1
|
Li X, Bu F, Zhang M, Li Z, Zhang Y, Chen H, Xue W, Guo R, Qi J, Kim C, Kawabata S, Wang Y, Zhang Q, Li Y, Zhang Y. Enhancing nature's palette through the epigenetic breeding of flower color in chrysanthemum. THE NEW PHYTOLOGIST 2025; 245:2117-2132. [PMID: 39721988 DOI: 10.1111/nph.20347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024]
Abstract
Flower color is an important character of ornamental plants and one of the main target traits for variety innovation. We previously identified a CmMYB6 epigenetic allele that affects the flower color in chrysanthemum, and changes in flower color are caused by the DNA methylation level of this gene. However, it is still unknown which DNA methyltransferases are involved in modifying the DNA methylation levels of this gene. Here, we used dead Cas9 (dCas9) together with DNA methyltransferases that methylate cytosine residues in the CHH context to target the CmMYB6 promoter through transient and stable transformation methods. We found that CmDRM2a increased the DNA methylation level of the CmMYB6 promoter, the expression of CmMYB6 decreased and a lighter flower color resulted. By contrast, both CmDRM2b and CmCMT2 enhanced DNA methylation levels of the CmMYB6 promoter, the expression of CmMYB6 increased and a deeper flower color resulted. Furthermore, the regulatory mechanism of DNA methyltransferase in the formation of chrysanthemum flower color was investigated, pointing to a new strategy for silencing or activating CmMYB6 epiallele to regulate anthocyanin synthesis. This lays a solid foundation for regulating flower color in chrysanthemum through epigenetic breeding.
Collapse
Affiliation(s)
- Xueqi Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Fanqi Bu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Man Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Zhuozheng Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Yu Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Haowen Chen
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Wanjie Xue
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Ronghua Guo
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Jingze Qi
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Cholmin Kim
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Saneyuki Kawabata
- Institute for Sustainable Agroecosystem Services, Graduate School of Agriculture and Life Science, The University of Tokyo, Tokyo, 1880002, Japan
| | - Yu Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Qingzhu Zhang
- School of Ecology, Northeast Forestry University, Harbin, 150040, China
| | - Yuhua Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Yang Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
2
|
Tomaštíková ED, Pecinka A. A Practical Approach to High-Throughput and Accurate Mapping-by-Sequencing in Arabidopsis. Methods Mol Biol 2025; 2873:53-70. [PMID: 39576596 DOI: 10.1007/978-1-0716-4228-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Forward-directed genetic screens are extremely powerful in identifying novel genes involved in a specific biological process, including various chromatin regulatory pathways. However, the traditional ways of genetic mapping are time- and cost-demanding. Recently, the whole process was revolutionized by the development of mapping-by-sequencing (MBS) protocols. In MBS, the causal mutations and their positions within genes are identified directly by whole-genome sequencing and bioinformatics analysis of the bulk of mutant plants selected based on the mutant phenotype from a segregating population. MBS increases precision and economizes the mapping. Here, we describe a general protocol and provide practical tips on how to proceed with the mapping-by-sequencing on the example of Arabidopsis forward-directed genetic screen designed to identify mutants sensitive to a specific type of DNA damage. The described protocol is generally applicable to a wide range of genetic screens in various inbreeding species with a reference genome sequence.
Collapse
Affiliation(s)
- Eva Dvořák Tomaštíková
- Institute of Experimental Botany (IEB), Czech Acad Sci, Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), Olomouc, Czech Republic
| | - Ales Pecinka
- Institute of Experimental Botany (IEB), Czech Acad Sci, Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), Olomouc, Czech Republic.
| |
Collapse
|
3
|
Gaude AA, Siqueira RH, Botelho SB, Jalmi SK. Epigenetic arsenal for stress mitigation in plants. Biochim Biophys Acta Gen Subj 2024; 1868:130620. [PMID: 38636616 DOI: 10.1016/j.bbagen.2024.130620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/23/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Plant's ability to perceive, respond to, and ultimately adapt to various stressors is a testament to their remarkable resilience. In response to stresses, plants activate a complex array of molecular and physiological mechanisms. These include the rapid activation of stress-responsive genes, the manufacturing of protective compounds, modulation of cellular processes and alterations in their growth and development patterns to enhance their chances of survival. Epigenetic mechanisms play a pivotal role in shaping the responses of plants to environmental stressors. This review explores the intricate interplay between epigenetic regulation and plant stress mitigation. We delve into the dynamic landscape of epigenetic modifications, highlighting their influence on gene expression and ultimately stress tolerance. This review assembles current research, shedding light on the promising strategies within plants' epigenetic arsenal to thrive amidst adverse conditions.
Collapse
Affiliation(s)
- Aishwarya Ashok Gaude
- Discipline of Botany, School of Biological Sciences and Biotechnology, Goa University, Goa 403206, India.
| | - Roxiette Heromina Siqueira
- Discipline of Botany, School of Biological Sciences and Biotechnology, Goa University, Goa 403206, India.
| | - Savia Bernadette Botelho
- Discipline of Botany, School of Biological Sciences and Biotechnology, Goa University, Goa 403206, India.
| | - Siddhi Kashinath Jalmi
- Discipline of Botany, School of Biological Sciences and Biotechnology, Goa University, Goa 403206, India.
| |
Collapse
|
4
|
Lv J, Feng Y, Zhai L, Jiang L, Wu Y, Huang Y, Yu R, Wu T, Zhang X, Wang Y, Han Z. MdARF3 switches the lateral root elongation to regulate dwarfing in apple plants. HORTICULTURE RESEARCH 2024; 11:uhae051. [PMID: 38706578 PMCID: PMC11069427 DOI: 10.1093/hr/uhae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/17/2023] [Indexed: 05/07/2024]
Abstract
Apple rootstock dwarfing and dense planting are common practices in apple farming. However, the dwarfing mechanisms are not understood. In our study, the expression of MdARF3 in the root system of dwarfing rootstock 'M9' was lower than in the vigorous rootstock from Malus micromalus due to the deletion of the WUSATAg element in the promoter of the 'M9' genotype. Notably, this deletion variation was significantly associated with dwarfing rootstocks. Subsequently, transgenic tobacco (Nicotiana tabacum) cv. Xanthi was generated with the ARF3 promoter from 'M9' and M. micromalus genotypes. The transgenic apple with 35S::MdARF3 was also obtained. The transgenic tobacco and apple with the highly expressed ARF3 had a longer root system and a higher plant height phenotype. Furthermore, the yeast one-hybrid, luciferase, electrophoretic mobility shift assays, and Chip-qPCR identified MdWOX4-1 in apples that interacted with the pMm-ARF3 promoter but not the pM9-ARF3 promoter. Notably, MdWOX4-1 significantly increased the transcriptional activity of MdARF3 and MdLBD16-2. However, MdARF3 significantly decreased the transcriptional activity of MdLBD16-2. Further analysis revealed that MdARF3 and MdLBD16-2 were temporally expressed during different stages of lateral root development. pMdLBD16-2 was mainly expressed during the early stage of lateral root development, which promoted lateral root production. On the contrary, pMmARF3 was expressed during the late stage of lateral root development to promote elongation. The findings in our study will shed light on the genetic causes of apple plant dwarfism and provide strategies for molecular breeding of dwarfing apple rootstocks.
