1
|
Konarska A. New insight in secretory structures and secretion composition in Rhus typhina L. - Anatomical, histochemical, and ultrastructural studies. Micron 2024; 186:103692. [PMID: 39111185 DOI: 10.1016/j.micron.2024.103692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 09/15/2024]
Abstract
Rhus typhina is a valuable plant used in the pharmaceutical, cosmetic, and food industries due to the presence of biologically active substances accumulated in its organs, especially in secretory structures, i.e. trichomes and secretory ducts. Light microscopy, scanning electron microscopy, and transmission electron microscopy were used to examine the structure of glandular and non-glandular trichomes, as well as secretory ducts present in inflorescence peduncles of R. typhina. The chemical composition of the secretion produced by trichomes and ducts was assessed using histochemical techniques, including observations under brightfield and fluorescence microscopes. Two types of capitate glandular trichomes producing secretions with a similar composition and non-glandular trichomes exhibiting secretory activity were identified. The secretion of glandular trichomes was dominated by acidic and neutral lipids, essential oil, sesquiterpenes, and steroid-containing terpenes. The schizogenic secretory ducts located in the phloem produced a viscous milky substance with acidic polysaccharides, acidic lipids, phenolic compounds, and proteins. The secretion was released into the duct lumen through notches in the walls of the secretory epithelial cell facing the duct lumen. The location, type, and traits of the non-glandular trichomes and secretory structures, as well as the composition of the secreted products are considered important taxonomic features in the family Anacardiaceae and the Rhus genus. Additionally, these characters are important diagnostic markers for the pharmacobotanical identification of the species in medicinal and cosmetic raw materials. The various compounds present in the secretory structures of R. typhina may contribute to plant protection against pathogens or herbivory and probably play a role as attractants for pollinators and seed dispersers.
Collapse
Affiliation(s)
- Agata Konarska
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, Lublin 20-950, Poland.
| |
Collapse
|
2
|
Pedenla Bomzan D, Sharma A, Lemos Cruz P, Carqueijeiro I, Bellenger L, Rai A, Thippesh AK, Chinnegowda VS, Parihar D, Ducos E, Courdavault V, Nagegowda DA. ROP GTPases with a geranylgeranylation motif modulate alkaloid biosynthesis in Catharanthus roseus. PLANT PHYSIOLOGY 2024; 195:2213-2233. [PMID: 38466200 DOI: 10.1093/plphys/kiae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 03/12/2024]
Abstract
Rho of Plant (ROP) GTPases function as molecular switches that control signaling processes essential for growth, development, and defense. However, their role in specialized metabolism is poorly understood. Previously, we demonstrated that inhibition of protein geranylgeranyl transferase (PGGT-I) negatively impacts the biosynthesis of monoterpene indole alkaloids (MIA) in Madagascar periwinkle (Catharanthus roseus), indicating the involvement of prenylated proteins in signaling. Here, we show through biochemical, molecular, and in planta approaches that specific geranylgeranylated ROPs modulate C. roseus MIA biosynthesis. Among the six C. roseus ROP GTPases (CrROPs), only CrROP3 and CrROP5, having a C-terminal CSIL motif, were specifically prenylated by PGGT-I. Additionally, their transcripts showed higher expression in most parts than other CrROPs. Protein-protein interaction studies revealed that CrROP3 and CrROP5, but not ΔCrROP3, ΔCrROP5, and CrROP2 lacking the CSIL motif, interacted with CrPGGT-I. Further, CrROP3 and CrROP5 exhibited nuclear localization, whereas CrROP2 was localized to the plasma membrane. In planta functional studies revealed that silencing of CrROP3 and CrROP5 negatively affected MIA biosynthesis, while their overexpression upregulated MIA formation. In contrast, silencing and overexpression of CrROP2 had no effect on MIA biosynthesis. Moreover, overexpression of ΔCrROP3 and ΔCrROP5 mutants devoid of sequence coding for the CSIL motif failed to enhance MIA biosynthesis. These results implicate that CrROP3 and CrROP5 have a positive regulatory role on MIA biosynthesis and thus shed light on how geranylgeranylated ROP GTPases mediate the modulation of specialized metabolism in C. roseus.
