1
|
Transcriptome Analysis Reveals Potential Mechanism in Storage Protein Trafficking within Developing Grains of Common Wheat. Int J Mol Sci 2022; 23:ijms232314851. [PMID: 36499182 PMCID: PMC9738083 DOI: 10.3390/ijms232314851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/07/2022] [Accepted: 10/18/2022] [Indexed: 12/03/2022] Open
Abstract
Gluten proteins are the major storage protein fraction in the mature wheat grain. They are restricted to the starchy endosperm, which defines the viscoelastic properties of wheat dough. The synthesis of these storage proteins is controlled by the endoplasmic reticulum (ER) and is directed into the vacuole via the Golgi apparatus. In the present study, transcriptome analysis was used to explore the potential mechanism within critical stages of grain development of wheat cultivar "Shaannong 33" and its sister line used as the control (CK). Samples were collected at 10 DPA (days after anthesis), 14 DPA, 20 DPA, and 30 DPA for transcriptomic analysis. The comparative transcriptome analysis identified that a total of 18,875 genes were differentially expressed genes (DEGs) between grains of four groups "T10 vs. CK10, T14 vs. CK14, T20 vs. CK20, and T30 vs. CK30", including 2824 up-regulated and 5423 down-regulated genes in T30 vs. CK30. Further, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment highlighted the maximum number of genes regulating protein processing in the endoplasmic reticulum (ER) during grain enlargement stages (10-20 DPA). In addition, KEGG database analysis reported 1362 and 788 DEGs involved in translation, ribosomal structure, biogenesis, flavonoid biosynthesis pathway and intracellular trafficking, secretion, and vesicular transport through protein processing within ER pathway (ko04141). Notably, consistent with the higher expression of intercellular storage protein trafficking genes at the initial 10 DPA, there was relatively low expression at later stages. Expression levels of nine randomly selected genes were verified by qRT-PCR, which were consistent with the transcriptome data. These data suggested that the initial stages of "cell division" played a significant role in protein quality control within the ER, thus maintaining the protein quality characteristics at grain maturity. Furthermore, our data suggested that the protein synthesis, folding, and trafficking pathways directed by a different number of genes during the grain enlargement stage contributed to the observed high-quality characteristics of gluten protein in Shaannong 33 (Triticum aestivum L.).
Collapse
|
2
|
Bai B, Li Z, Wang H, Du X, Wu L, Du J, Lan C. Genetic Analysis of Adult Plant Resistance to Stripe Rust in Common Wheat Cultivar "Pascal". FRONTIERS IN PLANT SCIENCE 2022; 13:918437. [PMID: 35874020 PMCID: PMC9298664 DOI: 10.3389/fpls.2022.918437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Wheat stripe rust is an important foliar disease that affects the wheat yield globally. Breeding for resistant wheat varieties is one of the most economically and environmentally effective ways to control this disease. The common wheat (Triticum aestivum L.) cultivar "Pascal" exhibited susceptibility to stripe rust at the seedling stage but it showed high resistance to stripe rust at the adult plant stage over 20 years in Gansu, a hotspot of the disease in northwestern China. To understand the genetic mechanism of stripe rust resistance in this cultivar, a 55K SNP array was used to analyze the two parents and the 220 recombinant inbred lines (RILs) derived from the cross of "Huixianhong" × "Pascal." We detected three new stripe rust adult plant resistance (APR) quantitative trait locus (QTL) contributed by Pascal, viz. QYr.gaas-1AL, QYr.gaas-3DL, and QYr.gaas-5AS, using the inclusive composite interval mapping method. They were flanked by SNP markers AX-111218361-AX-110577861, AX-111460455-AX-108798599, and AX-111523523-AX-110028503, respectively, and explained the phenotypic variation ranging from 11.0 to 23.1%. Bulked segregant exome capture sequencing (BSE-Seq) was used for fine mapping of QYr.gaas-1AL and selection of candidate genes, TraesCS1A02G313700, TraesCS1A02G313800, and TraesCS1A02G314900 for QYr.gaas-1AL. KASP markers BSE-1A-12 and HXPA-3D for QYr.gaas-1AL and QYr.gaas-3DL were developed for breeders to develop durable stripe rust-resistant wheat varieties.