Collapse
Affiliation(s)
- Jiahong Lv
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yi Feng
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Longmei Zhai
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Lizhong Jiang
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yue Wu
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yimei Huang
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Runqi Yu
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Ting Wu
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xinzhong Zhang
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yi Wang
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zhenhai Han
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
5
|
Singh VK, Ahmed S, Saini DK, Gahlaut V, Chauhan S, Khandare K, Kumar A, Sharma PK, Kumar J. Manipulating epigenetic diversity in crop plants: Techniques, challenges and opportunities. Biochim Biophys Acta Gen Subj 2024; 1868:130544. [PMID: 38104668 DOI: 10.1016/j.bbagen.2023.130544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Epigenetic modifications act as conductors of inheritable alterations in gene expression, all while keeping the DNA sequence intact, thereby playing a pivotal role in shaping plant growth and development. This review article presents an overview of techniques employed to investigate and manipulate epigenetic diversity in crop plants, focusing on both naturally occurring and artificially induced epialleles. The significance of epigenetic modifications in facilitating adaptive responses is explored through the examination of how various biotic and abiotic stresses impact them. Further, environmental chemicals are explored for their role in inducing epigenetic changes, particularly focusing on inhibitors of DNA methylation like 5-AzaC and zebularine, as well as inhibitors of histone deacetylation including trichostatin A and sodium butyrate. The review delves into various approaches for generating epialleles, including tissue culture techniques, mutagenesis, and grafting, elucidating their potential to induce heritable epigenetic modifications in plants. In addition, the ground breaking CRISPR/Cas is emphasized for its accuracy in targeting specific epigenetic changes. This presents a potent tools for deciphering the intricacies of epigenetic mechanisms. Furthermore, the intricate relationship between epigenetic modifications and non-coding RNA expression, including siRNAs and miRNAs, is investigated. The emerging role of exo-RNAi in epigenetic regulation is also introduced, unveiling its promising potential for future applications. The article concludes by addressing the opportunities and challenges presented by these techniques, emphasizing their implications for crop improvement. Conclusively, this extensive review provides valuable insights into the intricate realm of epigenetic changes, illuminating their significance in phenotypic plasticity and their potential in advancing crop improvement.
Collapse
Affiliation(s)
| | - Shoeb Ahmed
- Ch. Charan Singh University, Meerut 250004, India
| | - Dinesh Kumar Saini
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Vijay Gahlaut
- University Centre for Research and Development, Chandigarh University, Mohali 140413, Punjab, India
| | | | - Kiran Khandare
- Center of Innovative and Applied Bioprocessing, Mohali 140308, Punjab, India
| | - Ashutosh Kumar
- Center of Innovative and Applied Bioprocessing, Mohali 140308, Punjab, India
| | - Pradeep Kumar Sharma
- Ch. Charan Singh University, Meerut 250004, India; Maharaja Suhel Dev State University, Azamgarh 276404, U.P., India
| | - Jitendra Kumar
- National Agri-Food Biotechnology Institute, Sector-81, Mohali 140306, Punjab, India.
| |
Collapse
|
6
|
Pagano A, Gomes C, Timmerman E, Sulima P, Przyborowski JA, Kruszka D, Impens F, Paiva JAP. Revealing the transitory and local effect of zebularine on development and on proteome dynamics of Salix purpurea. FRONTIERS IN PLANT SCIENCE 2024; 14:1304327. [PMID: 38298602 PMCID: PMC10827895 DOI: 10.3389/fpls.2023.1304327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/19/2023] [Indexed: 02/02/2024]
Abstract
Introduction DNA methylation plays major roles in the epigenetic regulation of gene expression, transposon and transcriptional silencing, and DNA repair, with implications in developmental processes and phenotypic plasticity. Relevantly for woody species, DNA methylation constitutes a regulative layer in cell wall dynamics associated with xylogenesis. The use of methyltransferase and/or demethylase inhibitors has been proven informative to shed light on the methylome dynamics behind the regulation of these processes. Methods The present work employs the cytidine analog zebularine to inhibit DNA methyltransferases and induce DNA hypomethylation in Salix purpurea plantlets grown in vitro and in soil. An integrative approach was adopted to highlight the effects of zebularine on proteomic dynamics, revealing age-specific (3 weeks of in vitro culture and 1 month of growth in soil) and tissue-specific (stem and root) effects. Results and discussion After 3 weeks of recovery from zebularine treatment, a decrease of 5-mC levels was observed in different genomic contexts in the roots of explants that were exposed to zebularine, whereas a functionally heterogeneous subset of protein entries was differentially accumulated in stem samples, including entries related to cell wall biosynthesis, tissue morphogenesis, and hormonal regulation. Significant proteomic remodeling was revealed in the development from in vitro to in-soil culture, but no significant changes in 5-mC levels were observed. The identification of tissue-specific proteomic hallmarks in combination with hypomethylating agents provides new insights into the role of DNA methylation and proteome in early plant development in willow species. Proteomic data are available via ProteomeXchange with identifier PXD045653. WGBS data are available under BioProject accession PRJNA889596.
Collapse
Affiliation(s)
- Andrea Pagano
- Department of Integrative Plant Biology, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Carolina Gomes
- Department of Integrative Plant Biology, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Evy Timmerman
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Proteomics Core, Ghent, Belgium
| | - Paweł Sulima
- Department of Genetics, Plant Breeding and Bioresource Engineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Jerzy Andrzej Przyborowski
- Department of Genetics, Plant Breeding and Bioresource Engineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Dariusz Kruszka
- Department of Integrative Plant Biology, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Proteomics Core, Ghent, Belgium
| | - Jorge Almiro Pinto Paiva
- Department of Integrative Plant Biology, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
7
|
Agius DR, Kapazoglou A, Avramidou E, Baranek M, Carneros E, Caro E, Castiglione S, Cicatelli A, Radanovic A, Ebejer JP, Gackowski D, Guarino F, Gulyás A, Hidvégi N, Hoenicka H, Inácio V, Johannes F, Karalija E, Lieberman-Lazarovich M, Martinelli F, Maury S, Mladenov V, Morais-Cecílio L, Pecinka A, Tani E, Testillano PS, Todorov D, Valledor L, Vassileva V. Exploring the crop epigenome: a comparison of DNA methylation profiling techniques. FRONTIERS IN PLANT SCIENCE 2023; 14:1181039. [PMID: 37389288 PMCID: PMC10306282 DOI: 10.3389/fpls.2023.1181039] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/27/2023] [Indexed: 07/01/2023]
Abstract
Epigenetic modifications play a vital role in the preservation of genome integrity and in the regulation of gene expression. DNA methylation, one of the key mechanisms of epigenetic control, impacts growth, development, stress response and adaptability of all organisms, including plants. The detection of DNA methylation marks is crucial for understanding the mechanisms underlying these processes and for developing strategies to improve productivity and stress resistance of crop plants. There are different methods for detecting plant DNA methylation, such as bisulfite sequencing, methylation-sensitive amplified polymorphism, genome-wide DNA methylation analysis, methylated DNA immunoprecipitation sequencing, reduced representation bisulfite sequencing, MS and immuno-based techniques. These profiling approaches vary in many aspects, including DNA input, resolution, genomic region coverage, and bioinformatics analysis. Selecting an appropriate methylation screening approach requires an understanding of all these techniques. This review provides an overview of DNA methylation profiling methods in crop plants, along with comparisons of the efficacy of these techniques between model and crop plants. The strengths and limitations of each methodological approach are outlined, and the importance of considering both technical and biological factors are highlighted. Additionally, methods for modulating DNA methylation in model and crop species are presented. Overall, this review will assist scientists in making informed decisions when selecting an appropriate DNA methylation profiling method.
