1
|
Rojas M, Chotewutmontri P, Barkan A. Translational activation by a synthetic PPR protein elucidates control of psbA translation in Arabidopsis chloroplasts. THE PLANT CELL 2024; 36:4168-4178. [PMID: 38593198 PMCID: PMC11449048 DOI: 10.1093/plcell/koae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 04/11/2024]
Abstract
Translation initiation on chloroplast psbA mRNA in plants scales with light intensity, providing its gene product, D1, as needed to replace photodamaged D1 in Photosystem II. The psbA translational activator HIGH CHLOROPHYLL FLUORESCENCE 173 (HCF173) has been hypothesized to mediate this regulation. HCF173 belongs to the short-chain dehydrogenase/reductase superfamily, associates with the psbA 5'-untranslated region (5'-UTR), and has been hypothesized to enhance translation by binding an RNA segment that would otherwise pair with and mask the ribosome binding region. To test these hypotheses, we examined whether a synthetic pentatricopeptide repeat (sPPR) protein can substitute for HCF173 when bound to the HCF173 binding site. We show that an sPPR designed to bind HCF173's footprint in the psbA 5'-UTR bound the intended site in vivo and partially substituted for HCF173 to activate psbA translation. However, sPPR-activated translation did not respond to light. These results imply that HCF173 activates translation, at least in part, by sequestering the RNA it binds to maintain an accessible ribosome binding region, and that HCF173 is also required to regulate psbA translation in response to light. Translational activation can be added to the functions that can be programmed with sPPR proteins for synthetic biology applications in chloroplasts.
Collapse
Affiliation(s)
- Margarita Rojas
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97405, USA
| | | | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97405, USA
| |
Collapse
|
2
|
Böhm C, Inckemann R, Burgis M, Baumann J, Brinkmann CK, Lipinska KE, Gilles S, Freudigmann J, Seiler VN, Clark LG, Jewett MC, Voll LM, Niederholtmeyer H. Chloroplast Cell-Free Systems from Different Plant Species as a Rapid Prototyping Platform. ACS Synth Biol 2024; 13:2412-2424. [PMID: 39028299 PMCID: PMC11334176 DOI: 10.1021/acssynbio.4c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 07/20/2024]
Abstract
Climate change poses a significant threat to global agriculture, necessitating innovative solutions. Plant synthetic biology, particularly chloroplast engineering, holds promise as a viable approach to this challenge. Chloroplasts present a variety of advantageous traits for genetic engineering, but the development of genetic tools and genetic part characterization in these organelles is hindered by the lengthy time scales required to generate transplastomic organisms. To address these challenges, we have established a versatile protocol for generating highly active chloroplast-based cell-free gene expression (CFE) systems derived from a diverse range of plant species, including wheat (monocot), spinach, and poplar trees (dicots). We show that these systems work with conventionally used T7 RNA polymerase as well as the endogenous chloroplast polymerases, allowing for detailed characterization and prototyping of regulatory sequences at both transcription and translation levels. To demonstrate the platform for characterization of promoters and 5' and 3' untranslated regions (UTRs) in higher plant chloroplast gene expression, we analyze a collection of 23 5'UTRs, 10 3'UTRs, and 6 chloroplast promoters, assessed their expression in spinach and wheat extracts, and found consistency in expression patterns, suggesting cross-species compatibility. Looking forward, our chloroplast CFE systems open new avenues for plant synthetic biology, offering prototyping tools for both understanding gene expression and developing engineered plants, which could help meet the demands of a changing global climate.