Collapse
Affiliation(s)
- Bin Bai
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Zimeng Li
- Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongmei Wang
- Institute of Biotechnology, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaolin Du
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ling Wu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Jiuyuan Du
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Caixia Lan
- Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Esposito S, D'Agostino N, Taranto F, Sonnante G, Sestili F, Lafiandra D, De Vita P. Whole-exome sequencing of selected bread wheat recombinant inbred lines as a useful resource for allele mining and bulked segregant analysis. Front Genet 2022; 13:1058471. [PMID: 36482886 PMCID: PMC9723387 DOI: 10.3389/fgene.2022.1058471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/07/2022] [Indexed: 03/22/2023] Open
Abstract
Although wheat (Triticum aestivum L.) is the main staple crop in the world and a major source of carbohydrates and proteins, functional genomics and allele mining are still big challenges. Given the advances in next-generation sequencing (NGS) technologies, the identification of causal variants associated with a target phenotype has become feasible. For these reasons, here, by combining sequence capture and target-enrichment methods with high-throughput NGS re-sequencing, we were able to scan at exome-wide level 46 randomly selected bread wheat individuals from a recombinant inbred line population and to identify and classify a large number of single nucleotide polymorphisms (SNPs). For technical validation of results, eight randomly selected SNPs were converted into Kompetitive Allele-Specific PCR (KASP) markers. This resource was established as an accessible and reusable molecular toolkit for allele data mining. The dataset we are making available could be exploited for novel studies on bread wheat genetics and as a foundation for starting breeding programs aimed at improving different key agronomic traits.
Collapse
Affiliation(s)
- Salvatore Esposito
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA-Council for Agricultural Research and Economics, Foggia, Italy
| | - Nunzio D'Agostino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | | | | | - Francesco Sestili
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Domenico Lafiandra
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Pasquale De Vita
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA-Council for Agricultural Research and Economics, Foggia, Italy
| |
Collapse
|
4
|
Chapman EA, Orford S, Lage J, Griffiths S. Delaying or delivering: identification of novel NAM-1 alleles that delay senescence to extend wheat grain fill duration. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7710-7728. [PMID: 34405865 PMCID: PMC8660559 DOI: 10.1093/jxb/erab368] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/06/2021] [Indexed: 05/03/2023]
Abstract
Senescence is a complex trait under genetic and environmental control, in which resources are remobilized from vegetative tissue into grain. Delayed senescence, or 'staygreen' traits, can confer stress tolerance, with extended photosynthetic activity hypothetically sustaining grain filling. The genetics of senescence regulation are largely unknown, with senescence variation often correlated with phenological traits. Here, we confirm staygreen phenotypes of two Triticum aestivum cv. Paragon ethyl methane sulfonate mutants previously identified during a forward genetic screen and selected for their agronomic performance, similar phenology, and differential senescence phenotypes. Grain filling experiments confirmed a positive relationship between onset of senescence and grain fill duration, reporting an associated ~14% increase in final dry grain weight for one mutant (P<0.05). Recombinant inbred line (RIL) populations segregating for the timing of senescence were developed for trait mapping purposes and phenotyped over multiple years under field conditions. Quantification and comparison of senescence metrics aided RIL selection, facilitating exome capture-enabled bulk segregant analysis (BSA). Using BSA we mapped our two staygreen traits to two independent, dominant, loci of 4.8 and 16.7 Mb in size encompassing 56 and 142 genes, respectively. Combining association analysis with variant effect prediction, we identified single nucleotide polymorphisms encoding self-validating mutations located in NAM-1 homoeologues, which we propose as gene candidates.
Collapse
Affiliation(s)
| | - Simon Orford
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - Jacob Lage
- KWS-UK, 56 Church Street, Thriplow, Hertfordshire SG8 7RE, UK
| | - Simon Griffiths
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| |
Collapse
|
5
|
Xie J, Guo G, Wang Y, Hu T, Wang L, Li J, Qiu D, Li Y, Wu Q, Lu P, Chen Y, Dong L, Li M, Zhang H, Zhang P, Zhu K, Li B, Deal KR, Huo N, Zhang Y, Luo MC, Liu S, Gu YQ, Li H, Liu Z. A rare single nucleotide variant in Pm5e confers powdery mildew resistance in common wheat. THE NEW PHYTOLOGIST 2020; 228:1011-1026. [PMID: 32569398 DOI: 10.1111/nph.16762] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/02/2020] [Indexed: 05/18/2023]
Abstract
Powdery mildew poses severe threats to wheat production. The most sustainable way to control this disease is through planting resistant cultivars. We report the map-based cloning of the powdery mildew resistance allele Pm5e from a Chinese wheat landrace. We applied a two-step bulked segregant RNA sequencing (BSR-Seq) approach in developing tightly linked or co-segregating markers to Pm5e. The first BSR-Seq used phenotypically contrasting bulks of recombinant inbred lines (RILs) to identify Pm5e-linked markers. The second BSR-Seq utilized bulks of genetic recombinants screened from a fine-mapping population to precisely quantify the associated genomic variation in the mapping interval, and identified the Pm5e candidate genes. The function of Pm5e was validated by transgenic assay, loss-of-function mutants and haplotype association analysis. Pm5e encodes a nucleotide-binding domain leucine-rich-repeat-containing (NLR) protein. A rare nonsynonymous single nucleotide variant (SNV) within the C-terminal leucine rich repeat (LRR) domain is responsible for the gain of powdery mildew resistance function of Pm5e, an allele endemic to wheat landraces of Shaanxi province of China. Results from this study demonstrate the value of landraces in discovering useful genes for modern wheat breeding. The key SNV associated with powdery mildew resistance will be useful for marker-assisted selection of Pm5e in wheat breeding programs.
