pour le Développement (IRD), Université de Montpellier, 34394 Montpellier, France
| | - Benjamin Selles
- Epigenetic Regulations and Seed Development, UMR232, Institut de Recherche pour le Développement (IRD), Université de Montpellier, 34394 Montpellier, France
| | - Caroline Michaud
- Epigenetic Regulations and Seed Development, UMR232, Institut de Recherche pour le Développement (IRD), Université de Montpellier, 34394 Montpellier, France
| | - Thiet M Vu
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, 1030 Vienna, Austria
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, 1030 Vienna, Austria
| | - Andrea J Schorn
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Daphné Autran
- Epigenetic Regulations and Seed Development, UMR232, Institut de Recherche pour le Développement (IRD), Université de Montpellier, 34394 Montpellier, France
| | - Matthias Van Durme
- Department of Plant Systems Biology, VIB, Ghent University, B-9052 Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Moritz K Nowack
- Department of Plant Systems Biology, VIB, Ghent University, B-9052 Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Robert A Martienssen
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Daniel Grimanelli
- Epigenetic Regulations and Seed Development, UMR232, Institut de Recherche pour le Développement (IRD), Université de Montpellier, 34394 Montpellier, France.,Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
16
|
Abstract
Plants, like other eukaryotes, have evolved complex mechanisms to coordinate gene expression during development, environmental response, and cellular homeostasis. Transcription factors (TFs), accompanied by basic cofactors and posttranscriptional regulators, are key players in gene-regulatory networks (GRNs). The coordinated control of gene activity is achieved by the interplay of these factors and by physical interactions between TFs and DNA. Here, we will briefly outline recent technological progress made to elucidate GRNs in plants. We will focus on techniques that allow us to characterize physical interactions in GRNs in plants and to analyze their regulatory consequences. Targeted manipulation allows us to test the relevance of specific gene-regulatory interactions. The combination of genome-wide experimental approaches with mathematical modeling allows us to get deeper insights into key-regulatory interactions and combinatorial control of important processes in plants.
Collapse
Affiliation(s)
- Kerstin Kaufmann
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.
| | - Dijun Chen
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.,Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
17
|
Lau OS. Characterization of Cell-Type-Specific DNA Binding Sites of Plant Transcription Factors Using Chromatin Immunoprecipitation. Methods Mol Biol 2017. [PMID: 28623578 DOI: 10.1007/978-1-4939-7125-1_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The generation of diverse cell types in multicellular organisms often requires the activity of cell-type-specific transcription factors. Understanding where these transcription factors bind in controlling specific cellular programs is critical. However, probing these cell-type-specific factors in vivo with standard chromatin immunoprecipitation (ChIP) assays remains a challenge. We have developed an optimized ChIP assay termed Maximized Objects for Better Enrichment (MOBE)-ChIP, which improves ChIP sensitivity and allows the detection of cell-type-specific signals at a genome-wide scale. Here, I describe the procedure for implementing this method for the study of plant transcription factors. Besides being useful for cell-type-specific studies, MOBE-ChIP can also be employed as a general strategy for enhancing ChIP signals.
Collapse
Affiliation(s)
- On Sun Lau
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
| |
Collapse
|
18
|
Shirakawa M, Ueda H, Shimada T, Hara-Nishimura I. FAMA: A Molecular Link between Stomata and Myrosin Cells. TRENDS IN PLANT SCIENCE 2016; 21:861-871. [PMID: 27477926 DOI: 10.1016/j.tplants.2016.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/24/2016] [Accepted: 07/04/2016] [Indexed: 05/04/2023]
Abstract
Plants use sophisticated defense strategies against herbivores, including the myrosinase-glucosinolate system in Brassicales plants. This system sequesters myrosinase in myrosin cells, which are idioblasts in inner leaf tissues, and produces a toxic compound when cells are damaged by herbivores. Although the molecular mechanisms underlying myrosin cell development are largely unknown, recent studies have revealed that two key components, a basic helix-loop-helix (bHLH) transcription factor (FAMA) and vesicle trafficking factors (such as SYNTAXIN OF PLANTS 22), regulate the differentiation and fate determination of myrosin cells. FAMA also functions as a master regulator of guard cell (GC) differentiation. In this review, we discuss how FAMA operates two distinct genetic programs: the generation of myrosin cells in inner plant tissue and GCs in the epidermis.
Collapse
Affiliation(s)
- Makoto Shirakawa
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Haruko Ueda
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Tomoo Shimada
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | |
Collapse
|