Collapse
Affiliation(s)
- Clemens
V. Böhm
- Max-Planck
Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Center
for Synthetic Microbiology, Philipps-Universität
Marburg, 35032 Marburg, Germany
| | - René Inckemann
- Max-Planck
Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Center
for Synthetic Microbiology, Philipps-Universität
Marburg, 35032 Marburg, Germany
| | - Michael Burgis
- Center
for Synthetic Microbiology, Philipps-Universität
Marburg, 35032 Marburg, Germany
| | - Jessica Baumann
- Molecular
Plant Physiology, Philipps-Universität
Marburg, 35043 Marburg, Germany
| | | | - Katarzyna E. Lipinska
- Max-Planck
Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Center
for Synthetic Microbiology, Philipps-Universität
Marburg, 35032 Marburg, Germany
| | - Sara Gilles
- Max-Planck
Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Center
for Synthetic Microbiology, Philipps-Universität
Marburg, 35032 Marburg, Germany
| | - Jonas Freudigmann
- Molecular
Plant Physiology, Philipps-Universität
Marburg, 35043 Marburg, Germany
| | - Vinca N. Seiler
- Molecular
Plant Physiology, Philipps-Universität
Marburg, 35043 Marburg, Germany
| | - Lauren G. Clark
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Lars M. Voll
- Center
for Synthetic Microbiology, Philipps-Universität
Marburg, 35032 Marburg, Germany
- Molecular
Plant Physiology, Philipps-Universität
Marburg, 35043 Marburg, Germany
| | - Henrike Niederholtmeyer
- Max-Planck
Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Center
for Synthetic Microbiology, Philipps-Universität
Marburg, 35032 Marburg, Germany
- Technical
University of Munich, Campus Straubing for Biotechnology and Sustainability, 94315 Straubing, Germany
| |
Collapse
|
3
|
Zhan W, Cui L, Yang S, Zhang K, Zhang Y, Yang J. Natural variations of heterosis-related allele-specific expression genes in promoter regions lead to allele-specific expression in maize. BMC Genomics 2024; 25:476. [PMID: 38745122 PMCID: PMC11092226 DOI: 10.1186/s12864-024-10395-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Heterosis has successfully enhanced maize productivity and quality. Although significant progress has been made in delineating the genetic basis of heterosis, the molecular mechanisms underlying its genetic components remain less explored. Allele-specific expression (ASE), the imbalanced expression between two parental alleles in hybrids, is increasingly being recognized as a factor contributing to heterosis. ASE is a complex process regulated by both epigenetic and genetic variations in response to developmental and environmental conditions. RESULTS In this study, we explored the differential characteristics of ASE by analyzing the transcriptome data of two maize hybrids and their parents under four light conditions. On the basis of allele expression patterns in different hybrids under various conditions, ASE genes were divided into three categories: bias-consistent genes involved in basal metabolic processes in a functionally complementary manner, bias-reversal genes adapting to the light environment, and bias-specific genes maintaining cell homeostasis. We observed that 758 ASE genes (ASEGs) were significantly overlapped with heterosis quantitative trait loci (QTLs), and high-frequency variations in the promoter regions of heterosis-related ASEGs were identified between parents. In addition, 10 heterosis-related ASEGs participating in yield heterosis were selected during domestication. CONCLUSIONS The comprehensive analysis of ASEGs offers a distinctive perspective on how light quality influences gene expression patterns and gene-environment interactions, with implications for the identification of heterosis-related ASEGs to enhance maize yield.
Collapse
Affiliation(s)
- Weimin Zhan
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Lianhua Cui
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shuling Yang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Kangni Zhang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yanpei Zhang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Jianping Yang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
4
|
Zhang L, Braynen J, Fahey A, Chopra K, Cifani P, Tadesse D, Regulski M, Hu F, van Dam HJJ, Xie M, Ware D, Blaby-Haas CE. Two related families of metal transferases, ZNG1 and ZNG2, are involved in acclimation to poor Zn nutrition in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1237722. [PMID: 37965006 PMCID: PMC10642216 DOI: 10.3389/fpls.2023.1237722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/02/2023] [Indexed: 11/16/2023]
Abstract
Metal homeostasis has evolved to tightly modulate the availability of metals within the cell, avoiding cytotoxic interactions due to excess and protein inactivity due to deficiency. Even in the presence of homeostatic processes, however, low bioavailability of these essential metal nutrients in soils can negatively impact crop health and yield. While research has largely focused on how plants assimilate metals, acclimation to metal-limited environments requires a suite of strategies that are not necessarily involved in metal transport across membranes. The identification of these mechanisms provides a new opportunity to improve metal-use efficiency and develop plant foodstuffs with increased concentrations of bioavailable metal nutrients. Here, we investigate the function of two distinct subfamilies of the nucleotide-dependent metallochaperones (NMCs), named ZNG1 and ZNG2, that are found in plants, using Arabidopsis thaliana as a reference organism. AtZNG1 (AT1G26520) is an ortholog of human and fungal ZNG1, and like its previously characterized eukaryotic relatives, localizes to the cytosol and physically interacts with methionine aminopeptidase type I (AtMAP1A). Analysis of AtZNG1, AtMAP1A, AtMAP2A, and AtMAP2B transgenic mutants are consistent with the role of Arabidopsis ZNG1 as a Zn transferase for AtMAP1A, as previously described in yeast and zebrafish. Structural modeling reveals a flexible cysteine-rich loop that we hypothesize enables direct transfer of Zn from AtZNG1 to AtMAP1A during GTP hydrolysis. Based on proteomics and transcriptomics, loss of this ancient and conserved mechanism has pleiotropic consequences impacting the expression of hundreds of genes, including those involved in photosynthesis and vesicle transport. Members of the plant-specific family of NMCs, ZNG2A1 (AT1G80480) and ZNG2A2 (AT1G15730), are also required during Zn deficiency, but their target protein(s) remain to be discovered. RNA-seq analyses reveal wide-ranging impacts across the cell when the genes encoding these plastid-localized NMCs are disrupted.
