1
|
Dabravolski SA, Isayenkov SV. The Role of Plant Ubiquitin-like Modifiers in the Formation of Salt Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:1468. [PMID: 38891277 PMCID: PMC11174624 DOI: 10.3390/plants13111468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
The climate-driven challenges facing Earth necessitate a comprehensive understanding of the mechanisms facilitating plant resilience to environmental stressors. This review delves into the crucial role of ubiquitin-like modifiers, particularly focusing on ATG8-mediated autophagy, in bolstering plant tolerance to salt stress. Synthesising recent research, we unveil the multifaceted contributions of ATG8 to plant adaptation mechanisms amidst salt stress conditions, including stomatal regulation, photosynthetic efficiency, osmotic adjustment, and antioxidant defence. Furthermore, we elucidate the interconnectedness of autophagy with key phytohormone signalling pathways, advocating for further exploration into their molecular mechanisms. Our findings underscore the significance of understanding molecular mechanisms underlying ubiquitin-based protein degradation systems and autophagy in salt stress tolerance, offering valuable insights for designing innovative strategies to improve crop productivity and ensure global food security amidst increasing soil salinisation. By harnessing the potential of autophagy and other molecular mechanisms, we can foster sustainable agricultural practices and develop stress-tolerant crops resilient to salt stress.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, Karmiel 2161002, Israel;
| | - Stanislav V. Isayenkov
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Strasse 3, 06120 Halle, Germany
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics, The National Academy of Sciences of Ukraine, Baidi-Vyshneveckogo Str. 2a, 04123 Kyiv, Ukraine
| |
Collapse
|
2
|
Zhang M, Tan FQ, Fan YJ, Wang TT, Song X, Xie KD, Wu XM, Zhang F, Deng XX, Grosser JW, Guo WW. Acetylome reprograming participates in the establishment of fruit metabolism during polyploidization in citrus. PLANT PHYSIOLOGY 2022; 190:2519-2538. [PMID: 36135821 PMCID: PMC9706433 DOI: 10.1093/plphys/kiac442] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Polyploidization leads to novel phenotypes and is a major force in evolution. However, the relationship between the evolution of new traits and variations in the post-translational modifications (PTM) of proteins during polyploidization has not been studied. Acetylation of lysine residues is a common protein PTM that plays a critical regulatory role in central metabolism. To test whether changes in metabolism in citrus fruit is associated with the reprogramming of lysine acetylation (Kac) in non-histone proteins during allotetraploidization, we performed a global acetylome analysis of fruits from a synthetic allotetraploid citrus and its diploid parents. A total of 4,175 Kac sites were identified on 1,640 proteins involved in a wide range of fruit traits. In the allotetraploid, parental dominance (i.e. resemblance to one of the two parents) in specific fruit traits, such as fruit acidity and flavonol metabolism, was highly associated with parental Kac level dominance in pertinent enzymes. This association is due to Kac-mediated regulation of enzyme activity. Moreover, protein Kac probably contributes to the discordance between the transcriptomic and proteomic variations during allotetraploidization. The acetylome reprogramming can be partially explained by the expression pattern of several lysine deacetylases (KDACs). Overexpression of silent information regulator 2 (CgSRT2) and histone deacetylase 8 (CgHDA8) diverted metabolic flux from primary metabolism to secondary metabolism and partially restored a metabolic status to the allotetraploid, which expressed attenuated levels of CgSRT2 and CgHDA8. Additionally, KDAC inhibitor treatment greatly altered metabolism in citrus fruit. Collectively, these findings reveal the important role of acetylome reprogramming in trait evolution during polyploidization.
Collapse
Affiliation(s)
- Miao Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Feng-Quan Tan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan-Jie Fan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Ting-Ting Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Song
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Kai-Dong Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Meng Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Fan Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiu-Xin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jude W Grosser
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, Florida 33850, USA
| | - Wen-Wu Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
3
|
(De)Activation (Ir)Reversibly or Degradation: Dynamics of Post-Translational Protein Modifications in Plants. Life (Basel) 2022; 12:life12020324. [PMID: 35207610 PMCID: PMC8874572 DOI: 10.3390/life12020324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 11/22/2022] Open
Abstract
The increasing dynamic functions of post-translational modifications (PTMs) within protein molecules present outstanding challenges for plant biology even at this present day. Protein PTMs are among the first and fastest plant responses to changes in the environment, indicating that the mechanisms and dynamics of PTMs are an essential area of plant biology. Besides being key players in signaling, PTMs play vital roles in gene expression, gene, and protein localization, protein stability and interactions, as well as enzyme kinetics. In this review, we take a broader but concise approach to capture the current state of events in the field of plant PTMs. We discuss protein modifications including citrullination, glycosylation, phosphorylation, oxidation and disulfide bridges, N-terminal, SUMOylation, and ubiquitination. Further, we outline the complexity of studying PTMs in relation to compartmentalization and function. We conclude by challenging the proteomics community to engage in holistic approaches towards identification and characterizing multiple PTMs on the same protein, their interaction, and mechanism of regulation to bring a deeper understanding of protein function and regulation in plants.