Collapse
Affiliation(s)
- Dolores Rita Agius
- Centre of Molecular Medicine and Biobanking, University of Malta, Msida, Malta
- Biology Department, Ġ.F.Abela Junior College, Msida, Malta
| | - Aliki Kapazoglou
- Department of Vitis, Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), Athens, Greece
| | - Evangelia Avramidou
- Laboratory of Forest Genetics and Biotechnology, Institute of Mediterranean Forest Ecosystems, Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), Athens, Greece
| | - Miroslav Baranek
- Mendeleum-Insitute of Genetics, Faculty of Horticulture, Mendel University in Brno, Lednice, Czechia
| | - Elena Carneros
- Center for Biological Research (CIB) of the Spanish National Research Council (CSIC), Madrid, Spain
| | - Elena Caro
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Stefano Castiglione
- Department of Chemistry and Biology ‘A. Zambelli’, University of Salerno, Fisciano, Italy
| | - Angela Cicatelli
- Department of Chemistry and Biology ‘A. Zambelli’, University of Salerno, Fisciano, Italy
| | - Aleksandra Radanovic
- Institute of Field and Vegetable Crops, National Institute of Republic of Serbia, Novi Sad, Serbia
| | - Jean-Paul Ebejer
- Centre of Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Francesco Guarino
- Department of Chemistry and Biology ‘A. Zambelli’, University of Salerno, Fisciano, Italy
| | - Andrea Gulyás
- Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Nyíregyháza, Hungary
| | - Norbert Hidvégi
- Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Nyíregyháza, Hungary
| | - Hans Hoenicka
- Genomic Research Department, Thünen Institute of Forest Genetics, Grosshansdorf, Germany
| | - Vera Inácio
- BioISI – BioSystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Frank Johannes
- Plant Epigenomics, Technical University of Munich (TUM), Freising, Germany
| | - Erna Karalija
- Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Michal Lieberman-Lazarovich
- Department of Vegetables and Field Crops, Agricultural Research Organization, Volcani Center, Institute of Plant Sciences, Rishon LeZion, Israel
| | | | - Stéphane Maury
- Laboratoire de Biologie des Ligneux et des Grandes Cultures EA1207 USC1328, INRAE, Université d’Orléans, Orléans, France
| | - Velimir Mladenov
- Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Leonor Morais-Cecílio
- Linking Landscape, Environment, Agriculture and Food (LEAF), Institute of Agronomy, University of Lisbon, Lisbon, Portugal
| | - Ales Pecinka
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
| | - Eleni Tani
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Pilar S. Testillano
- Center for Biological Research (CIB) of the Spanish National Research Council (CSIC), Madrid, Spain
| | - Dimitar Todorov
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
8
|
Dvořák Tomaštíková E, Prochazkova K, Yang F, Jemelkova J, Finke A, Dorn A, Said M, Puchta H, Pecinka A. SMC5/6 complex-mediated SUMOylation stimulates DNA-protein cross-link repair in Arabidopsis. THE PLANT CELL 2023; 35:1532-1547. [PMID: 36705512 PMCID: PMC10118267 DOI: 10.1093/plcell/koad020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/23/2022] [Accepted: 01/23/2023] [Indexed: 05/10/2023]
Abstract
DNA-protein cross-links (DPCs) are highly toxic DNA lesions consisting of proteins covalently attached to chromosomal DNA. Unrepaired DPCs physically block DNA replication and transcription. Three DPC repair pathways have been identified in Arabidopsis (Arabidopsis thaliana) to date: the endonucleolytic cleavage of DNA by the structure-specific endonuclease MUS81; proteolytic degradation of the crosslinked protein by the metalloprotease WSS1A; and cleavage of the cross-link phosphodiester bonds by the tyrosyl phosphodiesterases TDP1 and TDP2. Here we describe the evolutionary conserved STRUCTURAL MAINTENANCE OF CHROMOSOMEs SMC5/6 complex as a crucial component involved in DPC repair. We identified multiple alleles of the SMC5/6 complex core subunit gene SMC6B via a forward-directed genetic screen designed to identify the factors involved in the repair of DPCs induced by the cytidine analog zebularine. We monitored plant growth and cell death in response to DPC-inducing chemicals, which revealed that the SMC5/6 complex is essential for the repair of several types of DPCs. Genetic interaction and sensitivity assays showed that the SMC5/6 complex works in parallel to the endonucleolytic and proteolytic pathways. The repair of zebularine-induced DPCs was associated with SMC5/6-dependent SUMOylation of the damage sites. Thus, we present the SMC5/6 complex as an important factor in plant DPC repair.
Collapse
Affiliation(s)
| | - Klara Prochazkova
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 77900 Olomouc, Czech Republic
| | - Fen Yang
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 77900 Olomouc, Czech Republic
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 77900 Olomouc, Czech Republic
| | - Jitka Jemelkova
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 77900 Olomouc, Czech Republic
- Functional Genomics and Proteomics, National Centre for Biomolecular Research (NCBR), Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | | | - Annika Dorn
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Mahmoud Said
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 77900 Olomouc, Czech Republic
- Field Crops Research Institute, Agricultural Research Centre, 9 Gamma Street, Giza, 12619, Cairo, Egypt
| | - Holger Puchta
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | | |
Collapse
|
9
|
Nowicka A, Ferková Ľ, Said M, Kovacik M, Zwyrtková J, Baroux C, Pecinka A. Non-Rabl chromosome organization in endoreduplicated nuclei of barley embryo and endosperm tissues. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2527-2541. [PMID: 36705553 DOI: 10.1093/jxb/erad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/25/2023] [Indexed: 06/06/2023]
Abstract
Rabl organization is a type of interphase chromosome arrangement with centromeres and telomeres clustering at opposite nuclear poles. Here, we analyzed nuclear morphology and chromosome organization in cycling and endoreduplicated nuclei isolated from embryo and endosperm tissues of developing barley seeds. We show that endoreduplicated nuclei have an irregular shape, less sister chromatid cohesion at 5S rDNA loci, and a reduced amount of centromeric histone CENH3. While the chromosomes of the embryo and endosperm nuclei are initially organized in Rabl configuration, the centromeres and telomeres are intermingled within the nuclear space in the endoreduplicated nuclei with an increasing endoreduplication level. Such a loss of chromosome organization suggests that Rabl configuration is introduced and further reinforced by mitotic divisions in barley cell nuclei in a tissue- and seed age-dependent manner.