Collapse
Affiliation(s)
- Dikki Pedenla Bomzan
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru 560065, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anuj Sharma
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru 560065, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pamela Lemos Cruz
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Universitéde de Tours, 37200 Tours, France
| | - Ines Carqueijeiro
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Universitéde de Tours, 37200 Tours, France
| | - Léo Bellenger
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Universitéde de Tours, 37200 Tours, France
| | - Avanish Rai
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru 560065, India
| | - Akshay Kumar Thippesh
- Department of Biotechnology and Crop Improvement, College of Horticulture, UHS Bagalkot, Mysuru 571130, India
| | - Venkatesha S Chinnegowda
- Department of Biotechnology and Crop Improvement, College of Horticulture, UHS Bagalkot, Mysuru 571130, India
| | - Durgesh Parihar
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru 560065, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Eric Ducos
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Universitéde de Tours, 37200 Tours, France
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Universitéde de Tours, 37200 Tours, France
| | - Dinesh A Nagegowda
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru 560065, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Selma S. Press for MIA production! The role of the Rho of plant GTPases in plant-specialized metabolism. PLANT PHYSIOLOGY 2024; 195:1770-1772. [PMID: 38482923 PMCID: PMC11213248 DOI: 10.1093/plphys/kiae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 06/30/2024]
Affiliation(s)
- Sara Selma
- Assistant Features Editor, Plant Physiology, American Society of Plant Biologists
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| |
Collapse
|
4
|
Cole‐Osborn LF, Meehan E, Lee‐Parsons CWT. Critical parameters for robust Agrobacterium-mediated transient transformation and quantitative promoter assays in Catharanthus roseus seedlings. PLANT DIRECT 2024; 8:e596. [PMID: 38855128 PMCID: PMC11154794 DOI: 10.1002/pld3.596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/16/2024] [Accepted: 05/14/2024] [Indexed: 06/11/2024]
Abstract
Agrobacterium-mediated transient expression methods are widely used to study gene function in both model and non-model plants. Using a dual-luciferase assay, we quantified the effect of Agrobacterium-infiltration parameters on the transient transformation efficiency of Catharanthus roseus seedlings. We showed that transformation efficiency is highly sensitive to seedling developmental state and a pre- and post-infiltration dark incubation and is less sensitive to the Agrobacterium growth stage. For example, 5 versus 6 days of germination in the dark increased seedling transformation efficiency by seven- to eight-fold while a dark incubation pre- and post-infiltration increased transformation efficiency by five- to 13-fold. Agrobacterium in exponential compared with stationary phase increased transformation efficiency by two-fold. Finally, we quantified the variation in our Agrobacterium-infiltration method in replicate infiltrations and experiments. Within a given experiment, significant differences of up to 2.6-fold in raw firefly luciferase (FLUC) and raw Renilla luciferase (RLUC) luminescence occurred in replicate infiltrations. These differences were significantly reduced when FLUC was normalized to RLUC values, highlighting the utility of including a reference reporter to minimize false positives. Including a second experimental replicate further reduced the potential for false positives. This optimization and quantitative validation of Agrobacterium infiltration in C. roseus seedlings will facilitate the study of this important medicinal plant and will expand the application of Agrobacterium-mediated transformation methods in other plant species.
Collapse
Affiliation(s)
| | - Emma Meehan
- Department of Chemical EngineeringNortheastern UniversityBostonMassachusettsUSA
| | - Carolyn W. T. Lee‐Parsons
- Department of Chemical EngineeringNortheastern UniversityBostonMassachusettsUSA
- Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMassachusettsUSA
- Department of BioengineeringNortheastern UniversityBostonMassachusettsUSA
| |
Collapse
|
5
|
Kumar A, Patekar S, Mohapatra S, Patel DK, Kiran NR, Jaiswal P, Nagegowda DA, Shasany AK. Isoprenyl diphosphate synthases of terpenoid biosynthesis in rose-scented geranium (Pelargonium graveolens). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108590. [PMID: 38574692 DOI: 10.1016/j.plaphy.2024.108590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/25/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Abstract
The essential oil of Pelargonium graveolens (rose-scented geranium), an important aromatic plant, comprising mainly mono- and sesqui-terpenes, has applications in food and cosmetic industries. This study reports the characterization of isoprenyl disphosphate synthases (IDSs) involved in P. graveolens terpene biosynthesis. The six identified PgIDSs belonged to different classes of IDSs, comprising homomeric geranyl diphosphate synthases (GPPSs; PgGPPS1 and PgGPPS2), the large subunit of heteromeric GPPS or geranylgeranyl diphosphate synthases (GGPPSs; PgGGPPS), the small subunit of heteromeric GPPS (PgGPPS.SSUI and PgGPPS.SSUII), and farnesyl diphosphate synthases (FPPS; PgFPPS).All IDSs exhibited maximal expression in glandular trichomes (GTs), the site of aroma formation, and their expression except PgGPPS.SSUII was induced upon treatment with MeJA. Functional characterization of recombinant proteins revealed that PgGPPS1, PgGGPPS and PgFPPS were active enzymes producing GPP, GGPP/GPP, and FPP respectively, whereas both PgGPPS.SSUs and PgGPPS2 were inactive. Co-expression of PgGGPPS (that exhibited bifunctional G(G)PPS activity) with PgGPPS.SSUs in bacterial expression system showed lack of interaction between the two proteins, however, PgGGPPS interacted with a phylogenetically distant Antirrhinum majus GPPS.SSU. Further, transient expression of AmGPPS.SSU in P. graveolens leaf led to a significant increase in monoterpene levels. These findings provide insight into the types of IDSs and their role in providing precursors for different terpenoid components of P. graveolens essential oil.