Collapse
|
4
|
Xavier LR, Almeida FA, Pinto VB, Passamani LZ, Santa-Catarina C, de Souza Filho GA, Mooney BP, Thelen JJ, Silveira V. Integrative proteomics and phosphoproteomics reveals phosphorylation networks involved in the maintenance and expression of embryogenic competence in sugarcane callus. JOURNAL OF PLANT PHYSIOLOGY 2022; 268:153587. [PMID: 34906795 DOI: 10.1016/j.jplph.2021.153587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/14/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Plant embryogenic cell culture allows mass propagation and genetic manipulation, but the mechanisms that determine the fate of these totipotent cells in somatic embryos have not yet been elucidated. Here, we performed label-free quantitative proteomics and phosphoproteomics analyses to determine signaling events related to sugarcane somatic embryo differentiation, especially those related to protein phosphorylation. Embryogenic calli were compared at multiplication (EC0, dedifferentiated cells) and after 14 days of maturation (EC14, onset of embryo differentiation). Metabolic pathway analysis showed enriched lysine degradation and starch/sucrose metabolism proteins during multiplication, whereas the differentiation of somatic embryos was found to involve the enrichment of energy metabolism, including the TCA cycle and oxidative phosphorylation. Multiplication-related phosphoproteins were associated with transcriptional regulation, including SNF1 kinase homolog 10 (KIN10), SEUSS (SEU), and LEUNIG_HOMOLOG (LUH). The regulation of multiple light harvesting complex photosystem II proteins and phytochrome interacting factor 3-LIKE 5 were predicted to promote bioenergetic metabolism and carbon fixation during the maturation stage. A motif analysis revealed 15 phosphorylation motifs. The [D-pS/T-x-D] motif was overrepresented during somatic embryo differentiation. A protein-protein network analysis predicted interactions among SNF1-related protein kinase 2 (SnRK2), abscisic acid-responsive element-binding factor 2 (ABF2), and KIN10, which indicated the role of these proteins in embryogenic competence. The predicted interactions between TOPLESS (TPL) and histone deacetylase 19 (HD19) may be involved in posttranslational protein regulation during somatic embryo differentiation. These results reveal the protein regulation dynamics of somatic embryogenesis and new players in somatic embryo differentiation, including their predicted phosphorylation motifs and phosphosites.
Collapse
Affiliation(s)
- Lucas R Xavier
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Campos dos Goytacazes, RJ, Brazil; Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Felipe A Almeida
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Campos dos Goytacazes, RJ, Brazil; Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Vitor B Pinto
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Campos dos Goytacazes, RJ, Brazil; Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil.
| | - Lucas Z Passamani
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Campos dos Goytacazes, RJ, Brazil; Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | | | - Gonçalo A de Souza Filho
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Campos dos Goytacazes, RJ, Brazil; Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Brian P Mooney
- Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, 65211, Columbia, MO, USA
| | - Jay J Thelen
- Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, 65211, Columbia, MO, USA
| | - Vanildo Silveira
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Campos dos Goytacazes, RJ, Brazil; Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil.
| |
Collapse
|
5
|
Subba P, Prasad TSK. Plant Phosphoproteomics: Known Knowns, Known Unknowns, and Unknown Unknowns of an Emerging Systems Science Frontier. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:750-769. [PMID: 34882020 DOI: 10.1089/omi.2021.0192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plant systems science research depends on the dynamic functional maps of the biological substrates of plant phenotypes and host/environment interactions in diverse ecologies. In this context, high-resolution mass spectrometry platforms offer comprehensive insights into the molecular pathways regulated by protein phosphorylation. Reversible protein phosphorylation is a ubiquitous reaction in signal transduction mechanisms in biological systems. In contrast to human and animal biology research, a plethora of experimental options for functional mapping and regulation of plant biology are, however, not currently available. Plant phosphoproteomics is an emerging field of research that aims at addressing this gap in systems science and plant omics, and thus has a large scope to empower fundamental discoveries. To date, large-scale data-intensive identification of phosphorylation events in plants remained technically challenging. In this expert review, we present a critical analysis and overview of phosphoproteomic studies performed in the model plant Arabidopsis thaliana. We discuss the technical strategies used for the enrichment of phosphopeptides and methods used for their quantitative assessment. Various types of mass spectrometry data acquisition and fragmentation methods are also discussed. The insights gathered here can allow plant biology and systems science researchers to design high-throughput function-oriented experimental workflows that elucidate the regulatory signaling mechanisms impacting plant physiology and plant diseases.