Collapse
Affiliation(s)
- Lifang Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Janeen Braynen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Audrey Fahey
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Kriti Chopra
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY, United States
| | - Paolo Cifani
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Dimiru Tadesse
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| | - Michael Regulski
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Fangle Hu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Hubertus J. J. van Dam
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, United States
| | - Meng Xie
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
- USDA ARS NAA Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, Ithaca, NY, United States
| | - Crysten E. Blaby-Haas
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
5
|
Small I, Melonek J, Bohne AV, Nickelsen J, Schmitz-Linneweber C. Plant organellar RNA maturation. THE PLANT CELL 2023; 35:1727-1751. [PMID: 36807982 PMCID: PMC10226603 DOI: 10.1093/plcell/koad049] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 05/30/2023]
Abstract
Plant organellar RNA metabolism is run by a multitude of nucleus-encoded RNA-binding proteins (RBPs) that control RNA stability, processing, and degradation. In chloroplasts and mitochondria, these post-transcriptional processes are vital for the production of a small number of essential components of the photosynthetic and respiratory machinery-and consequently for organellar biogenesis and plant survival. Many organellar RBPs have been functionally assigned to individual steps in RNA maturation, often specific to selected transcripts. While the catalog of factors identified is ever-growing, our knowledge of how they achieve their functions mechanistically is far from complete. This review summarizes the current knowledge of plant organellar RNA metabolism taking an RBP-centric approach and focusing on mechanistic aspects of RBP functions and the kinetics of the processes they are involved in.
Collapse
Affiliation(s)
- Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley 6009, Australia
| | - Joanna Melonek
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley 6009, Australia
| | | | - Jörg Nickelsen
- Department of Molecular Plant Sciences, LMU Munich, 82152 Martinsried, Germany
| | | |
Collapse
|
6
|
Mateos JL, Staiger D. Toward a systems view on RNA-binding proteins and associated RNAs in plants: Guilt by association. THE PLANT CELL 2023; 35:1708-1726. [PMID: 36461946 PMCID: PMC10226577 DOI: 10.1093/plcell/koac345] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 05/30/2023]
Abstract
RNA-binding proteins (RBPs) have a broad impact on most biochemical, physiological, and developmental processes in a plant's life. RBPs engage in an on-off relationship with their RNA partners, accompanying virtually every stage in RNA processing and function. While the function of a plethora of RBPs in plant development and stress responses has been described, we are lacking a systems-level understanding of components in RNA-based regulation. Novel techniques have substantially enlarged the compendium of proteins with experimental evidence for binding to RNAs in the cell, the RNA-binding proteome. Furthermore, ribonomics methods have been adapted for use in plants to profile the in vivo binding repertoire of RBPs genome-wide. Here, we discuss how recent technological achievements have provided novel insights into the mode of action of plant RBPs at a genome-wide scale. Furthermore, we touch upon two emerging topics, the connection of RBPs to phase separation in the cell and to extracellular RNAs. Finally, we define open questions to be addressed to move toward an integrated understanding of RBP function.