Collapse
Affiliation(s)
- Ajay Kumar
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Soumitra Patekar
- Molecular Plant Biology and Biotechnology Lab, CSIR-CIMAP Research Centre, Bengaluru, 560065, India
| | - Soumyajit Mohapatra
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Devendra Kumar Patel
- Regulatory Toxicology, CSIR-Indian Institute of Toxicology Research, Lucknow, 226015, India
| | - N R Kiran
- Molecular Plant Biology and Biotechnology Lab, CSIR-CIMAP Research Centre, Bengaluru, 560065, India
| | - Priyanka Jaiswal
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Dinesh A Nagegowda
- Molecular Plant Biology and Biotechnology Lab, CSIR-CIMAP Research Centre, Bengaluru, 560065, India.
| | - Ajit Kumar Shasany
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India; CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow, 226001, India.
| |
Collapse
|
6
|
Chevalier Q, Huchelmann A, Debié P, Mercier P, Hartmann M, Vonthron-Sénécheau C, Bach TJ, Schaller H, Hemmerlin A. Methyl-Jasmonate Functions as a Molecular Switch Promoting Cross-Talk between Pathways for the Biosynthesis of Isoprenoid Backbones Used to Modify Proteins in Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:1110. [PMID: 38674519 PMCID: PMC11055089 DOI: 10.3390/plants13081110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
In plants, the plastidial mevalonate (MVA)-independent pathway is required for the modification with geranylgeranyl groups of CaaL-motif proteins, which are substrates of protein geranylgeranyltransferase type-I (PGGT-I). As a consequence, fosmidomycin, a specific inhibitor of 1-deoxy-d-xylulose (DX)-5 phosphate reductoisomerase/DXR, the second enzyme in this so-called methylerythritol phosphate (MEP) pathway, also acts as an effective inhibitor of protein prenylation. This can be visualized in plant cells by confocal microscopy by expressing GFP-CaM-CVIL, a prenylation sensor protein. After treatment with fosmidomycin, the plasma membrane localization of this GFP-based sensor is altered, and a nuclear distribution of fluorescence is observed instead. In tobacco cells, a visual screen of conditions allowing membrane localization in the presence of fosmidomycin identified jasmonic acid methyl esther (MeJA) as a chemical capable of gradually overcoming inhibition. Using Arabidopsis protein prenyltransferase loss-of-function mutant lines expressing GFP-CaM-CVIL proteins, we demonstrated that in the presence of MeJA, protein farnesyltransferase (PFT) can modify the GFP-CaM-CVIL sensor, a substrate the enzyme does not recognize under standard conditions. Similar to MeJA, farnesol and MVA also alter the protein substrate specificity of PFT, whereas DX and geranylgeraniol have limited or no effect. Our data suggest that MeJA adjusts the protein substrate specificity of PFT by promoting a metabolic cross-talk directing the origin of the prenyl group used to modify the protein. MVA, or an MVA-derived metabolite, appears to be a key metabolic intermediate for this change in substrate specificity.
Collapse
Affiliation(s)
- Quentin Chevalier
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes (IBMP), Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France; (Q.C.); (P.D.); (P.M.); (M.H.); (T.J.B.); (H.S.)
- Centre National de la Recherche Scientifique, Laboratoire d’Innovation Thérapeutique, Université de Strasbourg, CEDEX, F-67401 Illkirch, France;
| | - Alexandre Huchelmann
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes (IBMP), Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France; (Q.C.); (P.D.); (P.M.); (M.H.); (T.J.B.); (H.S.)
| | - Pauline Debié
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes (IBMP), Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France; (Q.C.); (P.D.); (P.M.); (M.H.); (T.J.B.); (H.S.)
| | - Pierre Mercier
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes (IBMP), Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France; (Q.C.); (P.D.); (P.M.); (M.H.); (T.J.B.); (H.S.)
| | - Michael Hartmann
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes (IBMP), Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France; (Q.C.); (P.D.); (P.M.); (M.H.); (T.J.B.); (H.S.)
| | - Catherine Vonthron-Sénécheau
- Centre National de la Recherche Scientifique, Laboratoire d’Innovation Thérapeutique, Université de Strasbourg, CEDEX, F-67401 Illkirch, France;
| | - Thomas J. Bach
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes (IBMP), Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France; (Q.C.); (P.D.); (P.M.); (M.H.); (T.J.B.); (H.S.)
| | - Hubert Schaller
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes (IBMP), Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France; (Q.C.); (P.D.); (P.M.); (M.H.); (T.J.B.); (H.S.)
| | - Andréa Hemmerlin
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes (IBMP), Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France; (Q.C.); (P.D.); (P.M.); (M.H.); (T.J.B.); (H.S.)