Collapse
Affiliation(s)
- Jingzhong Xie
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guanghao Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tiezhu Hu
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan, 4530003, China
| | - Lili Wang
- China Agricultural University, Beijing, 100193, China
| | - Jingting Li
- College of Chemistry and Environment Engineering, Pingdingshan University, Pingdingshan, 467000, China
| | - Dan Qiu
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yahui Li
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiuhong Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ping Lu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongxing Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lingli Dong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Miaomiao Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huaizhi Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Panpan Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Keyu Zhu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Beibei Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Karin R Deal
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Naxin Huo
- USDA-ARS West Regional Research Center, Albany, CA, 94710, USA
| | - Yan Zhang
- China Agricultural University, Beijing, 100193, China
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Yong Qiang Gu
- USDA-ARS West Regional Research Center, Albany, CA, 94710, USA
| | - Hongjie Li
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhiyong Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Gardiner LJ, Bansept-Basler P, El-Soda M, Hall A, O’Sullivan DM. A framework for gene mapping in wheat demonstrated using the Yr7 yellow rust resistance gene. PLoS One 2020; 15:e0231157. [PMID: 32294096 PMCID: PMC7159211 DOI: 10.1371/journal.pone.0231157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/17/2020] [Indexed: 11/19/2022] Open
Abstract
We used three approaches to map the yellow rust resistance gene Yr7 and identify associated SNPs in wheat. First, we used a traditional QTL mapping approach using a double haploid (DH) population and mapped Yr7 to a low-recombination region of chromosome 2B. To fine map the QTL, we then used an association mapping panel. Both populations were SNP array genotyped allowing alignment of QTL and genome-wide association scans based on common segregating SNPs. Analysis of the association panel spanning the QTL interval, narrowed the interval down to a single haplotype block. Finally, we used mapping-by-sequencing of resistant and susceptible DH bulks to identify a candidate gene in the interval showing high homology to a previously suggested Yr7 candidate and to populate the Yr7 interval with a higher density of polymorphisms. We highlight the power of combining mapping-by-sequencing, delivering a complete list of gene-based segregating polymorphisms in the interval with the high recombination, low LD precision of the association mapping panel. Our mapping-by-sequencing methodology is applicable to any trait and our results validate the approach in wheat, where with a near complete reference genome sequence, we are able to define a small interval containing the causative gene.
Collapse
Affiliation(s)
- Laura-Jayne Gardiner
- IBM Research, Warrington, England, United Kingdom
- Earlham Institute, Norwich, England, United Kingdom
| | | | - Mohamed El-Soda
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Anthony Hall
- Earlham Institute, Norwich, England, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, England, United Kingdom
| | - Donal M. O’Sullivan
- School of Agriculture, Policy and Development, University of Reading, Reading, England, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Gardiner LJ. Understanding DNA Methylation Patterns in Wheat. Methods Mol Biol 2020; 2093:33-46. [PMID: 32088887 DOI: 10.1007/978-1-0716-0179-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The bread wheat genome is large (17 Gb), allohexaploid, and highly repetitive (80-90% of the genome), which makes genomic and epigenomic analyses expensive to conduct and a challenge to analyze. Here we provide an overview of recent bioinformatic and experimental methods that have been developed to understand DNA methylation patterns in the complex polyploid genome of wheat.
Collapse
|
8
|
Dong C, Zhang L, Chen Z, Xia C, Gu Y, Wang J, Li D, Xie Z, Zhang Q, Zhang X, Gui L, Liu X, Kong X. Combining a New Exome Capture Panel With an Effective varBScore Algorithm Accelerates BSA-Based Gene Cloning in Wheat. FRONTIERS IN PLANT SCIENCE 2020; 11:1249. [PMID: 32903549 PMCID: PMC7438552 DOI: 10.3389/fpls.2020.01249] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/29/2020] [Indexed: 05/07/2023]
Abstract
The discovery of functional genes underlying agronomic traits is of great importance for wheat improvement. Here we designed a new wheat exome capture probe panel based on IWGSC RefSeq v1.0 genome sequence information and developed an effective algorithm, varBScore, that can sufficiently reduce the background noise in gene mapping and identification. An effective method, termed bulked segregant exome capture sequencing (BSE-Seq) for identifying causal mutations or candidate genes was established by combining the use of a newly designed wheat exome capture panel, sequencing of bulked segregant pools from segregating populations, and the robust algorithm varBScore. We evaluated the effectiveness of varBScore on SNP calling using the published dataset for mapping and cloning the yellow rust resistance gene Yr7 in wheat. Furthermore, using BSE-Seq, we rapidly identified a wheat yellow leaf mutant gene, ygl1, in an ethyl methanesulfonate (EMS) mutant population and found that a single mutation of G to A at 921 position in the wild type YGL1 gene encoding magnesium-chelatase subunit chlI caused the leaf yellowing phenotype. We further showed that mutation of YGL1 through CRISPR/Cas9 gene editing led to a yellow phenotype on the leaves of transgenic wheat, indicating that ygl1 is the correct causal gene responsible for the mutant phenotype. In summary, our approach is highly efficient for discovering causal mutations and gene cloning in wheat.