Collapse
Affiliation(s)
- Pratigya Subba
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | | |
Collapse
|
6
|
Łabuz J, Sztatelman O, Jagiełło-Flasińska D, Hermanowicz P, Bażant A, Banaś AK, Bartnicki F, Giza A, Kozłowska A, Lasok H, Sitkiewicz E, Krzeszowiec W, Gabryś H, Strzałka W. Phototropin Interactions with SUMO Proteins. PLANT & CELL PHYSIOLOGY 2021; 62:693-707. [PMID: 33594440 PMCID: PMC8462379 DOI: 10.1093/pcp/pcab027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
The disruption of the sumoylation pathway affects processes controlled by the two phototropins (phots) of Arabidopsis thaliana, phot1 and phot2. Phots, plant UVA/blue light photoreceptors, regulate growth responses and fast movements aimed at optimizing photosynthesis, such as phototropism, chloroplast relocations and stomatal opening. Sumoylation is a posttranslational modification, consisting of the addition of a SUMO (SMALL UBIQUITIN-RELATED MODIFIER) protein to a lysine residue in the target protein. In addition to affecting the stability of proteins, it regulates their activity, interactions and subcellular localization. We examined physiological responses controlled by phots, phototropism and chloroplast movements, in sumoylation pathway mutants. Chloroplast accumulation in response to both continuous and pulse light was enhanced in the E3 ligase siz1 mutant, in a manner dependent on phot2. A significant decrease in phot2 protein abundance was observed in this mutant after blue light treatment both in seedlings and mature leaves. Using plant transient expression and yeast two-hybrid assays, we found that phots interacted with SUMO proteins mainly through their N-terminal parts, which contain the photosensory LOV domains. The covalent modification in phots by SUMO was verified using an Arabidopsis sumoylation system reconstituted in bacteria followed by the mass spectrometry analysis. Lys 297 was identified as the main target of SUMO3 in the phot2 molecule. Finally, sumoylation of phot2 was detected in Arabidopsis mature leaves upon light or heat stress treatment.
Collapse
Affiliation(s)
- Justyna Łabuz
- * Corresponding author: E-mail, ; Fax, +48 12 664 6902
| | | | - Dominika Jagiełło-Flasińska
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków 30-387, Poland
| | - Paweł Hermanowicz
- Laboratory of Photobiology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków 30-387, Poland
| | - Aneta Bażant
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków 30-387, Poland
| | - Agnieszka Katarzyna Banaś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków 30-387, Poland
| | - Filip Bartnicki
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków 30-387, Poland
| | - Aleksandra Giza
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków 30-387, Poland
| | - Anna Kozłowska
- Laboratory of Photobiology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków 30-387, Poland
| | - Hanna Lasok
- Laboratory of Photobiology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków 30-387, Poland
| | - Ewa Sitkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warszawa 02-106, Poland
| | - Weronika Krzeszowiec
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków 30-387, Poland
| | - Halina Gabryś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków 30-387, Poland
| | - Wojciech Strzałka
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków 30-387, Poland
| |
Collapse
|
7
|
Yan J, Kim YJ, Somers DE. Post-Translational Mechanisms of Plant Circadian Regulation. Genes (Basel) 2021; 12:325. [PMID: 33668215 PMCID: PMC7995963 DOI: 10.3390/genes12030325] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
The molecular components of the circadian system possess the interesting feature of acting together to create a self-sustaining oscillator, while at the same time acting individually, and in complexes, to confer phase-specific circadian control over a wide range of physiological and developmental outputs. This means that many circadian oscillator proteins are simultaneously also part of the circadian output pathway. Most studies have focused on transcriptional control of circadian rhythms, but work in plants and metazoans has shown the importance of post-transcriptional and post-translational processes within the circadian system. Here we highlight recent work describing post-translational mechanisms that impact both the function of the oscillator and the clock-controlled outputs.