Collapse
Affiliation(s)
- Julieta L Mateos
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET-UBA), Buenos Aires, Argentina
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
7
|
Balzarini S, Van Ende R, Voet A, Geuten K. A widely applicable and cost-effective method for specific RNA-protein complex isolation. Sci Rep 2023; 13:6898. [PMID: 37106019 PMCID: PMC10140378 DOI: 10.1038/s41598-023-34157-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/24/2023] [Indexed: 04/29/2023] Open
Abstract
Although methodological advances have been made over the past years, a widely applicable, easily scalable and cost-effective procedure that can be routinely used to isolate specific ribonucleoprotein complexes (RNPs) remains elusive. We describe the "Silica-based Acidic Phase Separation (SAPS)-capture" workflow. This versatile method combines previously described techniques in a cost-effective, optimal and widely applicable protocol. The specific RNP isolation procedure is performed on a pre-purified RNP sample instead of cell lysate. This combination of protocols results in an increased RNP/bead ratio and by consequence a reduced experimental cost. To validate the method, the 18S rRNP of S. cerevisiae was captured and to illustrate its applicability we isolated the complete repertoire of RNPs in A. thaliana. The procedure we describe can provide the community with a powerful tool to advance the study of the ribonome of a specific RNA molecule in any organism or tissue type.
Collapse
Affiliation(s)
- Sam Balzarini
- Molecular Biotechnology of Plants and Micro-organisms, KU Leuven, 3001, Leuven, Belgium
| | - Roosje Van Ende
- Molecular Biotechnology of Plants and Micro-organisms, KU Leuven, 3001, Leuven, Belgium
| | - Arnout Voet
- Lab of biomolecular modelling and design, KU Leuven, 3001, Leuven, Belgium
| | - Koen Geuten
- Molecular Biotechnology of Plants and Micro-organisms, KU Leuven, 3001, Leuven, Belgium.
| |
Collapse
|
8
|
Wang F, Dischinger K, Westrich LD, Meindl I, Egidi F, Trösch R, Sommer F, Johnson X, Schroda M, Nickelsen J, Willmund F, Vallon O, Bohne AV. One-helix protein 2 is not required for the synthesis of photosystem II subunit D1 in Chlamydomonas. PLANT PHYSIOLOGY 2023; 191:1612-1633. [PMID: 36649171 PMCID: PMC10022639 DOI: 10.1093/plphys/kiad015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
In land plants and cyanobacteria, co-translational association of chlorophyll (Chl) to the nascent D1 polypeptide, a reaction center protein of photosystem II (PSII), requires a Chl binding complex consisting of a short-chain dehydrogenase (high chlorophyll fluorescence 244 [HCF244]/uncharacterized protein 39 [Ycf39]) and one-helix proteins (OHP1 and OHP2 in chloroplasts) of the light-harvesting antenna complex superfamily. Here, we show that an ohp2 mutant of the green alga Chlamydomonas (Chlamydomonas reinhardtii) fails to accumulate core PSII subunits, in particular D1 (encoded by the psbA mRNA). Extragenic suppressors arose at high frequency, suggesting the existence of another route for Chl association to PSII. The ohp2 mutant was complemented by the Arabidopsis (Arabidopsis thaliana) ortholog. In contrast to land plants, where psbA translation is prevented in the absence of OHP2, ribosome profiling experiments showed that the Chlamydomonas mutant translates the psbA transcript over its full length. Pulse labeling suggested that D1 is degraded during or immediately after translation. The translation of other PSII subunits was affected by assembly-controlled translational regulation. Proteomics showed that HCF244, a translation factor which associates with and is stabilized by OHP2 in land plants, still partly accumulates in the Chlamydomonas ohp2 mutant, explaining the persistence of psbA translation. Several Chl biosynthesis enzymes overaccumulate in the mutant membranes. Partial inactivation of a D1-degrading protease restored a low level of PSII activity in an ohp2 background, but not photoautotrophy. Taken together, our data suggest that OHP2 is not required for psbA translation in Chlamydomonas, but is necessary for D1 stabilization.
