1
|
Boo A, Toth T, Yu Q, Pfotenhauer A, Fields BD, Lenaghan SC, Stewart CN, Voigt CA. Synthetic microbe-to-plant communication channels. Nat Commun 2024; 15:1817. [PMID: 38418817 PMCID: PMC10901793 DOI: 10.1038/s41467-024-45897-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
Plants and microbes communicate to collaborate to stop pests, scavenge nutrients, and react to environmental change. Microbiota consisting of thousands of species interact with each other and plants using a large chemical language that is interpreted by complex regulatory networks. In this work, we develop modular interkingdom communication channels, enabling bacteria to convey environmental stimuli to plants. We introduce a "sender device" in Pseudomonas putida and Klebsiella pneumoniae, that produces the small molecule p-coumaroyl-homoserine lactone (pC-HSL) when the output of a sensor or circuit turns on. This molecule triggers a "receiver device" in the plant to activate gene expression. We validate this system in Arabidopsis thaliana and Solanum tuberosum (potato) grown hydroponically and in soil, demonstrating its modularity by swapping bacteria that process different stimuli, including IPTG, aTc and arsenic. Programmable communication channels between bacteria and plants will enable microbial sentinels to transmit information to crops and provide the building blocks for designing artificial consortia.
Collapse
Affiliation(s)
- Alice Boo
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Tyler Toth
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Qiguo Yu
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Alexander Pfotenhauer
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Brandon D Fields
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Scott C Lenaghan
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - C Neal Stewart
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Christopher A Voigt
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
2
|
Ahkami AH. Systems biology of root development in Populus: Review and perspectives. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111818. [PMID: 37567482 DOI: 10.1016/j.plantsci.2023.111818] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/28/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
The root system of plants consists of primary, lateral, and adventitious roots (ARs) (aka shoot-born roots). ARs arise from stem- or leaf-derived cells during post-embryonic development. Adventitious root development (ARD) through stem cuttings is the first requirement for successful establishment and growth of planted trees; however, the details of the molecular mechanisms underlying ARD are poorly understood. This knowledge is important to both basic plant biology and because of its necessary role in the successful propagation of superior cultivars of commercial woody bioenergy crops, like poplar. In this review article, the molecular mechanisms that control both endogenous (auxin) and environmentally (nutrients and microbes) regulated ARD and how these systems interact to control the rooting efficiency of poplar trees are described. Then, potential future studies in employing integrated systems biology approaches at cellular resolutions are proposed to more precisely identify the molecular mechanisms that cause AR. Using genetic transformation and genome editing approaches, this information can be used for improving ARD in economically important plants for which clonal propagation is a requirement.
Collapse
Affiliation(s)
- Amir H Ahkami
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, USA.
| |
Collapse
|
3
|
Koukara J, Papadopoulou KK. Advances in plant synthetic biology approaches to control expression of gene circuits. Biochem Biophys Res Commun 2023; 654:55-61. [PMID: 36889035 DOI: 10.1016/j.bbrc.2023.02.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023]
Abstract
The applications of synthetic biology range from creating simple circuits to monitor an organism's state to complex circuits capable of reconstructing aspects of life. The latter has the potential to be used in plant synthetic biology to address current societal issues by reforming agriculture and enhancing production of molecules of increased demand. For this reason, development of efficient tools to precisely control gene expression of circuits must be prioritized. In this review, we report the latest efforts towards characterization, standardization and assembly of genetic parts into higher-order constructs, as well as available types of inducible systems to modulate their transcription in plant systems. Subsequently, we discuss recent developments in the orthogonal control of gene expression, Boolean logic gates and synthetic genetic toggle-like switches. Finally, we conclude that by combining different means of controlling gene expression, we can create complex circuits capable of reshaping plant life.