Collapse
Affiliation(s)
| | | | - David E. Somers
- Department of Molecular Genetics, The Ohio State University; Columbus, OH 43210, USA; (J.Y.); (Y.J.K.)
| |
Collapse
|
8
|
Ingole KD, Dahale SK, Bhattacharjee S. Proteomic analysis of SUMO1-SUMOylome changes during defense elicitation in Arabidopsis. J Proteomics 2020; 232:104054. [PMID: 33238213 DOI: 10.1016/j.jprot.2020.104054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/28/2020] [Accepted: 11/14/2020] [Indexed: 12/20/2022]
Abstract
Rapid adaptation of plants to developmental or physiological cues is facilitated by specific receptors that transduce the signals mostly via post-translational modification (PTM) cascades of downstream partners. Reversible covalent attachment of SMALL UBIQUITIN-LIKE MODIFIER (SUMO), a process termed as SUMOylation, influence growth, development and adaptation of plants to various stresses. Strong regulatory mechanisms maintain the steady-state SUMOylome and mutants with SUMOylation disturbances display mis-primed immunity often with growth consequences. Identity of the SUMO-substrates undergoing SUMOylation changes during defenses however remain largely unknown. Here we exploit either the auto-immune property of an Arabidopsis mutant or defense responses induced in wild-type plants against Pseudomonas syringae pv tomato (PstDC3000) to enrich and identify SUMO1-substrates. Our results demonstrate massive enhancement of SUMO1-conjugates due to increased SUMOylation efficiencies during defense responses. Of the 261 proteins we identify, 29 have been previously implicated in immune-associated processes. Role of others expand to diverse cellular roles indicating massive readjustments the SUMOylome alterations may cause during induction of immunity. Overall, our study highlights the complexities of a plant immune network and identifies multiple SUMO-substrates that may orchestrate the signaling. SIGNIFICANCE: In all eukaryotes, covalent linkage of the SMALL UBIQUITIN-LIKE MODIFIER (SUMOs), a process termed as SUMOylation, on target proteins affect their fate and function. Plants display reversible readjustments in the pool of SUMOylated proteins during biotic and abiotic stress responses. Here, we demonstrate net increase in global SUMO1/2-SUMOylome of Arabidopsis thaliana at induction of immunity. We enrich and identify 261 SUMO1-substrates enhanced in defenses that categorize to diverse cellular processes and include novel candidates with uncharacterized immune-associated roles. Overall, our results highlight intricacies of SUMO1-orchestration in defense signaling networks.
Collapse
Affiliation(s)
- Kishor D Ingole
- Laboratory of Signal Transduction and Plant Resistance, UNESCO-Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3(rd) Milestone, Faridabad-Gurgaon Expressway, Faridabad 121 001, Haryana, India; Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar 751 024, Odisha, India
| | - Shraddha K Dahale
- Laboratory of Signal Transduction and Plant Resistance, UNESCO-Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3(rd) Milestone, Faridabad-Gurgaon Expressway, Faridabad 121 001, Haryana, India
| | - Saikat Bhattacharjee
- Laboratory of Signal Transduction and Plant Resistance, UNESCO-Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3(rd) Milestone, Faridabad-Gurgaon Expressway, Faridabad 121 001, Haryana, India.
| |
Collapse
|
9
|
Lu J, Fu Y, Li M, Wang S, Wang J, Yang Q, Ye J, Zhang X, Ma H, Chang F. Global Quantitative Proteomics Studies Revealed Tissue-Preferential Expression and Phosphorylation of Regulatory Proteins in Arabidopsis. Int J Mol Sci 2020; 21:ijms21176116. [PMID: 32854314 PMCID: PMC7503369 DOI: 10.3390/ijms21176116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022] Open
Abstract
Organogenesis in plants occurs across all stages of the life cycle. Although previous studies have identified many genes as important for either vegetative or reproductive development at the RNA level, global information on translational and post-translational levels remains limited. In this study, six Arabidopsis stages/organs were analyzed using quantitative proteomics and phosphoproteomics, identifying 2187 non-redundant proteins and evidence for 1194 phosphoproteins. Compared to the expression observed in cauline leaves, the expression of 1445, 1644, and 1377 proteins showed greater than 1.5-fold alterations in stage 1–9 flowers, stage 10–12 flowers, and open flowers, respectively. Among these, 294 phosphoproteins with 472 phosphorylation sites were newly uncovered, including 275 phosphoproteins showing differential expression patterns, providing molecular markers and possible candidates for functional studies. Proteins encoded by genes preferentially expressed in anther (15), meiocyte (4), or pollen (15) were enriched in reproductive organs, and mutants of two anther-preferentially expressed proteins, acos5 and mee48, showed obviously reduced male fertility with abnormally organized pollen exine. In addition, more phosphorylated proteins were identified in reproductive stages (1149) than in the vegetative organs (995). The floral organ-preferential phosphorylation of GRP17, CDC2/CDKA.1, and ATSK11 was confirmed with western blot analysis. Moreover, phosphorylation levels of CDPK6 and MAPK6 and their interacting proteins were elevated in reproductive tissues. Overall, our study yielded extensive data on protein expression and phosphorylation at six stages/organs and provides an important resource for future studies investigating the regulatory mechanisms governing plant development.