Collapse
Affiliation(s)
- Fei Wang
- Molecular Plant Sciences, LMU Munich, Planegg-Martinsried 82152, Germany
- UMR 7141, Centre National de la Recherche Scientifique/Sorbonne Université, Institut de Biologie Physico-Chimique, Paris 75005, France
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | | | - Lisa Désirée Westrich
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Irene Meindl
- Molecular Plant Sciences, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Felix Egidi
- Molecular Plant Sciences, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Raphael Trösch
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Frederik Sommer
- Molecular Biotechnology and Systems Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Xenie Johnson
- UMR 7141, Centre National de la Recherche Scientifique/Sorbonne Université, Institut de Biologie Physico-Chimique, Paris 75005, France
| | - Michael Schroda
- Molecular Biotechnology and Systems Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Joerg Nickelsen
- Molecular Plant Sciences, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Felix Willmund
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Olivier Vallon
- UMR 7141, Centre National de la Recherche Scientifique/Sorbonne Université, Institut de Biologie Physico-Chimique, Paris 75005, France
| | | |
Collapse
|
9
|
Li Y, Yu C, Mo R, Zhu Z, Dong Z, Hu X, Deng W, Zhuang C. Screening and Verification of Photosynthesis and Chloroplast-Related Genes in Mulberry by Comparative RNA-Seq and Virus-Induced Gene Silencing. Int J Mol Sci 2022; 23:ijms23158620. [PMID: 35955752 PMCID: PMC9368790 DOI: 10.3390/ijms23158620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 12/05/2022] Open
Abstract
Photosynthesis is one of the most important factors in mulberry growth and production. To study the photosynthetic regulatory network of mulberry we sequenced the transcriptomes of two high-yielding (E1 and E2) and one low-yielding (H32) mulberry genotypes at two-time points (10:00 and 12:00). Re-annotation of the mulberry genome based on the transcriptome sequencing data identified 22,664 high-quality protein-coding genes with a BUSCO-assessed completeness of 93.4%. A total of 6587 differentially expressed genes (DEGs) were obtained in the transcriptome analysis. Functional annotation and enrichment revealed 142 out of 6587 genes involved in the photosynthetic pathway and chloroplast development. Moreover, 3 out of 142 genes were further examined using the VIGS technique; the leaves of MaCLA1- and MaTHIC-silenced plants were markedly yellowed or even white, and the leaves of MaPKP2-silenced plants showed a wrinkled appearance. The expression levels of the ensiled plants were reduced, and the levels of chlorophyll b and total chlorophyll were lower than those of the control plants. Co-expression analysis showed that MaCLA1 was co-expressed with CHUP1 and YSL3; MaTHIC was co-expressed with MaHSP70, MaFLN1, and MaEMB2794; MaPKP2 was mainly co-expressed with GH9B7, GH3.1, and EDA9. Protein interaction network prediction revealed that MaCLA1 was associated with RPE, TRA2, GPS1, and DXR proteins; MaTHIC was associated with TH1, PUR5, BIO2, and THI1; MaPKP2 was associated with ENOC, LOS2, and PGI1. This study offers a useful resource for further investigation of the molecular mechanisms involved in mulberry photosynthesis and preliminary insight into the regulatory network of photosynthesis.
Collapse
Affiliation(s)
- Yong Li
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China;
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (C.Y.); (R.M.); (Z.Z.); (Z.D.); (X.H.)
| | - Cui Yu
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (C.Y.); (R.M.); (Z.Z.); (Z.D.); (X.H.)
| | - Rongli Mo
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (C.Y.); (R.M.); (Z.Z.); (Z.D.); (X.H.)
| | - Zhixian Zhu
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (C.Y.); (R.M.); (Z.Z.); (Z.D.); (X.H.)
| | - Zhaoxia Dong
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (C.Y.); (R.M.); (Z.Z.); (Z.D.); (X.H.)
| | - Xingming Hu
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (C.Y.); (R.M.); (Z.Z.); (Z.D.); (X.H.)
| | - Wen Deng
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (C.Y.); (R.M.); (Z.Z.); (Z.D.); (X.H.)