Collapse
Affiliation(s)
- Anna Nowicka
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
- The Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland
| | - Ľuboslava Ferková
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
| | - Mahmoud Said
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
- Field Crops Research Institute, Agricultural Research Centre, 9 Gamma Street, Giza, Cairo, 12619, Egypt
| | - Martin Kovacik
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
| | - Jana Zwyrtková
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
| | - Célia Baroux
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland
| | - Ales Pecinka
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
| |
Collapse
|
10
|
Dvořák Tomaštíková E, Yang F, Mlynárová K, Hafidh S, Schořová Š, Kusová A, Pernisová M, Přerovská T, Klodová B, Honys D, Fajkus J, Pecinka A, Schrumpfová PP. RUVBL proteins are involved in plant gametophyte development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:325-337. [PMID: 36752686 DOI: 10.1111/tpj.16136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 05/10/2023]
Abstract
The proper development of male and female gametophytes is critical for successful sexual reproduction and requires a carefully regulated series of events orchestrated by a suite of various proteins. RUVBL1 and RUVBL2, plant orthologues of human Pontin and Reptin, respectively, belong to the evolutionarily highly conserved AAA+ family linked to a wide range of cellular processes. Previously, we found that RUVBL1 and RUVBL2A mutations are homozygous lethal in Arabidopsis. Here, we report that RUVBL1 and RUVBL2A play roles in reproductive development. We show that mutant plants produce embryo sacs with an abnormal structure or with various numbers of nuclei. Although pollen grains of heterozygous mutant plants exhibit reduced viability and reduced pollen tube growth in vitro, some of the ruvbl pollen tubes are capable of targeting ovules in vivo. Similarly, some ruvbl ovules retain the ability to attract wild-type pollen tubes but fail to develop further. The activity of the RUVBL1 and RUVBL2A promoters was observed in the embryo sac, pollen grains, and tapetum cells and, for RUVBL2A, also in developing ovules. In summary, we show that the RUVBL proteins are essential for the proper development of both male and particularly female gametophytes in Arabidopsis.
Collapse
Affiliation(s)
- Eva Dvořák Tomaštíková
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany, Czech Academy of Sciences, Šlechtitelů 31, 77900, Olomouc, Czech Republic
| | - Fen Yang
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany, Czech Academy of Sciences, Šlechtitelů 31, 77900, Olomouc, Czech Republic
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 77900, Olomouc, Czech Republic
| | - Kristína Mlynárová
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Said Hafidh
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, CZ-165 02, Prague, Czech Republic
| | - Šárka Schořová
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Alžbeta Kusová
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Markéta Pernisová
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Tereza Přerovská
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Božena Klodová
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, CZ-165 02, Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 00, Praha 2, Czech Republic
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, CZ-165 02, Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 00, Praha 2, Czech Republic
| | - Jiří Fajkus
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, CZ-61265, Brno, Czech Republic
| | - Ales Pecinka
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany, Czech Academy of Sciences, Šlechtitelů 31, 77900, Olomouc, Czech Republic
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 77900, Olomouc, Czech Republic
| | - Petra Procházková Schrumpfová
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| |
Collapse
|
11
|
Lieberman-Lazarovich M, Kaiserli E, Bucher E, Mladenov V. Natural and induced epigenetic variation for crop improvement. CURRENT OPINION IN PLANT BIOLOGY 2022; 70:102297. [PMID: 36108411 DOI: 10.1016/j.pbi.2022.102297] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/27/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Maintaining global food security is a major challenge that requires novel strategies for crop improvement. Epigenetic regulation of plant responses to adverse environmental conditions provides a tunable mechanism to optimize plant growth, adaptation and ultimately yield. Epibreeding employs agricultural practices that rely on key epigenetic features as a means of engineering favorable phenotypic traits in target crops. This review summarizes recent findings on the role of epigenetic marks such as DNA methylation and histone modifications, in controlling phenotypic variation in crop species in response to environmental factors. The potential use of natural and induced epigenetic features as platforms for crop improvement via epibreeding, is discussed.
Collapse
Affiliation(s)
- Michal Lieberman-Lazarovich
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel.
| | - Eirini Kaiserli
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Etienne Bucher
- Crop Genome Dynamics Group, Agroscope Changins, 1260, Nyon, Switzerland
| | - Velimir Mladenov
- Faculty of Agriculture, University of Novi Sad, Sq. Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| |
Collapse
|
12
|
Kosová V, Latzel V, Hadincová V, Münzbergová Z. Effect of DNA methylation, modified by 5-azaC, on ecophysiological responses of a clonal plant to changing climate. Sci Rep 2022; 12:17262. [PMID: 36241768 PMCID: PMC9568541 DOI: 10.1038/s41598-022-22125-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/10/2022] [Indexed: 01/06/2023] Open
Abstract
Epigenetic regulation of gene expression is expected to be an important mechanism behind phenotypic plasticity. Whether epigenetic regulation affects species ecophysiological adaptations to changing climate remains largely unexplored. We compared ecophysiological traits between individuals treated with 5-azaC, assumed to lead to DNA demethylation, with control individuals of a clonal grass originating from and grown under different climates, simulating different directions and magnitudes of climate change. We linked the ecophysiological data to proxies of fitness. Main effects of plant origin and cultivating conditions predicted variation in plant traits, but 5-azaC did not. Effects of 5-azaC interacted with conditions of cultivation and plant origin. The direction of the 5-azaC effects suggests that DNA methylation does not reflect species long-term adaptations to climate of origin and species likely epigenetically adjusted to the conditions experienced during experiment set-up. Ecophysiology translated to proxies of fitness, but the intensity and direction of the relationships were context dependent and affected by 5-azaC. The study suggests that effects of DNA methylation depend on conditions of plant origin and current climate. Direction of 5-azaC effects suggests limited role of epigenetic modifications in long-term adaptation of plants. It rather facilitates fast adaptations to temporal fluctuations of the environment.