Collapse
Affiliation(s)
- Jianan Lu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China; (J.L.); (Y.F.); (M.L.); (S.W.); (J.W.); (Q.Y.); (J.Y.); (X.Z.)
| | - Ying Fu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China; (J.L.); (Y.F.); (M.L.); (S.W.); (J.W.); (Q.Y.); (J.Y.); (X.Z.)
| | - Mengyu Li
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China; (J.L.); (Y.F.); (M.L.); (S.W.); (J.W.); (Q.Y.); (J.Y.); (X.Z.)
| | - Shuangshuang Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China; (J.L.); (Y.F.); (M.L.); (S.W.); (J.W.); (Q.Y.); (J.Y.); (X.Z.)
| | - Jingya Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China; (J.L.); (Y.F.); (M.L.); (S.W.); (J.W.); (Q.Y.); (J.Y.); (X.Z.)
| | - Qi Yang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China; (J.L.); (Y.F.); (M.L.); (S.W.); (J.W.); (Q.Y.); (J.Y.); (X.Z.)
| | - Juanying Ye
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China; (J.L.); (Y.F.); (M.L.); (S.W.); (J.W.); (Q.Y.); (J.Y.); (X.Z.)
| | - Xumin Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China; (J.L.); (Y.F.); (M.L.); (S.W.); (J.W.); (Q.Y.); (J.Y.); (X.Z.)
| | - Hong Ma
- Department of Biology, the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Correspondence: (H.M.); (F.C.); Tel.: +86-021-51630534 (H.M.); +1-814-865-5343 (F.C.)
| | - Fang Chang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China; (J.L.); (Y.F.); (M.L.); (S.W.); (J.W.); (Q.Y.); (J.Y.); (X.Z.)
- Correspondence: (H.M.); (F.C.); Tel.: +86-021-51630534 (H.M.); +1-814-865-5343 (F.C.)
| |
Collapse
|
10
|
Millar AH, Heazlewood JL, Giglione C, Holdsworth MJ, Bachmair A, Schulze WX. The Scope, Functions, and Dynamics of Posttranslational Protein Modifications. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:119-151. [PMID: 30786234 DOI: 10.1146/annurev-arplant-050718-100211] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Assessing posttranslational modification (PTM) patterns within protein molecules and reading their functional implications present grand challenges for plant biology. We combine four perspectives on PTMs and their roles by considering five classes of PTMs as examples of the broader context of PTMs. These include modifications of the N terminus, glycosylation, phosphorylation, oxidation, and N-terminal and protein modifiers linked to protein degradation. We consider the spatial distribution of PTMs, the subcellular distribution of modifying enzymes, and their targets throughout the cell, and we outline the complexity of compartmentation in understanding of PTM function. We also consider PTMs temporally in the context of the lifetime of a protein molecule and the need for different PTMs for assembly, localization, function, and degradation. Finally, we consider the combined action of PTMs on the same proteins, their interactions, and the challenge ahead of integrating PTMs into an understanding of protein function in plants.