Collapse
Affiliation(s)
- Jenny Koukara
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Kalliope K Papadopoulou
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece.
| |
Collapse
|
4
|
Kar S, Bordiya Y, Rodriguez N, Kim J, Gardner EC, Gollihar JD, Sung S, Ellington AD. Orthogonal control of gene expression in plants using synthetic promoters and CRISPR-based transcription factors. PLANT METHODS 2022; 18:42. [PMID: 35351174 PMCID: PMC8966344 DOI: 10.1186/s13007-022-00867-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/01/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND The construction and application of synthetic genetic circuits is frequently improved if gene expression can be orthogonally controlled, relative to the host. In plants, orthogonality can be achieved via the use of CRISPR-based transcription factors that are programmed to act on natural or synthetic promoters. The construction of complex gene circuits can require multiple, orthogonal regulatory interactions, and this in turn requires that the full programmability of CRISPR elements be adapted to non-natural and non-standard promoters that have few constraints on their design. Therefore, we have developed synthetic promoter elements in which regions upstream of the minimal 35S CaMV promoter are designed from scratch to interact via programmed gRNAs with dCas9 fusions that allow activation of gene expression. RESULTS A panel of three, mutually orthogonal promoters that can be acted on by artificial gRNAs bound by CRISPR regulators were designed. Guide RNA expression targeting these promoters was in turn controlled by either Pol III (U6) or ethylene-inducible Pol II promoters, implementing for the first time a fully artificial Orthogonal Control System (OCS). Following demonstration of the complete orthogonality of the designs, the OCS was tied to cellular metabolism by putting gRNA expression under the control of an endogenous plant signaling molecule, ethylene. The ability to form complex circuitry was demonstrated via the ethylene-driven, ratiometric expression of fluorescent proteins in single plants. CONCLUSIONS The design of synthetic promoters is highly generalizable to large tracts of sequence space, allowing Orthogonal Control Systems of increasing complexity to potentially be generated at will. The ability to tie in several different basal features of plant molecular biology (Pol II and Pol III promoters, ethylene regulation) to the OCS demonstrates multiple opportunities for engineering at the system level. Moreover, given the fungibility of the core 35S CaMV promoter elements, the derived synthetic promoters can potentially be utilized across a variety of plant species.
Collapse
Affiliation(s)
- Shaunak Kar
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA.
| | - Yogendra Bordiya
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Life Sciences Solutions Group, Thermo Fisher Scientific, Austin, TX, USA
| | - Nestor Rodriguez
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Junghyun Kim
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Elizabeth C Gardner
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA
| | | | - Sibum Sung
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
| | - Andrew D Ellington
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
5
|
Lohani N, Singh MB, Bhalla PL. Biological Parts for Engineering Abiotic Stress Tolerance in Plants. BIODESIGN RESEARCH 2022; 2022:9819314. [PMID: 37850130 PMCID: PMC10521667 DOI: 10.34133/2022/9819314] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2023] Open
Abstract
It is vital to ramp up crop production dramatically by 2050 due to the increasing global population and demand for food. However, with the climate change projections showing that droughts and heatwaves becoming common in much of the globe, there is a severe threat of a sharp decline in crop yields. Thus, developing crop varieties with inbuilt genetic tolerance to environmental stresses is urgently needed. Selective breeding based on genetic diversity is not keeping up with the growing demand for food and feed. However, the emergence of contemporary plant genetic engineering, genome-editing, and synthetic biology offer precise tools for developing crops that can sustain productivity under stress conditions. Here, we summarize the systems biology-level understanding of regulatory pathways involved in perception, signalling, and protective processes activated in response to unfavourable environmental conditions. The potential role of noncoding RNAs in the regulation of abiotic stress responses has also been highlighted. Further, examples of imparting abiotic stress tolerance by genetic engineering are discussed. Additionally, we provide perspectives on the rational design of abiotic stress tolerance through synthetic biology and list various bioparts that can be used to design synthetic gene circuits whose stress-protective functions can be switched on/off in response to environmental cues.