| |
Collapse
|
7
|
Kiran NR, Narayanan AK, Mohapatra S, Gupta P, Nagegowda DA. Analysis of root volatiles and functional characterization of a root-specific germacrene A synthase in Artemisia pallens. PLANTA 2024; 259:58. [PMID: 38308700 DOI: 10.1007/s00425-024-04334-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/06/2024] [Indexed: 02/05/2024]
Abstract
MAIN CONCLUSION The study demonstrated that Artemisia pallens roots can be a source of terpene-rich essential oil and root-specific ApTPS1 forms germacrene A contributing to major root volatiles. Davana (Artemisia pallens Bess) is a valuable aromatic herb within the Asteraceae family, highly prized for its essential oil (EO) produced in the aerial parts. However, the root volatile composition, and the genes responsible for root volatiles have remained unexplored until now. Here, we show that A. pallens roots possess distinct oil bodies and yields ~ 0.05% of EO, which is primarily composed of sesquiterpenes β-elemene, neryl isovalerate, β-selinene, and α-selinene, and trace amounts of monoterpenes β-myrcene, D-limonene. This shows that, besides aerial parts, roots of davana can also be a source of unique EO. Moreover, we functionally characterized a terpene synthase (ApTPS1) that exhibited high in silico expression in the root transcriptome. The recombinant ApTPS1 showed the formation of β-elemene and germacrene A with E,E-farnesyl diphosphate (FPP) as a substrate. Detailed analysis of assay products revealed that β-elemene was the thermal rearrangement product of germacrene A. The functional expression of ApTPS1 in Saccharomyces cerevisiae confirmed the in vivo germacrene A synthase activity of ApTPS1. At the transcript level, ApTPS1 displayed predominant expression in roots, with significantly lower level of expression in other tissues. This expression pattern of ApTPS1 positively correlated with the tissue-specific accumulation level of germacrene A. Overall, these findings provide fundamental insights into the EO profile of davana roots, and the contribution of ApTPS1 in the formation of a major root volatile.
Collapse
Affiliation(s)
- N R Kiran
- Molecular Plant Biology and Biotechnology Lab, CSIR-CIMAP Research Centre, Bengaluru, 560065, India
| | - Ananth Krishna Narayanan
- Molecular Plant Biology and Biotechnology Lab, CSIR-CIMAP Research Centre, Bengaluru, 560065, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Soumyajit Mohapatra
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Priyanka Gupta
- Molecular Plant Biology and Biotechnology Lab, CSIR-CIMAP Research Centre, Bengaluru, 560065, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Dinesh A Nagegowda
- Molecular Plant Biology and Biotechnology Lab, CSIR-CIMAP Research Centre, Bengaluru, 560065, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
8
|
Claude SJ, Raman G, Park SJ. Comparative Analysis and Identification of Terpene Synthase Genes in Convallaria keiskei Leaf, Flower and Root Using RNA-Sequencing Profiling. PLANTS (BASEL, SWITZERLAND) 2023; 12:2797. [PMID: 37570951 PMCID: PMC10421360 DOI: 10.3390/plants12152797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 08/13/2023]
Abstract
The 'Lilly of the Valley' species, Convallaria, is renowned for its fragrant white flowers and distinctive fresh and green floral scent, attributed to a rich composition of volatile organic compounds (VOCs). However, the molecular mechanisms underlying the biosynthesis of this floral scent remain poorly understood due to a lack of transcriptomic data. In this study, we conducted the first comparative transcriptome analysis of C. keiskei, encompassing the leaf, flower, and root tissues. Our aim was to investigate the terpene synthase (TPS) genes and differential gene expression (DEG) patterns associated with essential oil biosynthesis. Through de novo assembly, we generated a substantial number of unigenes, with the highest count in the root (146,550), followed by the flower (116,434) and the leaf (72,044). Among the identified unigenes, we focused on fifteen putative ckTPS genes, which are involved in the synthesis of mono- and sesquiterpenes, the key aromatic compounds responsible for the essential oil biosynthesis in C. keiskei. The expression of these genes was validated using quantitative PCR analysis. Both DEG and qPCR analyses revealed the presence of ckTPS genes in the flower transcriptome, responsible for the synthesis of various compounds such as geraniol, germacrene, kaurene, linalool, nerolidol, trans-ocimene and valencene. The leaf transcriptome exhibited genes related to the biosynthesis of kaurene and trans-ocimene. In the root, the identified unigenes were associated with synthesizing kaurene, trans-ocimene and valencene. Both analyses indicated that the genes involved in mono- and sesquiterpene biosynthesis are more highly expressed in the flower compared to the leaf and root. This comprehensive study provides valuable resources for future investigations aiming to unravel the essential oil-biosynthesis-related genes in the Convallaria genus.