Collapse
Affiliation(s)
- A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia;
| | - Joshua L Heazlewood
- School of BioSciences, University of Melbourne, Melbourne, Victoria 3010, Australia;
| | - Carmela Giglione
- Institute for Integrative Biology of the Cell, CNRS UMR9198, F-91198 Gif-sur-Yvette Cedex, France;
| | - Michael J Holdsworth
- School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom;
| | - Andreas Bachmair
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria;
| | - Waltraud X Schulze
- Systembiologie der Pflanze, Universität Hohenheim, 70599 Stuttgart, Germany;
| |
Collapse
|
11
|
Chen Y, Hoehenwarter W. Rapid and reproducible phosphopeptide enrichment by tandem metal oxide affinity chromatography: application to boron deficiency induced phosphoproteomics. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:370-384. [PMID: 30589143 DOI: 10.1111/tpj.14215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
Mass spectrometry has been instrumental in enabling the study of molecular signaling on a cellular scale by way of site-specific quantification of protein post-translational modifications, in particular phosphorylation. Here we describe an updated tandem metal oxide affinity chromatography (MOAC) combined phosphoprotein/phosphopeptide enrichment strategy, a scalable phosphoproteomics approach that allows rapid identification of thousands of phosphopeptides in plant materials. We implemented modifications to several steps of the original tandem MOAC procedure to increase the amount of quantified phosphopeptides and hence site-specific phosphorylation of proteins in a sample beginning with the less amounts of tissue and a substantially smaller amount of extracted protein. We applied this technology to generate time-resolved maps of boron signaling in Arabidopsis roots. We show that the successive enrichment of phosphoproteins in a first and phosphopeptide extraction in a second step using our optimized procedure strongly enriched the root phosphoproteome. Our results reveal that boron deficiency affects over 20% of the measured root phosphoproteome and that many phosphorylation sites with known biological function, and an even larger number of previously undescribed sites, are modified during the time course of boron deficiency. We identify transcription factors as key regulators of hormone signaling pathways that modulate gene expression in boron deprived plants. Furthermore, our phosphorylation kinetics data demonstrate that mitogen-activated protein kinase (MAPK) cascades mediate polarized transport of boron in Arabidopsis roots. Taken together, we establish and validate a robust approach for proteome-wide phosphorylation analysis in plant biology research.
Collapse
Affiliation(s)
- Yanmei Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wolfgang Hoehenwarter
- Proteome Analytics Research Group, Leibniz Institute for Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| |
Collapse
|
12
|
Abstract
Posttranslational modifications (PTMs) happen after or during protein translation. Small Ubiquitin-like Modifier (SUMO) proteins are covalently attached to certain lysine residues of the target proteins to modify their activity, stability, or localization. This process is called SUMOylation, which is a reversible PTM: SUMO protease enzymes can cleave SUMOs off the target protein backbone. Although many ubiquitinated proteins are targeted for degradation, SUMOylation does not necessary lead to the degradation of the modified protein but lead to the regulation of various physiological responses. SUMOylation of the examined protein cannot simply be monitored by immunoblotting techniques performed on total protein extracts, due to the SUMO-specific signals derived from other modified molecules. Furthermore, the fact that only a limited fraction of the target protein pool is SUMOylated makes the detection of SUMOylated proteins challenging. This protocol shows how SUMOylated phytochrome B (phyB) molecules can be detected using homologous and heterologous experimental systems in planta.
Collapse
Affiliation(s)
- Beatriz Orosa
- School of Biological and Biomedical Sciences, University of Durham, Durham, County Durham, UK
| | - András Viczián
- Biological Research Centre, Plant Biology Institute, Szeged, Hungary.
| |
Collapse
|
13
|
Vu LD, Gevaert K, De Smet I. Protein Language: Post-Translational Modifications Talking to Each Other. TRENDS IN PLANT SCIENCE 2018; 23:1068-1080. [PMID: 30279071 DOI: 10.1016/j.tplants.2018.09.004] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/31/2018] [Accepted: 09/10/2018] [Indexed: 05/21/2023]
Abstract
Post-translational modifications (PTMs) are at the heart of many cellular signaling events. Apart from a single regulatory PTM, there are also PTMs that function in orchestrated manners. Such PTM crosstalk usually serves as a fine-tuning mechanism to adjust cellular responses to the slightest changes in the environment. While PTM crosstalk has been studied in depth in various species; in plants, this field is just emerging. In this review, we discuss recent studies on crosstalk between three of the most common protein PTMs in plant cells, being phosphorylation, ubiquitination, and sumoylation, and we highlight the diverse underlying mechanisms as well as signaling outputs of such crosstalk.
Collapse
Affiliation(s)
- Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium; VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium; Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium; VIB Center for Medical Biotechnology, B-9000 Ghent, Belgium
| | - Kris Gevaert
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium; VIB Center for Medical Biotechnology, B-9000 Ghent, Belgium; These authors contributed equally. https://twitter.com/KrisGevaert_VIB
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium; VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium; These authors contributed equally.
| |
Collapse
|
14
|
Fractionation Techniques to Increase Plant Proteome Coverage: Combining Separation in Parallel at the Protein and the Peptide Level. Methods Mol Biol 2018. [PMID: 30276734 DOI: 10.1007/978-1-4939-8814-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Peptide spectral libraries enable targeted identification and quantitation of low-abundance proteins in a complex plant proteome. Here we describe parallel protein and peptide fractionation techniques to improve plant proteome coverage and facilitate construction of spectral libraries.