- Correspondence: (W.D.); (C.Z.); Tel.: +86-27-87106001 (W.D.); +86-20-85288399 (C.Z.)
| | - Chuxiong Zhuang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China;
- Correspondence: (W.D.); (C.Z.); Tel.: +86-27-87106001 (W.D.); +86-20-85288399 (C.Z.)
| |
Collapse
|
10
|
Loh D, Reiter RJ. Melatonin: Regulation of Biomolecular Condensates in Neurodegenerative Disorders. Antioxidants (Basel) 2021; 10:1483. [PMID: 34573116 PMCID: PMC8465482 DOI: 10.3390/antiox10091483] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Biomolecular condensates are membraneless organelles (MLOs) that form dynamic, chemically distinct subcellular compartments organizing macromolecules such as proteins, RNA, and DNA in unicellular prokaryotic bacteria and complex eukaryotic cells. Separated from surrounding environments, MLOs in the nucleoplasm, cytoplasm, and mitochondria assemble by liquid-liquid phase separation (LLPS) into transient, non-static, liquid-like droplets that regulate essential molecular functions. LLPS is primarily controlled by post-translational modifications (PTMs) that fine-tune the balance between attractive and repulsive charge states and/or binding motifs of proteins. Aberrant phase separation due to dysregulated membrane lipid rafts and/or PTMs, as well as the absence of adequate hydrotropic small molecules such as ATP, or the presence of specific RNA proteins can cause pathological protein aggregation in neurodegenerative disorders. Melatonin may exert a dominant influence over phase separation in biomolecular condensates by optimizing membrane and MLO interdependent reactions through stabilizing lipid raft domains, reducing line tension, and maintaining negative membrane curvature and fluidity. As a potent antioxidant, melatonin protects cardiolipin and other membrane lipids from peroxidation cascades, supporting protein trafficking, signaling, ion channel activities, and ATPase functionality during condensate coacervation or dissolution. Melatonin may even control condensate LLPS through PTM and balance mRNA- and RNA-binding protein composition by regulating N6-methyladenosine (m6A) modifications. There is currently a lack of pharmaceuticals targeting neurodegenerative disorders via the regulation of phase separation. The potential of melatonin in the modulation of biomolecular condensate in the attenuation of aberrant condensate aggregation in neurodegenerative disorders is discussed in this review.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
11
|
Chen P, Liu P, Zhang Q, Bu C, Lu C, Srivastava S, Zhang D, Song Y. Gene Coexpression Network Analysis Indicates that Hub Genes Related to Photosynthesis and Starch Synthesis Modulate Salt Stress Tolerance in Ulmus pumila. Int J Mol Sci 2021; 22:4410. [PMID: 33922506 PMCID: PMC8122946 DOI: 10.3390/ijms22094410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 01/20/2023] Open
Abstract
Ulmus pumila L. is an excellent afforestation and biofuel tree that produces high-quality wood, rich in starch. In addition, U. pumila is highly adaptable to adverse environmental conditions, which is conducive to its utilization for vegetating saline soils. However, little is known about the physiological responses and transcriptional regulatory network of U. pumila under salt stress. In this study, we exposed five main cultivars in saline-alkali land (Upu2, 5, 8, 11, and 12) to NaCl stress. Of the five cultivars assessed, Upu11 exhibited the highest salt resistance. Growth and biomass accumulation in Upu11 were promoted under low salt concentrations (<150 mM). However, after 3 months of continuous treatment with 150 mM NaCl, growth was inhibited, and photosynthesis declined. A transcriptome analysis conducted after 3 months of treatment detected 7009 differentially expressed unigenes (DEGs). The gene annotation indicated that these DEGs were mainly related to photosynthesis and carbon metabolism. Furthermore, PHOTOSYNTHETIC ELECTRON TRANSFERH (UpPETH), an important electron transporter in the photosynthetic electron transport chain, and UpWAXY, a key gene controlling amylose synthesis in the starch synthesis pathway, were identified as hub genes in the gene coexpression network. We identified 25 and 62 unigenes that may interact with PETH and WAXY, respectively. Overexpression of UpPETH and UpWAXY significantly increased the survival rates, net photosynthetic rates, biomass, and starch content of transgenic Arabidopsis plants under salt stress. Our findings clarify the physiological and transcriptional regulators that promote or inhibit growth under environmental stress. The identification of salt-responsive hub genes directly responsible for photosynthesis and starch synthesis or metabolism will provide targets for future genetic improvements.