Collapse
Affiliation(s)
- Veronika Kosová
- grid.4491.80000 0004 1937 116XDepartment of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vít Latzel
- grid.418095.10000 0001 1015 3316Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, Czech Republic
| | - Věroslava Hadincová
- grid.418095.10000 0001 1015 3316Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, Czech Republic
| | - Zuzana Münzbergová
- grid.4491.80000 0004 1937 116XDepartment of Botany, Faculty of Science, Charles University, Prague, Czech Republic ,grid.418095.10000 0001 1015 3316Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, Czech Republic
| |
Collapse
|
13
|
Kong J, Garcia V, Zehraoui E, Stammitti L, Hilbert G, Renaud C, Maury S, Delaunay A, Cluzet S, Lecourieux F, Lecourieux D, Teyssier E, Gallusci P. Zebularine, a DNA Methylation Inhibitor, Activates Anthocyanin Accumulation in Grapevine Cells. Genes (Basel) 2022; 13:genes13071256. [PMID: 35886036 PMCID: PMC9316115 DOI: 10.3390/genes13071256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
Through its role in the regulation of gene expression, DNA methylation can participate in the control of specialized metabolite production. We have investigated the link between DNA methylation and anthocyanin accumulation in grapevine using the hypomethylating drug, zebularine and Gamay Teinturier cell suspensions. In this model, zebularine increased anthocyanin accumulation in the light, and induced its production in the dark. To unravel the underlying mechanisms, cell transcriptome, metabolic content, and DNA methylation were analyzed. The up-regulation of stress-related genes, as well as a decrease in cell viability, revealed that zebularine affected cell integrity. Concomitantly, the global DNA methylation level was only slightly decreased in the light and not modified in the dark. However, locus-specific analyses demonstrated a decrease in DNA methylation at a few selected loci, including a CACTA DNA transposon and a small region upstream from the UFGT gene, coding for the UDP glucose:flavonoid-3-O-glucosyltransferase, known to be critical for anthocyanin biosynthesis. Moreover, this decrease was correlated with an increase in UFGT expression and in anthocyanin content. In conclusion, our data suggest that UFGT expression could be regulated through DNA methylation in Gamay Teinturier, although the functional link between changes in DNA methylation and UFGT transcription still needs to be demonstrated.
Collapse
Affiliation(s)
- Junhua Kong
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, Université de Bordeaux, INRAE, Bordeaux Science Agro, 210 Chemin de Leysotte—33140 Villenave d’Ornon, France; (J.K.); (V.G.); (E.Z.); (L.S.); (G.H.); (C.R.); (F.L.); (D.L.); (P.G.)
| | - Virginie Garcia
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, Université de Bordeaux, INRAE, Bordeaux Science Agro, 210 Chemin de Leysotte—33140 Villenave d’Ornon, France; (J.K.); (V.G.); (E.Z.); (L.S.); (G.H.); (C.R.); (F.L.); (D.L.); (P.G.)
| | - Enric Zehraoui
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, Université de Bordeaux, INRAE, Bordeaux Science Agro, 210 Chemin de Leysotte—33140 Villenave d’Ornon, France; (J.K.); (V.G.); (E.Z.); (L.S.); (G.H.); (C.R.); (F.L.); (D.L.); (P.G.)
| | - Linda Stammitti
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, Université de Bordeaux, INRAE, Bordeaux Science Agro, 210 Chemin de Leysotte—33140 Villenave d’Ornon, France; (J.K.); (V.G.); (E.Z.); (L.S.); (G.H.); (C.R.); (F.L.); (D.L.); (P.G.)
| | - Ghislaine Hilbert
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, Université de Bordeaux, INRAE, Bordeaux Science Agro, 210 Chemin de Leysotte—33140 Villenave d’Ornon, France; (J.K.); (V.G.); (E.Z.); (L.S.); (G.H.); (C.R.); (F.L.); (D.L.); (P.G.)
| | - Christel Renaud
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, Université de Bordeaux, INRAE, Bordeaux Science Agro, 210 Chemin de Leysotte—33140 Villenave d’Ornon, France; (J.K.); (V.G.); (E.Z.); (L.S.); (G.H.); (C.R.); (F.L.); (D.L.); (P.G.)
| | - Stéphane Maury
- INRAe, EA1207 USC1328 Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’Orléans, 45067 Orléans, France; (S.M.); (A.D.)
| | - Alain Delaunay
- INRAe, EA1207 USC1328 Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’Orléans, 45067 Orléans, France; (S.M.); (A.D.)
| | - Stéphanie Cluzet
- Unité de Recherche Oenologie, Faculté des Sciences Pharmaceutiques, University Bordeaux, EA4577, USC 1366 INRA, Equipe Molécules d’Intérêt Biologique (GESVAB), ISVV, CEDEX, 33882 Villenave d’Ornon, France;
| | - Fatma Lecourieux
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, Université de Bordeaux, INRAE, Bordeaux Science Agro, 210 Chemin de Leysotte—33140 Villenave d’Ornon, France; (J.K.); (V.G.); (E.Z.); (L.S.); (G.H.); (C.R.); (F.L.); (D.L.); (P.G.)
| | - David Lecourieux
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, Université de Bordeaux, INRAE, Bordeaux Science Agro, 210 Chemin de Leysotte—33140 Villenave d’Ornon, France; (J.K.); (V.G.); (E.Z.); (L.S.); (G.H.); (C.R.); (F.L.); (D.L.); (P.G.)
| | - Emeline Teyssier
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, Université de Bordeaux, INRAE, Bordeaux Science Agro, 210 Chemin de Leysotte—33140 Villenave d’Ornon, France; (J.K.); (V.G.); (E.Z.); (L.S.); (G.H.); (C.R.); (F.L.); (D.L.); (P.G.)
- Correspondence: ; Tel.: +33-5-5757-5928
| | - Philippe Gallusci
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, Université de Bordeaux, INRAE, Bordeaux Science Agro, 210 Chemin de Leysotte—33140 Villenave d’Ornon, France; (J.K.); (V.G.); (E.Z.); (L.S.); (G.H.); (C.R.); (F.L.); (D.L.); (P.G.)
| |
Collapse
|
14
|
Bačovský V, Čegan R, Tihlaříková E, Neděla V, Hudzieczek V, Smrža L, Janíček T, Beneš V, Hobza R. Chemical genetics in Silene latifolia elucidate regulatory pathways involved in gynoecium development. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2354-2368. [PMID: 35045170 DOI: 10.1093/jxb/erab538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Dioecious plants possess diverse sex determination systems and unique mechanisms of reproductive organ development; however, little is known about how sex-linked genes shape the expression of regulatory cascades that lead to developmental differences between sexes. In Silene latifolia, a dioecious plant with stable dimorphism in floral traits, early experiments suggested that female-regulator genes act on the factors that determine the boundaries of the flower whorls. To identify these regulators, we sequenced the transcriptome of male flowers with fully developed gynoecia, induced by rapid demethylation in the parental generation. Eight candidates were found to have a positive role in gynoecium promotion, floral organ size, and whorl boundary, and affect the expression of class B MADS-box flower genes. To complement our transcriptome analysis, we closely examined the floral organs in their native state using field emission environmental scanning electron microscopy, and examined the differences between females and androhermaphrodites in their placenta and ovule organization. Our results reveal the regulatory pathways potentially involved in sex-specific flower development in the classical model of dioecy, S. latifolia. These pathways include previously hypothesized and unknown female-regulator genes that act on the factors that determine the flower boundaries, and a negative regulator of anther development, SUPERMAN-like (SlSUP).