Collapse
|
15
|
Benlloch R, Lois LM. Sumoylation in plants: mechanistic insights and its role in drought stress. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4539-4554. [PMID: 29931319 DOI: 10.1093/jxb/ery233] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/11/2018] [Indexed: 05/20/2023]
Abstract
Post-translational modification by SUMO is an essential process that has a major role in the regulation of plant development and stress responses. Such diverse biological functions are accompanied by functional diversification among the SUMO conjugation machinery components and regulatory mechanisms that has just started to be identified in plants. In this review, we focus on the current knowledge of the SUMO conjugation system in plants in terms of components, substrate specificity, cognate interactions, enzyme activity, and subcellular localization. In addition, we analyze existing data on the role of SUMOylation in plant drought tolerance in model plants and crop species, paying attention to the genetic approaches used to stimulate or inhibit endogenous SUMO conjugation. The role in drought tolerance of potential SUMO targets identified in proteomic analyses is also discussed. Overall, the complexity of SUMOylation and the multiple genetic and environmental factors that are integrated to confer drought tolerance highlight the need for significant efforts to understand the interplay between SUMO and drought.
Collapse
Affiliation(s)
- Reyes Benlloch
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - L Maria Lois
- Center for Research in Agricultural Genomics-CRAG, Edifici CRAG-Campus UAB, Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| |
Collapse
|
16
|
Exploring potential roles for the interaction of MOM1 with SUMO and the SUMO E3 ligase-like protein PIAL2 in transcriptional silencing. PLoS One 2018; 13:e0202137. [PMID: 30092097 PMCID: PMC6084981 DOI: 10.1371/journal.pone.0202137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/28/2018] [Indexed: 11/30/2022] Open
Abstract
The CHD3-like chromatin remodeling protein MOM1 and the PIAS-type SUMO E3 ligase-like protein PIAL2 are known to interact with each other and mediate transcriptional silencing in Arabidopsis. However, it is poorly understood whether and how the interaction is involved in transcriptional silencing. Here, we demonstrate that, while the PIAL2 interaction domain (PIAL2-IND) is required for PIAL2 dimerization, MOM-PIAL2 interaction, and transcriptional silencing, a transgene fusing the wild-type MOM1 protein with the PIAL2 protein defective in PIAL2-IND can completely restore transcriptional silencing in the mom1/pial2 double mutant, demonstrating that the artificial fusion of MOM1 and PIAL2 mimics the in vivo interaction of these two proteins so that PIAL2-IND is no longer required for transcriptional silencing in the fusion protein. Further, our yeast two-hybrid assay identifies a previously unrecognized SUMO interaction motif (SIM) in the conserved MOM1 motif CMM3 and demonstrates that the SIM is responsible for the interaction of MOM1 with SUMO. Given that eukaryotic PIAS-type SUMO E3 ligases have a conserved role in chromatin regulation, the findings reported in this study may represent a conserved chromatin regulatory mechanism in higher eukaryotes.