Collapse
Affiliation(s)
- Chunhao Dong
- Key Laboratory for Crop Gene Resources and Germplasm Enhancement, MOA, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lichao Zhang
- Key Laboratory for Crop Gene Resources and Germplasm Enhancement, MOA, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Lichao Zhang, ; Xu Liu, ; Xiuying Kong,
| | - Zhongxu Chen
- Department of Life Science, Chengdu Tcuni Technology, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Chuan Xia
- Key Laboratory for Crop Gene Resources and Germplasm Enhancement, MOA, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongqiang Gu
- Western Regional Research, United States Department of Agriculture-Agricultural Research Service, Albany, CA, United States
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Danping Li
- Key Laboratory for Crop Gene Resources and Germplasm Enhancement, MOA, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhencheng Xie
- Key Laboratory for Crop Gene Resources and Germplasm Enhancement, MOA, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiang Zhang
- Key Laboratory for Crop Gene Resources and Germplasm Enhancement, MOA, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueying Zhang
- Key Laboratory for Crop Gene Resources and Germplasm Enhancement, MOA, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lixuan Gui
- Department of Life Science, Chengdu Tcuni Technology, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Xu Liu
- Key Laboratory for Crop Gene Resources and Germplasm Enhancement, MOA, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Lichao Zhang, ; Xu Liu, ; Xiuying Kong,
| | - Xiuying Kong
- Key Laboratory for Crop Gene Resources and Germplasm Enhancement, MOA, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Lichao Zhang, ; Xu Liu, ; Xiuying Kong,
| |
Collapse
|
9
|
Gardiner LJ, Brabbs T, Akhunov A, Jordan K, Budak H, Richmond T, Singh S, Catchpole L, Akhunov E, Hall A. Integrating genomic resources to present full gene and putative promoter capture probe sets for bread wheat. Gigascience 2019; 8:5304888. [PMID: 30715311 PMCID: PMC6461119 DOI: 10.1093/gigascience/giz018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/21/2018] [Accepted: 01/27/2019] [Indexed: 11/17/2022] Open
Abstract
Background Whole-genome shotgun resequencing of wheat is expensive because of its large, repetitive genome. Moreover, sequence data can fail to map uniquely to the reference genome, making it difficult to unambiguously assign variation. Resequencing using target capture enables sequencing of large numbers of individuals at high coverage to reliably identify variants associated with important agronomic traits. Previous studies have implemented complementary DNA/exon or gene-based probe sets in which the promoter and intron sequence is largely missing alongside newly characterized genes from the recent improved reference sequences. Results We present and validate 2 gold standard capture probe sets for hexaploid bread wheat, a gene and a putative promoter capture, which are designed using recently developed genome sequence and annotation resources. The captures can be combined or used independently. We demonstrate that the capture probe sets effectively enrich the high-confidence genes and putative promoter regions that were identified in the genome alongside a large proportion of the low-confidence genes and associated promoters. Finally, we demonstrate successful sample multiplexing that allows generation of adequate sequence coverage for single-nucleotide polymorphism calling while significantly reducing cost per sample for gene and putative promoter capture. Conclusions We show that a capture design employing an “island strategy” can enable analysis of the large gene/putative promoter space of wheat with only 2 × 160 Mbp probe sets. Furthermore, these assays extend the regions of the wheat genome that are amenable to analyses beyond its exome, providing tools for detailed characterization of these regulatory regions in large populations.