Collapse
Affiliation(s)
- Neeta Lohani
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mohan B. Singh
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Prem L. Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
6
|
McCarthy DM, Medford JI. Quantitative and Predictive Genetic Parts for Plant Synthetic Biology. FRONTIERS IN PLANT SCIENCE 2020; 11:512526. [PMID: 33123175 PMCID: PMC7573182 DOI: 10.3389/fpls.2020.512526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Plant synthetic biology aims to harness the natural abilities of plants and to turn them to new purposes. A primary goal of plant synthetic biology is to produce predictable and programmable genetic circuits from simple regulatory elements and well-characterized genetic components. The number of available DNA parts for plants is increasing, and the methods for rapid quantitative characterization are being developed, but the field of plant synthetic biology is still in its early stages. We here describe methods used to describe the quantitative properties of genetic components needed for plant synthetic biology. Once the quantitative properties and transfer function of a variety of genetic parts are known, computers can select the optimal components to assemble into functional devices, such as toggle switches and positive feedback circuits. However, while the variety of circuits and traits that can be put into plants are limitless, doing synthetic biology in plants poses unique challenges. Plants are composed of differentiated cells and tissues, each representing potentially unique regulatory or developmental contexts to introduced synthetic genetic circuits. Further, plants have evolved to be highly sensitive to environmental influences, such as light or temperature, any of which can affect the quantitative function of individual parts or whole circuits. Measuring the function of plant components within the context of a plant cell and, ideally, in a living plant, will be essential to using these components in gene circuits with predictable function. Mathematical modeling will be needed to account for the variety of contexts a genetic part will experience in different plant tissues or environments. With such understanding in hand, it may be possible to redesign plant traits to serve human and environmental needs.
Collapse
|
7
|
Kassaw TK, Donayre-Torres AJ, Antunes MS, Morey KJ, Medford JI. Engineering synthetic regulatory circuits in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 273:13-22. [PMID: 29907304 DOI: 10.1016/j.plantsci.2018.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 04/05/2018] [Accepted: 04/07/2018] [Indexed: 05/21/2023]
Abstract
Plant synthetic biology is a rapidly emerging field that aims to engineer genetic circuits to function in plants with the same reliability and precision as electronic circuits. These circuits can be used to program predictable plant behavior, producing novel traits to improve crop plant productivity, enable biosensors, and serve as platforms to synthesize chemicals and complex biomolecules. Herein we introduce the importance of developing orthogonal plant parts and the need for quantitative part characterization for mathematical modeling of complex circuits. In particular, transfer functions are important when designing electronic-like genetic controls such as toggle switches, positive/negative feedback loops, and Boolean logic gates. We then discuss potential constraints and challenges in synthetic regulatory circuit design and integration when using plants. Finally, we highlight current and potential plant synthetic regulatory circuit applications.
Collapse
Affiliation(s)
- Tessema K Kassaw
- Department of Biology, 1878 Campus Delivery, Colorado State University, Fort Collins, CO 80523-1878, USA
| | - Alberto J Donayre-Torres
- Department of Biology, 1878 Campus Delivery, Colorado State University, Fort Collins, CO 80523-1878, USA
| | - Mauricio S Antunes
- Department of Biology, 1878 Campus Delivery, Colorado State University, Fort Collins, CO 80523-1878, USA
| | - Kevin J Morey
- Department of Biology, 1878 Campus Delivery, Colorado State University, Fort Collins, CO 80523-1878, USA
| | - June I Medford
- Department of Biology, 1878 Campus Delivery, Colorado State University, Fort Collins, CO 80523-1878, USA.