Collapse
|
17
|
Ruiz‐May E, Segura‐Cabrera A, Elizalde‐Contreras JM, Shannon LM, Loyola‐Vargas VM. A recent advance in the intracellular and extracellular redox post‐translational modification of proteins in plants. J Mol Recognit 2018; 32:e2754. [DOI: 10.1002/jmr.2754] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/08/2018] [Accepted: 06/14/2018] [Indexed: 02/01/2023]
Affiliation(s)
- Eliel Ruiz‐May
- Red de Estudios Moleculares AvanzadosInstituto de Ecología A. C., Cluster BioMimic® Xalapa Veracruz Mexico
| | - Aldo Segura‐Cabrera
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute, Wellcome Genome Campus Hinxton Cambridgeshire UK
| | - Jose M. Elizalde‐Contreras
- Red de Estudios Moleculares AvanzadosInstituto de Ecología A. C., Cluster BioMimic® Xalapa Veracruz Mexico
| | - Laura M. Shannon
- Department of Horticultural ScienceUniversity of Minnesota Saint Paul MN USA
| | - Víctor M. Loyola‐Vargas
- Unidad de Bioquímica y Biología Molecular de PlantasCentro de Investigación Científica de Yucatán Mérida Yucatán Mexico
| |
Collapse
|
18
|
SUMO chain formation relies on the amino-terminal region of SUMO-conjugating enzyme and has dedicated substrates in plants. Biochem J 2018; 475:61-74. [PMID: 29133528 PMCID: PMC5748838 DOI: 10.1042/bcj20170472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 11/06/2017] [Accepted: 11/10/2017] [Indexed: 11/17/2022]
Abstract
The small ubiquitin-related modifier (SUMO) conjugation apparatus usually attaches single SUMO moieties to its substrates, but SUMO chains have also been identified. To better define the biochemical requirements and characteristics of SUMO chain formation, mutations in surface-exposed Lys residues of Arabidopsis SUMO-conjugating enzyme (SCE) were tested for in vitro activity. Lys-to-Arg changes in the amino-terminal region of SCE allowed SUMO acceptance from SUMO-activating enzyme and supported substrate mono-sumoylation, but these mutations had significant effects on SUMO chain assembly. We found no indication that SUMO modification of SCE promotes chain formation. A substrate was identified that is modified by SUMO chain addition, showing that SCE can distinguish substrates for either mono-sumoylation or SUMO chain attachment. It is also shown that SCE with active site Cys mutated to Ser can accept SUMO to form an oxyester, but cannot transfer this SUMO moiety onto substrates, explaining a previously known dominant negative effect of this mutation.
Collapse
|
19
|
Hansen LL, Imrie L, Le Bihan T, van den Burg HA, van Ooijen G. Sumoylation of the Plant Clock Transcription Factor CCA1 Suppresses DNA Binding. J Biol Rhythms 2017; 32:570-582. [PMID: 29172852 DOI: 10.1177/0748730417737695] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In plants, the circadian clock regulates the expression of one-third of all transcripts and is crucial to virtually every aspect of metabolism and growth. We now establish sumoylation, a posttranslational protein modification, as a novel regulator of the key clock protein CCA1 in the model plant Arabidopsis. Dynamic sumoylation of CCA1 is observed in planta and confirmed in a heterologous expression system. To characterize how sumoylation might affect the activity of CCA1, we investigated the properties of CCA1 in a wild-type plant background in comparison with ots1 ots2, a mutant background showing increased overall levels of sumoylation. Neither the localization nor the stability of CCA1 was significantly affected. However, binding of CCA1 to a target promoter was significantly reduced in chromatin-immunoprecipitation experiments. In vitro experiments using recombinant protein revealed that reduced affinity to the cognate promoter element is a direct consequence of sumoylation of CCA1 that does not require any other factors. Combined, these results suggest sumoylation as a mechanism that tunes the DNA binding activity of the central plant clock transcription factor CCA1.
Collapse
Affiliation(s)
- Louise L Hansen
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Lisa Imrie
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Thierry Le Bihan
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Harrold A van den Burg
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Gerben van Ooijen
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
20
|
Hansen LL, van den Burg HA, van Ooijen G. Sumoylation Contributes to Timekeeping and Temperature Compensation of the Plant Circadian Clock. J Biol Rhythms 2017; 32:560-569. [PMID: 29172926 DOI: 10.1177/0748730417737633] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The transcriptional circadian clock network is tuned into a 24-h oscillator by numerous posttranslational modifications on the proteins encoded by clock genes, differentially influencing their subcellular localization or activity. Clock proteins in any circadian organism are subject to posttranslational regulation, and many of the key enzymes, notably kinases and phosphatases, are functionally conserved between the clocks of mammals, fungi, and plants. We now establish sumoylation, the posttranslational modification of target proteins by the covalent attachment of the small ubiquitin-like modifier protein SUMO, as a novel mechanism regulating key clock properties in the model plant Arabidopsis. Using 2 different approaches, we show that mutant plant lines with decreased or increased levels of global sumoylation exhibit shortened or lengthened circadian period, respectively. One known functional role of sumoylation is to protect the proteome from temperature stress. The circadian clock is characterized by temperature compensation, meaning that proper timekeeping is ensured over the full range of physiologically relevant temperatures. Interestingly, we observed that the period defects in sumoylation mutant plants are strongly differential across temperature. Increased global sumoylation leads to undercompensation of the clock against temperature and decreased sumoylation to overcompensation, implying that sumoylation buffers the plant clock system against differential ambient temperature.
Collapse
Affiliation(s)
- Louise L Hansen
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Harrold A van den Burg
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Gerben van Ooijen
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|