Collapse
Affiliation(s)
- Laura-Jayne Gardiner
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK.,IBM Research, The Hartree Centre STFC Laboratory, Sci-Tech Daresbury, Warrington, WA4 4AD, UK
| | - Thomas Brabbs
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Alina Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Katherine Jordan
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Hikmet Budak
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, 59717, USA
| | - Todd Richmond
- Roche Sequencing Solutions, 500 S Rosa Road, Madison, WI, 53719, USA
| | - Sukhwinder Singh
- CIMMYT, Calle Dr Norman E Borlaug, Ciudad Obregon, 85208, Mexico
| | - Leah Catchpole
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Eduard Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Anthony Hall
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK.,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TU, UK
| |
Collapse
|
10
|
|
11
|
Gardiner LJ, Brabbs T, Akhunov A, Jordan K, Budak H, Richmond T, Singh S, Catchpole L, Akhunov E, Hall A. Integrating genomic resources to present full gene and putative promoter capture probe sets for bread wheat. Gigascience 2019. [PMID: 30715311 DOI: 10.1101/363663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Whole-genome shotgun resequencing of wheat is expensive because of its large, repetitive genome. Moreover, sequence data can fail to map uniquely to the reference genome, making it difficult to unambiguously assign variation. Resequencing using target capture enables sequencing of large numbers of individuals at high coverage to reliably identify variants associated with important agronomic traits. Previous studies have implemented complementary DNA/exon or gene-based probe sets in which the promoter and intron sequence is largely missing alongside newly characterized genes from the recent improved reference sequences. RESULTS We present and validate 2 gold standard capture probe sets for hexaploid bread wheat, a gene and a putative promoter capture, which are designed using recently developed genome sequence and annotation resources. The captures can be combined or used independently. We demonstrate that the capture probe sets effectively enrich the high-confidence genes and putative promoter regions that were identified in the genome alongside a large proportion of the low-confidence genes and associated promoters. Finally, we demonstrate successful sample multiplexing that allows generation of adequate sequence coverage for single-nucleotide polymorphism calling while significantly reducing cost per sample for gene and putative promoter capture. CONCLUSIONS We show that a capture design employing an "island strategy" can enable analysis of the large gene/putative promoter space of wheat with only 2 × 160 Mbp probe sets. Furthermore, these assays extend the regions of the wheat genome that are amenable to analyses beyond its exome, providing tools for detailed characterization of these regulatory regions in large populations.
Collapse
Affiliation(s)
- Laura-Jayne Gardiner
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
- IBM Research, The Hartree Centre STFC Laboratory, Sci-Tech Daresbury, Warrington, WA4 4AD, UK
| | - Thomas Brabbs
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Alina Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Katherine Jordan
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Hikmet Budak
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, 59717, USA
| | - Todd Richmond
- Roche Sequencing Solutions, 500 S Rosa Road, Madison, WI, 53719, USA
| | - Sukhwinder Singh
- CIMMYT, Calle Dr Norman E Borlaug, Ciudad Obregon, 85208, Mexico
| | - Leah Catchpole
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Eduard Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Anthony Hall
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TU, UK
| |
Collapse
|
12
|
Gardiner LJ, Brabbs T, Akhunov A, Jordan K, Budak H, Richmond T, Singh S, Catchpole L, Akhunov E, Hall A. Integrating genomic resources to present full gene and putative promoter capture probe sets for bread wheat. Gigascience 2019. [PMID: 30715311 DOI: 10.5524/100554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Whole-genome shotgun resequencing of wheat is expensive because of its large, repetitive genome. Moreover, sequence data can fail to map uniquely to the reference genome, making it difficult to unambiguously assign variation. Resequencing using target capture enables sequencing of large numbers of individuals at high coverage to reliably identify variants associated with important agronomic traits. Previous studies have implemented complementary DNA/exon or gene-based probe sets in which the promoter and intron sequence is largely missing alongside newly characterized genes from the recent improved reference sequences. RESULTS We present and validate 2 gold standard capture probe sets for hexaploid bread wheat, a gene and a putative promoter capture, which are designed using recently developed genome sequence and annotation resources. The captures can be combined or used independently. We demonstrate that the capture probe sets effectively enrich the high-confidence genes and putative promoter regions that were identified in the genome alongside a large proportion of the low-confidence genes and associated promoters. Finally, we demonstrate successful sample multiplexing that allows generation of adequate sequence coverage for single-nucleotide polymorphism calling while significantly reducing cost per sample for gene and putative promoter capture. CONCLUSIONS We show that a capture design employing an "island strategy" can enable analysis of the large gene/putative promoter space of wheat with only 2 × 160 Mbp probe sets. Furthermore, these assays extend the regions of the wheat genome that are amenable to analyses beyond its exome, providing tools for detailed characterization of these regulatory regions in large populations.