Collapse
Affiliation(s)
- Panfei Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (P.C.); (P.L.); (C.B.); (C.L.); (S.S.); (D.Z.)
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Peng Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (P.C.); (P.L.); (C.B.); (C.L.); (S.S.); (D.Z.)
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Quanfeng Zhang
- Hebei Academy of Forestry and Grassland Sicences, No. 75, Xuefu Road, Shijiazhuang 050061, China;
| | - Chenhao Bu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (P.C.); (P.L.); (C.B.); (C.L.); (S.S.); (D.Z.)
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Chunhao Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (P.C.); (P.L.); (C.B.); (C.L.); (S.S.); (D.Z.)
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Sudhakar Srivastava
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (P.C.); (P.L.); (C.B.); (C.L.); (S.S.); (D.Z.)
| | - Deqiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (P.C.); (P.L.); (C.B.); (C.L.); (S.S.); (D.Z.)
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Yuepeng Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (P.C.); (P.L.); (C.B.); (C.L.); (S.S.); (D.Z.)
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| |
Collapse
|
12
|
Yu Q, Tungsuchat-Huang T, Verma K, Radler MR, Maliga P. Independent translation of ORFs in dicistronic operons, synthetic building blocks for polycistronic chloroplast gene expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2318-2329. [PMID: 32497322 DOI: 10.1111/tpj.14864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/13/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
We designed a dicistronic plastid marker system that relies on the plastid's ability to translate polycistronic mRNAs. The identification of transplastomic clones is based on selection for antibiotic resistance encoded in the first open reading frame (ORF) and accumulation of the reporter gene product in tobacco chloroplasts encoded in the second ORF. The antibiotic resistance gene may encode spectinomycin or kanamycin resistance based on the expression of aadA or neo genes, respectively. The reporter gene used in the study is the green fluorescent protein (GFP). The mRNA level depends on the 5'-untranslated region of the first ORF. The protein output depends on the strengths of the ribosome binding, and is proportional with the level of translatable mRNA. Because the dicistronic mRNA is not processed, we could show that protein output from the second ORF is independent from the first ORF. High-level GFP accumulation from the second ORF facilitates identification of transplastomic events under ultraviolet light. Expression of multiple proteins from an unprocessed mRNA is an experimental design that enables predictable protein output from polycistronic mRNAs, expanding the toolkit of plant synthetic biology.
Collapse
Affiliation(s)
- Qiguo Yu
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
| | | | - Kanak Verma
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Megan R Radler
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Pal Maliga
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA
| |
Collapse
|
13
|
Light-induced psbA translation in plants is triggered by photosystem II damage via an assembly-linked autoregulatory circuit. Proc Natl Acad Sci U S A 2020; 117:21775-21784. [PMID: 32817480 DOI: 10.1073/pnas.2007833117] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The D1 reaction center protein of photosystem II (PSII) is subject to light-induced damage. Degradation of damaged D1 and its replacement by nascent D1 are at the heart of a PSII repair cycle, without which photosynthesis is inhibited. In mature plant chloroplasts, light stimulates the recruitment of ribosomes specifically to psbA mRNA to provide nascent D1 for PSII repair and also triggers a global increase in translation elongation rate. The light-induced signals that initiate these responses are unclear. We present action spectrum and genetic data indicating that the light-induced recruitment of ribosomes to psbA mRNA is triggered by D1 photodamage, whereas the global stimulation of translation elongation is triggered by photosynthetic electron transport. Furthermore, mutants lacking HCF136, which mediates an early step in D1 assembly, exhibit constitutively high psbA ribosome occupancy in the dark and differ in this way from mutants lacking PSII for other reasons. These results, together with the recent elucidation of a thylakoid membrane complex that functions in PSII assembly, PSII repair, and psbA translation, suggest an autoregulatory mechanism in which the light-induced degradation of D1 relieves repressive interactions between D1 and translational activators in the complex. We suggest that the presence of D1 in this complex coordinates D1 synthesis with the need for nascent D1 during both PSII biogenesis and PSII repair in plant chloroplasts.