Collapse
Affiliation(s)
| | | | - Seon-Joo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| |
Collapse
|
9
|
Neves D, Figueiredo A, Maia M, Laczko E, Pais MS, Cravador A. A Metabolome Analysis and the Immunity of Phlomis purpurea against Phytophthora cinnamomi. PLANTS (BASEL, SWITZERLAND) 2023; 12:1929. [PMID: 37653845 PMCID: PMC10223286 DOI: 10.3390/plants12101929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 09/02/2023]
Abstract
Phlomis purpurea grows spontaneously in the southern Iberian Peninsula, namely in cork oak (Quercus suber) forests. In a previous transcriptome analysis, we reported on its immunity against Phytophthora cinnamomi. However, little is known about the involvement of secondary metabolites in the P. purpurea defense response. It is known, though, that root exudates are toxic to this pathogen. To understand the involvement of secondary metabolites in the defense of P. purpurea, a metabolome analysis was performed using the leaves and roots of plants challenged with the pathogen for over 72 h. The putatively identified compounds were constitutively produced. Alkaloids, fatty acids, flavonoids, glucosinolates, polyketides, prenol lipids, phenylpropanoids, sterols, and terpenoids were differentially produced in these leaves and roots along the experiment timescale. It must be emphasized that the constitutive production of taurine in leaves and its increase soon after challenging suggests its role in P. purpurea immunity against the stress imposed by the oomycete. The rapid increase in secondary metabolite production by this plant species accounts for a concerted action of multiple compounds and genes on the innate protection of Phlomis purpurea against Phytophthora cinnamomi. The combination of the metabolome with the transcriptome data previously disclosed confirms the mentioned innate immunity of this plant against a devastating pathogen. It suggests its potential as an antagonist in phytopathogens' biological control. Its application in green forestry/agriculture is therefore possible.
Collapse
Affiliation(s)
- Dina Neves
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Andreia Figueiredo
- Grapevine Pathogen Systems Lab (GPS Lab), Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande 016, 1749-016 Lisboa, Portugal
| | - Marisa Maia
- Grapevine Pathogen Systems Lab (GPS Lab), Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande 016, 1749-016 Lisboa, Portugal
| | - Endre Laczko
- Functional Genomics Center, UZH/ETHZ, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | - Maria Salomé Pais
- Academia das Ciências de Lisboa, R. da Academia das Ciências de Lisboa, 19, 1200-168 Lisboa, Portugal
| | - Alfredo Cravador
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
10
|
Kulshreshtha A, Sharma S, Padilla CS, Mandadi KK. Plant-based expression platforms to produce high-value metabolites and proteins. FRONTIERS IN PLANT SCIENCE 2022; 13:1043478. [PMID: 36426139 PMCID: PMC9679013 DOI: 10.3389/fpls.2022.1043478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Plant-based heterologous expression systems can be leveraged to produce high-value therapeutics, industrially important proteins, metabolites, and bioproducts. The production can be scaled up, free from pathogen contamination, and offer post-translational modifications to synthesize complex proteins. With advancements in molecular techniques, transgenics, CRISPR/Cas9 system, plant cell, tissue, and organ culture, significant progress has been made to increase the expression of recombinant proteins and important metabolites in plants. Methods are also available to stabilize RNA transcripts, optimize protein translation, engineer proteins for their stability, and target proteins to subcellular locations best suited for their accumulation. This mini-review focuses on recent advancements to enhance the production of high-value metabolites and proteins necessary for therapeutic applications using plants as bio-factories.
Collapse
Affiliation(s)
- Aditya Kulshreshtha
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Shweta Sharma
- Department of Veterinary Pathology, Dr. GCN College of Veterinary & Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, India
| | - Carmen S. Padilla
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Kranthi K. Mandadi
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
- Institute for Advancing Health Through Agriculture, Texas A&M AgriLife, College Station, TX, United States
| |
Collapse
|
11
|
Sirirungruang S, Markel K, Shih PM. Plant-based engineering for production of high-valued natural products. Nat Prod Rep 2022; 39:1492-1509. [PMID: 35674317 DOI: 10.1039/d2np00017b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to March 2022Plants are a unique source of complex specialized metabolites, many of which play significant roles in human society. In many cases, however, the availability of these metabolites from naturally occurring sources fails to meet current demands. Thus, there is much interest in expanding the production capacity of target plant molecules. Traditionally, plant breeding, chemical synthesis, and microbial fermentation are considered the primary routes towards large scale production of natural products. Here, we explore the advances, challenges, and future of plant engineering as a complementary path. Although plants are an integral part of our food and agricultural systems and sustain an extensive array of chemical constituents, their complex genetics and physiology have prevented the optimal exploitation of plants as a production chassis. We highlight emerging engineering tools and scientific advances developed in recent years that have improved the prospects of using plants as a sustainable and scalable production platform. We also discuss technological limitations and overall economic outlook of plant-based production of natural products.