Collapse
Affiliation(s)
- Laura-Jayne Gardiner
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
- IBM Research, The Hartree Centre STFC Laboratory, Sci-Tech Daresbury, Warrington, WA4 4AD, UK
| | - Thomas Brabbs
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Alina Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Katherine Jordan
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Hikmet Budak
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, 59717, USA
| | - Todd Richmond
- Roche Sequencing Solutions, 500 S Rosa Road, Madison, WI, 53719, USA
| | - Sukhwinder Singh
- CIMMYT, Calle Dr Norman E Borlaug, Ciudad Obregon, 85208, Mexico
| | - Leah Catchpole
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Eduard Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Anthony Hall
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TU, UK
| |
Collapse
|
13
|
Borrill P, Harrington SA, Uauy C. Applying the latest advances in genomics and phenomics for trait discovery in polyploid wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:56-72. [PMID: 30407665 PMCID: PMC6378701 DOI: 10.1111/tpj.14150] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/23/2018] [Accepted: 10/30/2018] [Indexed: 05/10/2023]
Abstract
Improving traits in wheat has historically been challenging due to its large and polyploid genome, limited genetic diversity and in-field phenotyping constraints. However, within recent years many of these barriers have been lowered. The availability of a chromosome-level assembly of the wheat genome now facilitates a step-change in wheat genetics and provides a common platform for resources, including variation data, gene expression data and genetic markers. The development of sequenced mutant populations and gene-editing techniques now enables the rapid assessment of gene function in wheat directly. The ability to alter gene function in a targeted manner will unmask the effects of homoeolog redundancy and allow the hidden potential of this polyploid genome to be discovered. New techniques to identify and exploit the genetic diversity within wheat wild relatives now enable wheat breeders to take advantage of these additional sources of variation to address challenges facing food production. Finally, advances in phenomics have unlocked rapid screening of populations for many traits of interest both in greenhouses and in the field. Looking forwards, integrating diverse data types, including genomic, epigenetic and phenomics data, will take advantage of big data approaches including machine learning to understand trait biology in wheat in unprecedented detail.
Collapse
Affiliation(s)
- Philippa Borrill
- School of BiosciencesThe University of BirminghamBirminghamB15 2TTUK
| | | | | |
Collapse
|
14
|
Lopez JV, Kamel B, Medina M, Collins T, Baums IB. Multiple Facets of Marine Invertebrate Conservation Genomics. Annu Rev Anim Biosci 2018; 7:473-497. [PMID: 30485758 DOI: 10.1146/annurev-animal-020518-115034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Conservation genomics aims to preserve the viability of populations and the biodiversity of living organisms. Invertebrate organisms represent 95% of animal biodiversity; however, few genomic resources currently exist for the group. The subset of marine invertebrates includes the most ancient metazoan lineages and possesses codes for unique gene products and possible keys to adaptation. The benefits of supporting invertebrate conservation genomics research (e.g., likely discovery of novel genes, protein regulatory mechanisms, genomic innovations, and transposable elements) outweigh the various hurdles (rare, small, or polymorphic starting materials). Here we review best conservation genomics practices in the laboratory and in silico when applied to marine invertebrates and also showcase unique features in several case studies of acroporid corals, crown-of-thorns starfish, apple snails, and abalone. Marine conservation genomics should also address how diversity can lead to unique marine innovations, the impact of deleterious variation, and how genomic monitoring and profiling could positively affect broader conservation goals (e.g., value of baseline data for in situ/ex situ genomic stocks).
Collapse
Affiliation(s)
- Jose V Lopez
- Department of Biological Sciences, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, Florida 33004, USA;
| | - Bishoy Kamel
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, New Mexico 87131, USA;
| | - Mónica Medina
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA; ,
| | - Timothy Collins
- Department of Biological Sciences, Florida International University, Miami, Florida 33199, USA;
| | - Iliana B Baums
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA; ,
| |
Collapse
|
15
|
Gardiner LJ, Joynson R, Omony J, Rusholme-Pilcher R, Olohan L, Lang D, Bai C, Hawkesford M, Salt D, Spannagl M, Mayer KFX, Kenny J, Bevan M, Hall N, Hall A. Hidden variation in polyploid wheat drives local adaptation. Genome Res 2018; 28:1319-1332. [PMID: 30093548 PMCID: PMC6120627 DOI: 10.1101/gr.233551.117] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 07/16/2018] [Indexed: 12/20/2022]
Abstract
Wheat has been domesticated into a large number of agricultural environments and has the ability to adapt to diverse environments. To understand this process, we survey genotype, repeat content, and DNA methylation across a bread wheat landrace collection representing global genetic diversity. We identify independent variation in methylation, genotype, and transposon copy number. We show that these, so far unexploited, sources of variation have had a significant impact on the wheat genome and that ancestral methylation states become preferentially "hard coded" as single nucleotide polymorphisms (SNPs) via 5-methylcytosine deamination. These mechanisms also drive local adaption, impacting important traits such as heading date and salt tolerance. Methylation and transposon diversity could therefore be used alongside SNP-based markers for breeding.