Collapse
Affiliation(s)
- Václav Bačovský
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Radim Čegan
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Eva Tihlaříková
- Environmental Electron Microscopy Group, Institute of Scientific Instruments of the Czech Academy of Sciences, Kralovopolska 147, 612 64 Brno, Czech Republic
| | - Vilém Neděla
- Environmental Electron Microscopy Group, Institute of Scientific Instruments of the Czech Academy of Sciences, Kralovopolska 147, 612 64 Brno, Czech Republic
| | - Vojtěch Hudzieczek
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Lubomír Smrža
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Tomáš Janíček
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Vladimír Beneš
- EMBL Genomics Core Facility, EMBL Heidelberg, Meyerhofstraße 1, D-69117 Heidelberg, Germany
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65 Brno, Czech Republic
| |
Collapse
|
15
|
Prochazkova K, Finke A, Tomaštíková ED, Filo J, Bente H, Dvořák P, Ovečka M, Šamaj J, Pecinka A. Zebularine induces enzymatic DNA-protein crosslinks in 45S rDNA heterochromatin of Arabidopsis nuclei. Nucleic Acids Res 2021; 50:244-258. [PMID: 34904670 PMCID: PMC8754632 DOI: 10.1093/nar/gkab1218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/01/2021] [Indexed: 11/14/2022] Open
Abstract
Loss of genome stability leads to reduced fitness, fertility and a high mutation rate. Therefore, the genome is guarded by the pathways monitoring its integrity and neutralizing DNA lesions. To analyze the mechanism of DNA damage induction by cytidine analog zebularine, we performed a forward-directed suppressor genetic screen in the background of Arabidopsis thaliana zebularine-hypersensitive structural maintenance of chromosomes 6b (smc6b) mutant. We show that smc6b hypersensitivity was suppressed by the mutations in EQUILIBRATIVE NUCLEOSIDE TRANSPORTER 3 (ENT3), DNA METHYLTRANSFERASE 1 (MET1) and DECREASE IN DNA METHYLATION 1 (DDM1). Superior resistance of ent3 plants to zebularine indicated that ENT3 is likely necessary for the import of the drug to the cells. Identification of MET1 and DDM1 suggested that zebularine induces DNA damage by interference with the maintenance of CG DNA methylation. The same holds for structurally similar compounds 5-azacytidine and 2-deoxy-5-azacytidine. Based on our genetic and biochemical data, we propose that zebularine induces enzymatic DNA–protein crosslinks (DPCs) of MET1 and zebularine-containing DNA in Arabidopsis, which was confirmed by native chromatin immunoprecipitation experiments. Moreover, zebularine-induced DPCs accumulate preferentially in 45S rDNA chromocenters in a DDM1-dependent manner. These findings open a new avenue for studying genome stability and DPC repair in plants.
Collapse
Affiliation(s)
| | | | - Eva Dvořák Tomaštíková
- Institute of Experimental Botany, The Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 77900 Olomouc, Czech Republic
| | - Jaroslav Filo
- Institute of Experimental Botany, The Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 77900 Olomouc, Czech Republic
| | - Heinrich Bente
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Petr Dvořák
- Department of Botany, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Miroslav Ovečka
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Ales Pecinka
- To whom correspondence should be addressed. Tel: +420 585 238 709;
| |
Collapse
|
16
|
Harnessing epigenetic variability for crop improvement: current status and future prospects. Genes Genomics 2021; 44:259-266. [PMID: 34807374 DOI: 10.1007/s13258-021-01189-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/07/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND The epigenetic mechanisms play critical roles in a vast diversity of biological processes of plants, including development and response to environmental challenges. Particularly, DNA methylation is a stable epigenetic signature that supplements the genetics-based view of complex life phenomena. In crop breeding, the decrease in genetic diversity due to artificial selection of conventional breeding methods has been a long-standing concern. Therefore, the epigenetic diversity has been proposed as a new resource for future crop breeding, which will be hereinafter referred to as epibreeding. DISCUSSION The induction of methylome changes has been performed in plants by several methods including chemical drugs treatment and tissue culture. Target-specific epigenetic engineering has been also attempted by exogenous RNAi mediated by virus-induced gene silencing and grafting. Importantly, the new and innovative techniques including the CRISPR-Cas9 system have recently been adopted in epigenetic engineering of plant genomes, facilitating the efforts for epibreeding. CONCLUSION In this review, we introduce several examples of natural and induced epigenetic changes impacting on agronomic traits and discuss the methods for generating epigenomic diversity and site-specific epigenetic engineering.
Collapse
|
17
|
Krzewska M, Dubas E, Gołębiowska G, Nowicka A, Janas A, Zieliński K, Surówka E, Kopeć P, Mielczarek P, Żur I. Comparative proteomic analysis provides new insights into regulation of microspore embryogenesis induction in winter triticale (× Triticosecale Wittm.) after 5-azacytidine treatment. Sci Rep 2021; 11:22215. [PMID: 34782682 PMCID: PMC8593058 DOI: 10.1038/s41598-021-01671-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/02/2021] [Indexed: 11/09/2022] Open
Abstract
Effective microspore embryogenesis (ME) requires substantial modifications in gene expression pattern, followed by changes in the cell proteome and its metabolism. Recent studies have awakened also interest in the role of epigenetic factors in microspore de-differentiation and reprogramming. Therefore, demethylating agent (2.5-10 μM 5-azacytidine, AC) together with low temperature (3 weeks at 4 °C) were used as ME-inducing tiller treatment in two doubled haploid (DH) lines of triticale and its effect was analyzed in respect of anther protein profiles, expression of selected genes (TAPETUM DETERMINANT1 (TaTPD1-like), SOMATIC EMBRYOGENESIS RECEPTOR KINASE 2 (SERK2) and GLUTATHIONE S-TRANSFERASE (GSTF2)) and ME efficiency. Tiller treatment with 5.0 µM AC was the most effective in ME induction; it was associated with (1) suppression of intensive anabolic processes-mainly photosynthesis and light-dependent reactions, (2) transition to effective catabolism and mobilization of carbohydrate reserve to meet the high energy demand of cells during microspore reprograming and (3) effective defense against stress-inducing treatment, i.e. protection of proper folding during protein biosynthesis and effective degradation of dysfunctional or damaged proteins. Additionally, 5.0 µM AC enhanced the expression of all genes previously identified as being associated with embryogenic potential of microspores (TaTPD1-like, SERK and GSTF2).