Collapse
Affiliation(s)
- Sasilada Sirirungruang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA. .,Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Kasey Markel
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA. .,Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Patrick M Shih
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA. .,Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Innovative Genomics Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
12
|
Using genome and transcriptome analysis to elucidate biosynthetic pathways. Curr Opin Biotechnol 2022; 75:102708. [DOI: 10.1016/j.copbio.2022.102708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 12/21/2022]
|
13
|
Mora-Vásquez S, Wells-Abascal GG, Espinosa-Leal C, Cardineau GA, García-Lara S. Application of metabolic engineering to enhance the content of alkaloids in medicinal plants. Metab Eng Commun 2022; 14:e00194. [PMID: 35242556 PMCID: PMC8881666 DOI: 10.1016/j.mec.2022.e00194] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/27/2022] [Accepted: 02/13/2022] [Indexed: 12/22/2022] Open
Abstract
Plants are a rich source of bioactive compounds, many of which have been exploited for cosmetic, nutritional, and medicinal purposes. Through the characterization of metabolic pathways, as well as the mechanisms responsible for the accumulation of secondary metabolites, researchers have been able to increase the production of bioactive compounds in different plant species for research and commercial applications. The intent of the current review is to describe the metabolic engineering methods that have been used to transform in vitro or field-grown medicinal plants over the last decade and to identify the most effective approaches to increase the production of alkaloids. The articles summarized were categorized into six groups: endogenous enzyme overexpression, foreign enzyme overexpression, transcription factor overexpression, gene silencing, genome editing, and co-overexpression. We conclude that, because of the complex and multi-step nature of biosynthetic pathways, the approach that has been most commonly used to increase the biosynthesis of alkaloids, and the most effective in terms of fold increase, is the co-overexpression of two or more rate-limiting enzymes followed by the manipulation of regulatory genes.
Collapse
Affiliation(s)
- Soledad Mora-Vásquez
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, Nuevo León, Mexico
| | | | - Claudia Espinosa-Leal
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, Nuevo León, Mexico
| | - Guy A. Cardineau
- Arizona State University, Beus Center for Law and Society, Mail Code 9520, 111 E. Taylor Street, Phoenix, AZ, 85004-4467, USA
| | - Silverio García-Lara
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, Nuevo León, Mexico
| |
Collapse
|
14
|
Fungal biotransformation of limonene and pinene for aroma production. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-022-00239-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
15
|
Bomzan DP, Kumar K, Kumar SR, Meena S, Nagegowda DA. Virus-Induced Gene Silencing for Functional Genomics of Specialized Metabolism in Medicinal Plants. Methods Mol Biol 2022; 2408:147-163. [PMID: 35325422 DOI: 10.1007/978-1-0716-1875-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Virus-induced gene silencing (VIGS) is a functional genomics tool to transiently downregulate the expression of target gene(s) by exploiting the plant's innate defense mechanism against invading RNA viruses. VIGS is a rapid and efficient approach to analyze the gene function, particularly, in the plants that are not amenable to stable genetic transformation. This strategy has been successfully used to decipher the function of several genes and transcription factors involved in the biosynthesis of specialized metabolites and regulation of specialized metabolism, respectively, in different medicinal and aromatic plants. Here, we describe a detailed Tobacco rattle virus (TRV)-mediated VIGS protocol for silencing of the gene encoding Phytoene desaturase (PDS) in important medicinal plants Catharanthus roseus, Calotropis gigantean, Rauwolfia serpentina, and Ocimum basilicum. Our methods allow the study of gene function within 3-4 weeks after agro-inoculation, and can be an easy and efficient approach for future studies on understanding of the biosynthesis of specialized metabolites in these important medicinal plants.
Collapse
Affiliation(s)
- Dikki Pedenla Bomzan
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Krishna Kumar
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, Karnataka, India
| | - Sarma Rajeev Kumar
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, Karnataka, India
| | - Seema Meena
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, Karnataka, India
| | - Dinesh A Nagegowda
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, Karnataka, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
16
|
Bomzan DP, Shilpashree HB, Nagegowda DA. Agrobacterium-Mediated in Planta Transformation in Periwinkle. Methods Mol Biol 2022; 2505:301-315. [PMID: 35732954 DOI: 10.1007/978-1-0716-2349-7_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Madagascar periwinkle (Catharanthus roseus, family Apocynaceae) is a reservoir of more than 130 monoterpene indole alkaloids (MIAs) including the famous anti-neoplastic dimeric MIAs vinblastine and vincristine, and anti-hypertensive monomeric MIAs ajmalicine and serpentine. Understanding the biosynthetic steps and regulatory factors leading to the formation of MIAs is crucial for rational engineering to achieve targeted enhancement of different MIAs. Due to its highly recalcitrant nature, C. roseus is considered genetically non-tractable for transformation at the whole-plant level. Though few reports have demonstrated tissue culture-mediated regeneration and transformation of C. roseus at whole-plant level recently, the efficiency and reproducibility of these protocols have been a major challenge. To overcome this, we have developed a tissue-culture-independent Agrobacterium-mediated in planta transformation method in C. roseus. Using this method, we were able to efficiently generate stable transgenic plants without relying on the cumbersome methods of tissue-culture regeneration and transformation. Moreover, the transformed plants obtained through this in planta method exhibited stability in subsequent generations. Our method is useful not only for the elucidation of biosynthetic and regulatory steps involved in MIA formation through transgenic plant approach but also for metabolic engineering at the whole-plant level in C. roseus.