Collapse
Affiliation(s)
| | - Ryan Joynson
- Earlham Institute, Norwich, NR4 7UZ, United Kingdom
| | - Jimmy Omony
- HelmholtzZentrum München, German Research Center for Environmental Health, Munich, 85764, Germany
| | | | - Lisa Olohan
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
| | - Daniel Lang
- HelmholtzZentrum München, German Research Center for Environmental Health, Munich, 85764, Germany
| | - Caihong Bai
- Rothamsted Research, Harpenden, AL5 2JQ, United Kingdom
| | | | - David Salt
- University of Nottingham, Sutton Bonington Campus, Sutton Bonington, LE12 5RD, United Kingdom
| | - Manuel Spannagl
- HelmholtzZentrum München, German Research Center for Environmental Health, Munich, 85764, Germany
| | - Klaus F X Mayer
- HelmholtzZentrum München, German Research Center for Environmental Health, Munich, 85764, Germany.,Wissenschaftszentrum Weihenstephan (WZW), Technical University Munich, Freising, 85354, Germany
| | - John Kenny
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
| | | | - Neil Hall
- Earlham Institute, Norwich, NR4 7UZ, United Kingdom.,School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Anthony Hall
- Earlham Institute, Norwich, NR4 7UZ, United Kingdom.,School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| |
Collapse
|
16
|
Mable BK, Brysting AK, Jørgensen MH, Carbonell AKZ, Kiefer C, Ruiz-Duarte P, Lagesen K, Koch MA. Adding Complexity to Complexity: Gene Family Evolution in Polyploids. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
17
|
Clevenger J, Chu Y, Chavarro C, Botton S, Culbreath A, Isleib TG, Holbrook CC, Ozias-Akins P. Mapping Late Leaf Spot Resistance in Peanut ( Arachis hypogaea) Using QTL-seq Reveals Markers for Marker-Assisted Selection. FRONTIERS IN PLANT SCIENCE 2018; 9:83. [PMID: 29459876 PMCID: PMC5807350 DOI: 10.3389/fpls.2018.00083] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/15/2018] [Indexed: 05/21/2023]
Abstract
Late leaf spot (LLS; Cercosporidium personatum) is a major fungal disease of cultivated peanut (Arachis hypogaea). A recombinant inbred line population segregating for quantitative field resistance was used to identify quantitative trait loci (QTL) using QTL-seq. High rates of false positive SNP calls using established methods in this allotetraploid crop obscured significant QTLs. To resolve this problem, robust parental SNPs were first identified using polyploid-specific SNP identification pipelines, leading to discovery of significant QTLs for LLS resistance. These QTLs were confirmed over 4 years of field data. Selection with markers linked to these QTLs resulted in a significant increase in resistance, showing that these markers can be immediately applied in breeding programs. This study demonstrates that QTL-seq can be used to rapidly identify QTLs controlling highly quantitative traits in polyploid crops with complex genomes. Markers identified can then be deployed in breeding programs, increasing the efficiency of selection using molecular tools. Key Message: Field resistance to late leaf spot is a quantitative trait controlled by many QTLs. Using polyploid-specific methods, QTL-seq is faster and more cost effective than QTL mapping.
Collapse
Affiliation(s)
- Josh Clevenger
- Center for Applied Genetic Technologies, Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, United States
| | - Ye Chu
- Department of Horticulture, Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Tifton, GA, United States
| | - Carolina Chavarro
- Center for Applied Genetic Technologies, Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, United States
| | - Stephanie Botton
- Department of Horticulture, Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Tifton, GA, United States
| | - Albert Culbreath
- Department of Plant Pathology, University of Georgia, Tifton, GA, United States
| | - Thomas G. Isleib
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, United States
| | - C. C. Holbrook
- United States Department of Agriculture-Agricultural Research Service, Tifton, GA, United States
| | - Peggy Ozias-Akins
- Department of Horticulture, Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Tifton, GA, United States
| |
Collapse
|
18
|
Mo Y, Howell T, Vasquez-Gross H, de Haro LA, Dubcovsky J, Pearce S. Mapping causal mutations by exome sequencing in a wheat TILLING population: a tall mutant case study. Mol Genet Genomics 2017. [PMID: 29188438 DOI: 10.1007/s00438‐017‐1401‐6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Forward genetic screens of induced mutant plant populations are powerful tools to identify genes underlying phenotypes of interest. Using traditional techniques, mapping causative mutations from forward screens is a lengthy, multi-step process, requiring the identification of a broad genetic region followed by candidate gene sequencing to characterize the causal variant. Mapping by whole genome sequencing accelerates the identification of causal mutations by simultaneously defining a mapping region and providing information on the induced genetic variants. In wheat, although the availability of a high-quality draft genome assembly facilitates mapping and mutation calling, whole genome resequencing remains prohibitively expensive due to its large genome. In the current study, we used exome sequencing as a complexity reduction strategy to detect mutations associated with a target phenotype. In a segregating wheat EMS population, we identified a clear peak region on chromosome arm 4BS associated with increased plant height. Although none of the significant SNPs seemed causative for the mutant phenotype, they were sufficient to identify a linked ~ 1.9 Mb deletion encompassing nine genes. These genes included Rht-B1, which is known to have a strong effect on plant height and is a strong candidate for the observed phenotype. We performed simulation experiments to determine the impacts of sequencing depth and bulk size and discuss the importance of considering each factor when designing mapping-by-sequencing experiments in wheat. This approach can accelerate the identification of candidate causal point mutations or linked deletions underlying important phenotypes.