| |
Collapse
|
8
|
Goold HD, Wright P, Hailstones D. Emerging Opportunities for Synthetic Biology in Agriculture. Genes (Basel) 2018; 9:E341. [PMID: 29986428 PMCID: PMC6071285 DOI: 10.3390/genes9070341] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/27/2018] [Accepted: 07/03/2018] [Indexed: 12/11/2022] Open
Abstract
Rapid expansion in the emerging field of synthetic biology has to date mainly focused on the microbial sciences and human health. However, the zeitgeist is that synthetic biology will also shortly deliver major outcomes for agriculture. The primary industries of agriculture, fisheries and forestry, face significant and global challenges; addressing them will be assisted by the sector’s strong history of early adoption of transformative innovation, such as the genetic technologies that underlie synthetic biology. The implementation of synthetic biology within agriculture may, however, be hampered given the industry is dominated by higher plants and mammals, where large and often polyploid genomes and the lack of adequate tools challenge the ability to deliver outcomes in the short term. However, synthetic biology is a rapidly growing field, new techniques in genome design and synthesis, and more efficient molecular tools such as CRISPR/Cas9 may harbor opportunities more broadly than the development of new cultivars and breeds. In particular, the ability to use synthetic biology to engineer biosensors, synthetic speciation, microbial metabolic engineering, mammalian multiplexed CRISPR, novel anti microbials, and projects such as Yeast 2.0 all have significant potential to deliver transformative changes to agriculture in the short, medium and longer term. Specifically, synthetic biology promises to deliver benefits that increase productivity and sustainability across primary industries, underpinning the industry’s prosperity in the face of global challenges.
Collapse
Affiliation(s)
- Hugh Douglas Goold
- Department of Molecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia.
- New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Road, Menangle, NSW 2568, Australia.
| | - Philip Wright
- New South Wales Department of Primary Industries, Locked Bag 21, 161 Kite St, Orange, NSW 2800, Australia.
| | - Deborah Hailstones
- New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Road, Menangle, NSW 2568, Australia.
| |
Collapse
|
9
|
Skrzypczak T, Krela R, Kwiatkowski W, Wadurkar S, Smoczyńska A, Wojtaszek P. Plant Science View on Biohybrid Development. Front Bioeng Biotechnol 2017; 5:46. [PMID: 28856135 PMCID: PMC5558049 DOI: 10.3389/fbioe.2017.00046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/24/2017] [Indexed: 01/07/2023] Open
Abstract
Biohybrid consists of a living organism or cell and at least one engineered component. Designing robot-plant biohybrids is a great challenge: it requires interdisciplinary reconsideration of capabilities intimate specific to the biology of plants. Envisioned advances should improve agricultural/horticultural/social practice and could open new directions in utilization of plants by humans. Proper biohybrid cooperation depends upon effective communication. During evolution, plants developed many ways to communicate with each other, with animals, and with microorganisms. The most notable examples are: the use of phytohormones, rapid long-distance signaling, gravity, and light perception. These processes can now be intentionally re-shaped to establish plant-robot communication. In this article, we focus on plants physiological and molecular processes that could be used in bio-hybrids. We show phototropism and biomechanics as promising ways of effective communication, resulting in an alteration in plant architecture, and discuss the specifics of plants anatomy, physiology and development with regards to the bio-hybrids. Moreover, we discuss ways how robots could influence plants growth and development and present aims, ideas, and realized projects of plant-robot biohybrids.
Collapse
Affiliation(s)
- Tomasz Skrzypczak
- Faculty of Biology, Department of Molecular and Cellular Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Rafał Krela
- Faculty of Biology, Department of Molecular and Cellular Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Wojciech Kwiatkowski
- Faculty of Biology, Department of Molecular and Cellular Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Shraddha Wadurkar
- Faculty of Biology, Department of Molecular and Cellular Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Aleksandra Smoczyńska
- Faculty of Biology, Department of Gene Expression, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Przemysław Wojtaszek
- Faculty of Biology, Department of Molecular and Cellular Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
10
|
Benning C, Sweetlove L. Synthetic biology for basic and applied plant research. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:3-4. [PMID: 27483204 DOI: 10.1111/tpj.13245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- Christoph Benning
- US Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA.
| | - Lee Sweetlove
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| |
Collapse
|