Collapse
Affiliation(s)
- Dikki Pedenla Bomzan
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - H B Shilpashree
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, India
| | - Dinesh A Nagegowda
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
17
|
Ribeiro I, Ducos E, Giglioli-Guivarc'h N, Dutilleul C. Tagging and Capture of Prenylated CaaX-Proteins from Plant Cell Cultures. Methods Mol Biol 2022; 2505:241-248. [PMID: 35732949 DOI: 10.1007/978-1-0716-2349-7_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The tagging-via-substrate strategy allows the probing of in vivo post-translationally modified proteins thanks to a labeled substrate. This method has been used for the detection and proteomic analysis of prenylated proteins in mammals and more recently in plants. It consists of the labeling of prenylated proteins by supplying azido-prenyl to cells. The azido-prenylated proteins are then selectively linked to biotin alkyne, which allows their capture using streptavidin beads, and their subsequent identification by mass spectrometry. In this chapter, we describe this procedure on Arabidopsis cell suspension and how it can be applied for Catharanthus roseus cells.
Collapse
Affiliation(s)
- Iliana Ribeiro
- EA2106 "Biomolécules et Biotechnologies Végétales", Faculté des Sciences Pharmaceutiques, Université de Tours, Parc de Grandmont, Tours, France
| | - Eric Ducos
- EA2106 "Biomolécules et Biotechnologies Végétales", Faculté des Sciences Pharmaceutiques, Université de Tours, Parc de Grandmont, Tours, France
| | - Nathalie Giglioli-Guivarc'h
- EA2106 "Biomolécules et Biotechnologies Végétales", Faculté des Sciences Pharmaceutiques, Université de Tours, Parc de Grandmont, Tours, France
| | - Christelle Dutilleul
- EA2106 "Biomolécules et Biotechnologies Végétales", Faculté des Sciences Pharmaceutiques, Université de Tours, Parc de Grandmont, Tours, France.
| |
Collapse
|
18
|
Correction. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1854. [PMID: 34587341 DOI: 10.1111/tpj.15473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
|
19
|
Transcriptome-Based WGCNA Analysis Reveals Regulated Metabolite Fluxes between Floral Color and Scent in Narcissus tazetta Flower. Int J Mol Sci 2021; 22:ijms22158249. [PMID: 34361014 PMCID: PMC8348138 DOI: 10.3390/ijms22158249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/18/2021] [Accepted: 07/28/2021] [Indexed: 12/26/2022] Open
Abstract
A link between the scent and color of Narcissus tazetta flowers can be anticipated due to their biochemical origin, as well as their similar biological role. Despite the obvious aesthetic and ecological significance of these colorful and fragrant components of the flowers and the molecular profiles of their pigments, fragrant formation has addressed in some cases. However, the regulatory mechanism of the correlation of fragrant components and color patterns is less clear. We simultaneously used one way to address how floral color and fragrant formation in different tissues are generated during the development of an individual plant by transcriptome-based weighted gene co-expression network analysis (WGCNA). A spatiotemporal pattern variation of flavonols/carotenoids/chlorophyll pigmentation and benzenoid/phenylpropanoid/ monoterpene fragrant components between the tepal and corona in the flower tissues of Narcissus tazetta, was exhibited. Several candidate transcription factors: MYB12, MYB1, AP2-ERF, bZIP, NAC, MYB, C2C2, C2H2 and GRAS are shown to be associated with metabolite flux, the phenylpropanoid pathway to the production of flavonols/anthocyanin, as well as related to one branch of the phenylpropanoid pathway to the benzenoid/phenylpropanoid component in the tepal and the metabolite flux between the monoterpene and carotenoids biosynthesis pathway in coronas. It indicates that potential competition exists between floral pigment and floral fragrance during Narcissus tazetta individual plant development and evolutionary development.