Collapse
Affiliation(s)
- Monika Krzewska
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland.
| | - Ewa Dubas
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Gabriela Gołębiowska
- Chair of Genetics, Institute of Biology, Pedagogical University of Krakow, Podchorążych 2, 31-084, Kraków, Poland
| | - Anna Nowicka
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 779 00, Olomouc, Czech Republic
| | - Agnieszka Janas
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Kamil Zieliński
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Ewa Surówka
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Przemysław Kopeć
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Przemysław Mielczarek
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30 ave., 30-059, Kraków, Poland
| | - Iwona Żur
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland.
| |
Collapse
|
18
|
Roquis D, Robertson M, Yu L, Thieme M, Julkowska M, Bucher E. Genomic impact of stress-induced transposable element mobility in Arabidopsis. Nucleic Acids Res 2021; 49:10431-10447. [PMID: 34551439 PMCID: PMC8501995 DOI: 10.1093/nar/gkab828] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/11/2022] Open
Abstract
Transposable elements (TEs) have long been known to be major contributors to plant evolution, adaptation and crop domestication. Stress-induced TE mobilization is of particular interest because it may result in novel gene regulatory pathways responding to stresses and thereby contribute to stress adaptation. Here, we investigated the genomic impacts of stress induced TE mobilization in wild type Arabidopsis plants. We find that the heat-stress responsive ONSEN TE displays an insertion site preference that is associated with specific chromatin states, especially those rich in H2A.Z histone variant and H3K27me3 histone mark. In order to better understand how novel ONSEN insertions affect the plant's response to heat stress, we carried out an in-depth transcriptomic analysis. We find that in addition to simple gene knockouts, ONSEN can produce a plethora of gene expression changes such as: constitutive activation of gene expression, alternative splicing, acquisition of heat-responsiveness, exonisation and genesis of novel non-coding and antisense RNAs. This report shows how the mobilization of a single TE-family can lead to a rapid rise of its copy number increasing the host's genome size and contribute to a broad range of transcriptomic novelty on which natural selection can then act.
Collapse
Affiliation(s)
- David Roquis
- Plant Breeding and Genetic Resources, Agroscope, 1260 Nyon, Switzerland
| | - Marta Robertson
- Plant Breeding and Genetic Resources, Agroscope, 1260 Nyon, Switzerland
| | - Liang Yu
- Boyce Thompson Institute, 533 Tower Rd., Ithaca, NY 14853, USA
| | - Michael Thieme
- Institute for Plant and Microbial Biology, University of Zurich, Switzerland
| | | | - Etienne Bucher
- Plant Breeding and Genetic Resources, Agroscope, 1260 Nyon, Switzerland
| |
Collapse
|
19
|
Dalakouras A, Vlachostergios D. Epigenetic approaches to crop breeding: current status and perspectives. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5356-5371. [PMID: 34017985 DOI: 10.1093/jxb/erab227] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/18/2021] [Indexed: 05/10/2023]
Abstract
In order to tackle the cumulative adverse effects of global climate change, reduced farmland, and heightened needs of an ever-increasing world population, modern agriculture is in urgent search of solutions that can ensure world food security and sustainable development. Classical crop breeding is still a powerful method to obtain crops with valued agronomical traits, but its potential is gradually being compromised by the menacing decline of genetic variation. Resorting to the epigenome as a source of variation could serve as a promising alternative. Here, we discuss current status of epigenetics-mediated crop breeding (epibreeding), highlight its advances and limitations, outline currently available methodologies, and propose novel RNA-based strategies to modify the epigenome in a gene-specific and transgene-free manner.
Collapse
Affiliation(s)
- Athanasios Dalakouras
- Institute of Industrial and Forage Crops, HAO-DEMETER, 41335 Larissa, Greece
- Institute of Plant Breeding and Genetic Resources, HAO-DEMETER, 57001 Thessaloniki, Greece
| | | |
Collapse
|
20
|
Zou W, Li G, Jian L, Qian J, Liu Y, Zhao J. Arabidopsis SMC6A and SMC6B have redundant function in seed and gametophyte development. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4871-4887. [PMID: 33909904 DOI: 10.1093/jxb/erab181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/25/2021] [Indexed: 05/21/2023]
Abstract
Reproductive development is a crucial process during plant growth. The structural maintenance of chromosome (SMC) 5/6 complex has been studied in various species. However, there are few studies on the biological function of SMC6 in plant development, especially during reproduction. In this study, knocking out of both AtSMC6A and AtSMC6B led to severe defects in Arabidopsis seed development, and expression of AtSMC6A or AtSMC6B could completely restore seed abortion in the smc6a-/-smc6b-/-double mutant. Knocking down AtSMC6A in the smc6b-/- mutant led to defects in female and male development and decreased fertility. The double mutation also resulted in loss of cell viability, and caused embryo and endosperm cell death through vacuolar cell death and necrosis. Furthermore, the expression of genes involved in embryo patterning, endosperm cellularisation, DNA damage repair, cell cycle regulation, and DNA replication were significantly changed in the albino seeds of the double mutant. Moreover, we found that the SMC5/6 complex may participate in the SOG1 (SUPPRESSOR OF GAMMA RESPONSE1)-dependent DNA damage repair pathway. These findings suggest that both AtSMC6A and AtSMC6B are functionally redundant and play important roles in seed and gametophyte development through maintaining chromosome stability in Arabidopsis.
Collapse
Affiliation(s)
- Wenxuan Zou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Gang Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Liufang Jian
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jie Qian
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yantong Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jie Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
21
|
Markus C, Pecinka A, Merotto A. Insights into the Role of Transcriptional Gene Silencing in Response to Herbicide-Treatments in Arabidopsis thaliana. Int J Mol Sci 2021; 22:3314. [PMID: 33804990 PMCID: PMC8037345 DOI: 10.3390/ijms22073314] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 11/24/2022] Open
Abstract
Herbicide resistance is broadly recognized as the adaptive evolution of weed populations to the intense selection pressure imposed by the herbicide applications. Here, we tested whether transcriptional gene silencing (TGS) and RNA-directed DNA Methylation (RdDM) pathways modulate resistance to commonly applied herbicides. Using Arabidopsis thaliana wild-type plants exposed to sublethal doses of glyphosate, imazethapyr, and 2,4-D, we found a partial loss of TGS and increased susceptibility to herbicides in six out of 11 tested TGS/RdDM mutants. Mutation in REPRESSOR OF SILENCING 1 (ROS1), that plays an important role in DNA demethylation, leading to strongly increased susceptibility to all applied herbicides, and imazethapyr in particular. Transcriptomic analysis of the imazethapyr-treated wild type and ros1 plants revealed a relation of the herbicide upregulated genes to chemical stimulus, secondary metabolism, stress condition, flavonoid biosynthesis, and epigenetic processes. Hypersensitivity to imazethapyr of the flavonoid biosynthesis component TRANSPARENT TESTA 4 (TT4) mutant plants strongly suggests that ROS1-dependent accumulation of flavonoids is an important mechanism for herbicide stress response in A. thaliana. In summary, our study shows that herbicide treatment affects transcriptional gene silencing pathways and that misregulation of these pathways makes Arabidopsis plants more sensitive to herbicide treatment.