Collapse
Affiliation(s)
- Youngjun Mo
- Department of Plant Sciences, University of California, Davis, CA, USA
- National Institute of Crop Science, Rural Development Administration, Wanju, South Korea
| | - Tyson Howell
- Department of Plant Sciences, University of California, Davis, CA, USA
| | | | - Luis Alejandro de Haro
- Instituto de Biotecnología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Stephen Pearce
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
19
|
Mo Y, Howell T, Vasquez-Gross H, de Haro LA, Dubcovsky J, Pearce S. Mapping causal mutations by exome sequencing in a wheat TILLING population: a tall mutant case study. Mol Genet Genomics 2017; 293:463-477. [PMID: 29188438 PMCID: PMC5854723 DOI: 10.1007/s00438-017-1401-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/23/2017] [Indexed: 11/23/2022]
Abstract
Forward genetic screens of induced mutant plant populations are powerful tools to identify genes underlying phenotypes of interest. Using traditional techniques, mapping causative mutations from forward screens is a lengthy, multi-step process, requiring the identification of a broad genetic region followed by candidate gene sequencing to characterize the causal variant. Mapping by whole genome sequencing accelerates the identification of causal mutations by simultaneously defining a mapping region and providing information on the induced genetic variants. In wheat, although the availability of a high-quality draft genome assembly facilitates mapping and mutation calling, whole genome resequencing remains prohibitively expensive due to its large genome. In the current study, we used exome sequencing as a complexity reduction strategy to detect mutations associated with a target phenotype. In a segregating wheat EMS population, we identified a clear peak region on chromosome arm 4BS associated with increased plant height. Although none of the significant SNPs seemed causative for the mutant phenotype, they were sufficient to identify a linked ~ 1.9 Mb deletion encompassing nine genes. These genes included Rht-B1, which is known to have a strong effect on plant height and is a strong candidate for the observed phenotype. We performed simulation experiments to determine the impacts of sequencing depth and bulk size and discuss the importance of considering each factor when designing mapping-by-sequencing experiments in wheat. This approach can accelerate the identification of candidate causal point mutations or linked deletions underlying important phenotypes.
Collapse
Affiliation(s)
- Youngjun Mo
- Department of Plant Sciences, University of California, Davis, CA, USA.,National Institute of Crop Science, Rural Development Administration, Wanju, South Korea
| | - Tyson Howell
- Department of Plant Sciences, University of California, Davis, CA, USA
| | | | - Luis Alejandro de Haro
- Instituto de Biotecnología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Stephen Pearce
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
20
|
Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. Nat Biotechnol 2017; 35:793-796. [PMID: 28504667 DOI: 10.1038/nbt.3877] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 04/11/2017] [Indexed: 11/08/2022]
Abstract
Cereal crops such as wheat and maize have large repeat-rich genomes that make cloning of individual genes challenging. Moreover, gene order and gene sequences often differ substantially between cultivars of the same crop species. A major bottleneck for gene cloning in cereals is the generation of high-quality sequence information from a cultivar of interest. In order to accelerate gene cloning from any cropping line, we report 'targeted chromosome-based cloning via long-range assembly' (TACCA). TACCA combines lossless genome-complexity reduction via chromosome flow sorting with Chicago long-range linkage to assemble complex genomes. We applied TACCA to produce a high-quality (N50 of 9.76 Mb) de novo chromosome assembly of the wheat line CH Campala Lr22a in only 4 months. Using this assembly we cloned the broad-spectrum Lr22a leaf-rust resistance gene, using molecular marker information and ethyl methanesulfonate (EMS) mutants, and found that Lr22a encodes an intracellular immune receptor homologous to the Arabidopsis thaliana RPM1 protein.
Collapse
|
21
|
Uauy C. Wheat genomics comes of age. CURRENT OPINION IN PLANT BIOLOGY 2017; 36:142-148. [PMID: 28346895 DOI: 10.1016/j.pbi.2017.01.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 01/24/2017] [Accepted: 01/30/2017] [Indexed: 05/18/2023]
Abstract
Advances in wheat genomics have lagged behind other major cereals (e.g., rice and maize) due to its highly repetitive and large polyploid genome. Recent technological developments in sequencing and assembly methods, however, have largely overcome these barriers. The community now moves to an era centred on functional characterisation of the genome. This includes understanding sequence and structural variation as well as how information is integrated across multiple homoeologous genomes. This understanding promises to uncover variation previously hidden from natural and human selection due to the often observed functional redundancy between homoeologs. Key functional genomic resources will enable this, including sequenced mutant populations and gene editing technologies which are now available in wheat. Training the next-generation of genomics-enabled researchers will be essential to ensure these advances are quickly translated into farmers' fields.
Collapse
Affiliation(s)
- Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom.
| |
Collapse
|