Collapse
|
20
|
Rai A, Nagegowda DA. Non-radioactive Assay to Determine Product Profile of Short-chain Isoprenyl Diphosphate Synthases. Bio Protoc 2021; 11:e3874. [PMID: 33732763 DOI: 10.21769/bioprotoc.3874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/12/2020] [Accepted: 10/21/2020] [Indexed: 11/02/2022] Open
Abstract
Isoprenoids represent the largest class of metabolites with amazing diversities in structure and function. They are involved in protecting plants against pathogens or herbivores or involved in attracting pollinators. Isoprenoids are derived from geranyl diphosphate (GPP; C10), farnesyl diphosphate (FPP; C15), geranylgeranyl diphosphate (GGPP; C20), and geranylfarnesyl diphosphate (GFPP; C25) that are in turn formed by sequential condensations of isopentenyl diphosphate (IPP; C5) with an allylic acceptor such as dimethylallyl diphosphate (DMAPP; C5), GPP, FPP, or GGPP in a reaction catalyzed by isoprenyl diphosphate synthases (IDSs). IDS enzyme assay for determination of prenyl diphosphate products is generally performed using radiolabelled substrates, and the products formed are identified by employing expensive instruments such as phosphor imager, radio-GC, or radio-HPLC. Though a non-radioactive assay for measuring IDS activity in crude plant extract has been reported, it requires a complex methodology utilizing chromatography coupled with tandem mass spectrometry (LC/MS-MS). Here, we describe a non-radioactive and simple inexpensive assay for determining the IDS assay products using non-radiolabeled IPP and its co-allylic substrates DMAPP, GPP, and FPP. The detection of prenyl diphosphate products generated in the assay was highly efficient and spots corresponding to prenyl alcohols were visible at >40 µM concentrations of IPP and DMAPP/GPP/FPP substrates. The protocol described here is sensitive, reliable, and technically simple, which could be used for functional characterization of IDS candidates.
Collapse
Affiliation(s)
- Avanish Rai
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru - 560065, India
| | - Dinesh A Nagegowda
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru - 560065, India
| |
Collapse
|
21
|
Jiang M, Zhang F, Yuan Q, Lin P, Zheng H, Liang S, Jian Y, Miao H, Li H, Wang Q, Sun B. Characterization of BoaCRTISO Reveals Its Role in Carotenoid Biosynthesis in Chinese Kale. FRONTIERS IN PLANT SCIENCE 2021; 12:662684. [PMID: 34054903 PMCID: PMC8160315 DOI: 10.3389/fpls.2021.662684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/09/2021] [Indexed: 05/06/2023]
Abstract
Carotenoids are organic pigments that play an important role in both plant coloration and human health; they are a critical subject in molecular breeding due to growing demand for natural molecules in both food and medicine. In this study, we focus upon characterizing BoaCRTISO, the carotenoid isomerase gene before the branch of the carotenoid biosynthetic pathway, which is expressed in all organs and developmental stages of Chinese kale, and BoaCRTISO, which is located in the chloroplast. The expression of BoaCRTISO is induced by strong light, red and blue combined light, and gibberellic acid treatment, but it is suppressed by darkness and abscisic acid treatment. We obtained BoaCRTISO-silenced plants via virus-induced gene silencing technology, and the silence efficiencies ranged from 52 to 77%. The expressions of most carotenoid and chlorophyll biosynthetic genes in BoaCRTISO-silenced plants were downregulated, and the contents of carotenoids and chlorophyll were reduced. Meanwhile, BoaCRTISO-silenced plants exhibited phenotypes of yellowing leaves and inhibited growth. This functional characterization of BoaCRTISO provides insight for the biosynthesis and regulation of carotenoid in Chinese kale.
Collapse
Affiliation(s)
- Min Jiang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Fen Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yuan
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Peixing Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Hao Zheng
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Sha Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yue Jian
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Huiying Miao
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, China
- *Correspondence: Qiaomei Wang,
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Bo Sun,
| |
Collapse
|
22
|
Nagegowda DA, Gupta P. Advances in biosynthesis, regulation, and metabolic engineering of plant specialized terpenoids. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 294:110457. [PMID: 32234216 DOI: 10.1016/j.plantsci.2020.110457] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/18/2020] [Accepted: 02/22/2020] [Indexed: 05/28/2023]
Abstract
Plant specialized terpenoids are natural products that have no obvious role in growth and development, but play many important functional roles to improve the plant's overall fitness. Besides, plant specialized terpenoids have immense value to humans due to their applications in fragrance, flavor, cosmetic, and biofuel industries. Understanding the fundamental aspects involved in the biosynthesis and regulation of these high-value molecules in plants not only paves the path to enhance plant traits, but also facilitates homologous or heterologous engineering for overproduction of target molecules of importance. Recent developments in functional genomics and high-throughput analytical techniques have led to unraveling of several novel aspects involved in the biosynthesis and regulation of plant specialized terpenoids. The knowledge thus derived has been successfully utilized to produce target specialized terpenoids of plant origin in homologous or heterologous host systems by metabolic engineering and synthetic biology approaches. Here, we provide an overview and highlights on advances related to the biosynthetic steps, regulation, and metabolic engineering of plant specialized terpenoids.
Collapse
Affiliation(s)
- Dinesh A Nagegowda
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, 560065, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| | - Priyanka Gupta
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, 560065, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| |
Collapse
|