Collapse
Affiliation(s)
- Catarine Markus
- Department of Crop Science, Federal University of Rio Grande do Sul, Porto Alegre, RS 91540-000, Brazil;
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Ales Pecinka
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
- Institute of Experimental Botany, Czech Academy Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic
| | - Aldo Merotto
- Department of Crop Science, Federal University of Rio Grande do Sul, Porto Alegre, RS 91540-000, Brazil;
| |
Collapse
|
22
|
Makowski W, Królicka A, Nowicka A, Zwyrtková J, Tokarz B, Pecinka A, Banasiuk R, Tokarz KM. Transformed tissue of Dionaea muscipula J. Ellis as a source of biologically active phenolic compounds with bactericidal properties. Appl Microbiol Biotechnol 2021; 105:1215-1226. [PMID: 33447868 PMCID: PMC7843487 DOI: 10.1007/s00253-021-11101-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/02/2020] [Accepted: 01/05/2021] [Indexed: 01/27/2023]
Abstract
Abstract The Venus flytrap (Dionaea muscipula J. Ellis) is a carnivorous plant able to synthesize large amounts of phenolic compounds, such as phenylpropanoids, flavonoids, phenolic acids, and 1,4-naphtoquinones. In this study, the first genetic transformation of D. muscipula tissues is presented. Two wild-type Rhizobium rhizogenes strains (LBA 9402 and ATCC 15834) were suitable vector organisms in the transformation process. Transformation led to the formation of teratoma (transformed shoot) cultures with the bacterial rolB gene incorporated into the plant genome in a single copy. Using high-pressure liquid chromatography, we demonstrated that transgenic plants were characterized by an increased quantity of phenolic compounds, including 1,4-naphtoquinone derivative, plumbagin (up to 106.63 mg × g−1 DW), and phenolic acids (including salicylic, caffeic, and ellagic acid), in comparison to non-transformed plants. Moreover, Rhizobium-mediated transformation highly increased the bactericidal properties of teratoma-derived extracts. The antibacterial properties of transformed plants were increased up to 33% against Staphylococcus aureus, Enterococcus faecalis, and Escherichia coli and up to 7% against Pseudomonas aeruginosa. For the first time, we prove the possibility of D. muscipula transformation. Moreover, we propose that transformation may be a valuable tool for enhancing secondary metabolite production in D. muscipula tissue and to increase bactericidal properties against human antibiotic-resistant bacteria. Key points • Rhizobium-mediated transformation created Dionaea muscipula teratomas. • Transformed plants had highly increased synthesis of phenolic compounds. • The MBC value was connected with plumbagin and phenolic acid concentrations.
Collapse
Affiliation(s)
- Wojciech Makowski
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Krakow, Poland.
| | - Aleksandra Królicka
- Intercollegiate Faculty of Biotechnology UG and MUG, Laboratory of Biologically Active Compounds, University of Gdansk, Gdansk, Poland.
| | - Anna Nowicka
- Institute of Experimental Botany, Czech Acad Sci, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic.,The Franciszek Górski Institute of Plant Physiology, The Polish Academy of Sciences, Krakow, Poland
| | - Jana Zwyrtková
- Institute of Experimental Botany, Czech Acad Sci, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Barbara Tokarz
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Krakow, Poland
| | - Ales Pecinka
- Institute of Experimental Botany, Czech Acad Sci, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Rafał Banasiuk
- Institute of Biotechnology and Molecular Medicine, Gdansk, Poland
| | - Krzysztof Michał Tokarz
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Krakow, Poland
| |
Collapse
|
23
|
Hummel G, Berr A, Graindorge S, Cognat V, Ubrig E, Pflieger D, Molinier J, Drouard L. Epigenetic silencing of clustered tRNA genes in Arabidopsis. Nucleic Acids Res 2020; 48:10297-10312. [PMID: 32941623 PMCID: PMC7544208 DOI: 10.1093/nar/gkaa766] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/21/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Beyond their key role in translation, cytosolic transfer RNAs (tRNAs) are involved in a wide range of other biological processes. Nuclear tRNA genes (tDNAs) are transcribed by the RNA polymerase III (RNAP III) and cis-elements, trans-factors as well as genomic features are known to influence their expression. In Arabidopsis, besides a predominant population of dispersed tDNAs spread along the 5 chromosomes, some clustered tDNAs have been identified. Here, we demonstrate that these tDNA clusters are transcriptionally silent and that pathways involved in the maintenance of DNA methylation play a predominant role in their repression. Moreover, we show that clustered tDNAs exhibit repressive chromatin features whilst their dispersed counterparts contain permissive euchromatic marks. This work demonstrates that both genomic and epigenomic contexts are key players in the regulation of tDNAs transcription. The conservation of most of these regulatory processes suggests that this pioneering work in Arabidopsis can provide new insights into the regulation of RNA Pol III transcription in other organisms, including vertebrates.
Collapse
Affiliation(s)
- Guillaume Hummel
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Alexandre Berr
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Stéfanie Graindorge
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Valérie Cognat
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Elodie Ubrig
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - David Pflieger
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Jean Molinier
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Laurence Drouard
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| |
Collapse
|
24
|
Lee SI, Park JW, Kwon SJ, Jo YD, Hong MJ, Kim JB, Choi HI. Epigenetic Variation Induced by Gamma Rays, DNA Methyltransferase Inhibitors, and Their Combination in Rice. PLANTS 2020; 9:plants9091088. [PMID: 32847097 PMCID: PMC7570246 DOI: 10.3390/plants9091088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023]
Abstract
DNA methylation plays important roles in the regulation of gene expression and maintenance of genome stability in many organisms, including plants. In this study, we treated rice with gamma rays (GRs) and DNA methyltransferase inhibitors (DNMTis) to induce variations in DNA methylation and evaluated epigenetic diversity using methylation-sensitive amplified polymorphism (MSAP) and transposon methylation display (TMD) marker systems. Comparative and integrated analyses of the data revealed that both GRs and DNMTis alone have epimutagenic effects and that combined treatment enhanced these effects. Calculation of methylation rates based on band scoring suggested that both GRs and DNMTis induce epigenetic diversity by demethylation in a dose-dependent manner, and combined treatment can induce variations more synergistically. The difference in the changes in full and hemi-methylation rates between MSAP and TMD is presumed to be caused by the different genomic contexts of the loci amplified in the two marker systems. Principal coordinate, phylogenic, and population structure analyses commonly yielded two clusters of individuals divided by DNMTi treatment. The clustering pattern was more apparent in TMD, indicating that DNMTis have a stronger effect on hypermethylated repetitive regions. These findings provide a foundation for understanding epigenetic variations induced by GRs and DNMTis and for epigenetic mutation breeding.
Collapse
|