Collapse
|
14
|
Teubner M, Lenzen B, Espenberger LB, Fuss J, Nickelsen J, Krause K, Ruwe H, Schmitz-Linneweber C. The Chloroplast Ribonucleoprotein CP33B Quantitatively Binds the psbA mRNA. PLANTS 2020; 9:plants9030367. [PMID: 32192026 PMCID: PMC7154868 DOI: 10.3390/plants9030367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 01/25/2023]
Abstract
Chloroplast RNAs are stabilized and processed by a multitude of nuclear-encoded RNA-binding proteins, often in response to external stimuli like light and temperature. A particularly interesting RNA-based regulation occurs with the psbA mRNA, which shows light-dependent translation. Recently, the chloroplast ribonucleoprotein CP33B was identified as a ligand of the psbA mRNA. We here characterized the interaction of CP33B with chloroplast RNAs in greater detail using a combination of RIP-chip, quantitative dot-blot, and RNA-Bind-n-Seq experiments. We demonstrate that CP33B prefers psbA over all other chloroplast RNAs and associates with the vast majority of the psbA transcript pool. The RNA sequence target motif, determined in vitro, does not fully explain CP33B's preference for psbA, suggesting that there are other determinants of specificity in vivo.
Collapse
Affiliation(s)
- Marlene Teubner
- Institute of Biology, Department of Life Sciences, Humboldt University Berlin, 10115 Berlin, Germany; (M.T.); (B.L.); (L.B.E.); (H.R.)
| | - Benjamin Lenzen
- Institute of Biology, Department of Life Sciences, Humboldt University Berlin, 10115 Berlin, Germany; (M.T.); (B.L.); (L.B.E.); (H.R.)
| | - Lucas Bernal Espenberger
- Institute of Biology, Department of Life Sciences, Humboldt University Berlin, 10115 Berlin, Germany; (M.T.); (B.L.); (L.B.E.); (H.R.)
| | - Janina Fuss
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Framstredet 39, 9019 Tromsø, Norway; (J.F.); (K.K.)
| | - Jörg Nickelsen
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, 82152 Planegg-Martinsried, Germany;
| | - Kirsten Krause
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Framstredet 39, 9019 Tromsø, Norway; (J.F.); (K.K.)
| | - Hannes Ruwe
- Institute of Biology, Department of Life Sciences, Humboldt University Berlin, 10115 Berlin, Germany; (M.T.); (B.L.); (L.B.E.); (H.R.)
| | - Christian Schmitz-Linneweber
- Institute of Biology, Department of Life Sciences, Humboldt University Berlin, 10115 Berlin, Germany; (M.T.); (B.L.); (L.B.E.); (H.R.)
- Correspondence: ; Tel.: ++49-30-2093-49700
| |
Collapse
|
15
|
Exploring the Link between Photosystem II Assembly and Translation of the Chloroplast psbA mRNA. PLANTS 2020; 9:plants9020152. [PMID: 31991763 PMCID: PMC7076361 DOI: 10.3390/plants9020152] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022]
Abstract
Photosystem II (PSII) in chloroplasts and cyanobacteria contains approximately fifteen core proteins, which organize numerous pigments and prosthetic groups that mediate the light-driven water-splitting activity that drives oxygenic photosynthesis. The PSII reaction center protein D1 is subject to photodamage, whose repair requires degradation of damaged D1 and its replacement with nascent D1. Mechanisms that couple D1 synthesis with PSII assembly and repair are poorly understood. We address this question by using ribosome profiling to analyze the translation of chloroplast mRNAs in maize and Arabidopsis mutants with defects in PSII assembly. We found that OHP1, OHP2, and HCF244, which comprise a recently elucidated complex involved in PSII assembly and repair, are each required for the recruitment of ribosomes to psbA mRNA, which encodes D1. By contrast, HCF136, which acts upstream of the OHP1/OHP2/HCF244 complex during PSII assembly, does not have this effect. The fact that the OHP1/OHP2/HCF244 complex brings D1 into proximity with three proteins with dual roles in PSII assembly and psbA ribosome recruitment suggests that this complex is the hub of a translational autoregulatory mechanism that coordinates D1 synthesis with need for nascent D1 during PSII biogenesis and repair.
Collapse
|