1
|
Punina EO, Gnutikov AA, Nosov NN, Shneyer VS, Rodionov AV. Hybrid Origin of × Leymotrigia bergrothii (Poaceae) as Revealed by Analysis of the Internal Transcribed Spacer ITS1 and trnL Sequences. Int J Mol Sci 2024; 25:11966. [PMID: 39596035 PMCID: PMC11594234 DOI: 10.3390/ijms252211966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
×Leymotrigia bergrothii is a presumed hybrid of Leymus arenarius and Elytrigia repens. This article investigates the hybrid origin and genome composition of this species. These plants are sterile, do not undergo pollination, and do not produce seeds; occasionally, underdeveloped stamens containing abortive pollen grains form in individual spikelets. The karyotype analysis of root meristem cells revealed a diploid chromosome number of 49 in ×L. bergrothii, reported here for the first time. Subsequently, we examined the intragenomic polymorphism of the transcribed spacer ITS1 in several species of Elytrigia, Elymus, Leymus, Hordeum, and Psathyrostachys, and compared the ribotype patterns of these species with those of ×L. bergrothii. It is shown that the St-ribotype variants found in Elytrigia repens and Elytrigia pseudocaesia, as well as the ribotypes of the La family, which dominate in the genome of Leymus arenarius, correspond to major ribotypes in ×L. bergrothii. The ribotypes of the St and La families are present in the nuclear genome of ×L. bergrothii in almost equal proportions. A comparison of intron and exon sequences of the trnL gene in the chloroplast DNA of Leymus arenarius, Elytrigia repens, and ×L. bergrothii showed that this region in ×L. bergrothii is identical or very close to that of Elytrigia repens, suggesting that Elytrigia repens was the cytoplasmic donor to ×L. bergrothii. Thus, our study confirms the hypothesis that this species represents a sterile first-generation hybrid of Leymus arenarius and Elytrigia repens, reproducing vegetatively.
Collapse
Affiliation(s)
- Elizaveta O. Punina
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia; (A.A.G.); (N.N.N.); (V.S.S.); (A.V.R.)
| | - Alexander A. Gnutikov
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia; (A.A.G.); (N.N.N.); (V.S.S.); (A.V.R.)
- Department of Genetic Resources of Oat, Barley, Rye, Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 St. Petersburg, Russia
| | - Nikolai N. Nosov
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia; (A.A.G.); (N.N.N.); (V.S.S.); (A.V.R.)
| | - Victoria S. Shneyer
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia; (A.A.G.); (N.N.N.); (V.S.S.); (A.V.R.)
| | - Alexander V. Rodionov
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia; (A.A.G.); (N.N.N.); (V.S.S.); (A.V.R.)
| |
Collapse
|
2
|
Trunova D, Borowska-Zuchowska N, Mykhailyk S, Xia K, Zhu Y, Sancho R, Rojek-Jelonek M, Garcia S, Wang K, Catalan P, Kovarik A, Hasterok R, Kolano B. Does time matter? Intraspecific diversity of ribosomal RNA genes in lineages of the allopolyploid model grass Brachypodium hybridum with different evolutionary ages. BMC PLANT BIOLOGY 2024; 24:981. [PMID: 39420249 PMCID: PMC11488067 DOI: 10.1186/s12870-024-05658-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Polyploidisation often results in genome rearrangements that may involve changes in both the single-copy sequences and the repetitive genome fraction. In this study, we performed a comprehensive comparative analysis of repetitive DNA, with a particular focus on ribosomal DNA (rDNA), in Brachypodium hybridum (2n = 4x = 30, subgenome composition DDSS), an allotetraploid resulting from a natural cross between two diploid species that resemble the modern B. distachyon (2n = 10; DD) and B. stacei (2n = 20; SS). Taking advantage of the recurrent origin of B. hybridum, we investigated two genotypes, Bhyb26 and ABR113, differing markedly in their evolutionary age (1.4 and 0.14 Mya, respectively) and which resulted from opposite cross directions. To identify the origin of rDNA loci we employed cytogenetic and molecular methods (FISH, gCAPS and Southern hybridisation), phylogenetic and genomic approaches. RESULTS Unlike the general maintenance of doubled gene dosage in B. hybridum, the rRNA genes showed a remarkable tendency towards diploidisation at both locus and unit levels. While the partial elimination of 35S rDNA units occurred in the younger ABR113 lineage, unidirectional elimination of the entire locus was observed in the older Bhyb26 lineage. Additionally, a novel 5S rDNA family was amplified in Bhyb26 replacing the parental units. The 35S and 5S rDNA units were preferentially eliminated from the S- and D-subgenome, respectively. Thus, in the more ancient B. hybridum lineage, Bhyb26, 5S and 35S rRNA genes are likely expressed from different subgenomes, highlighting the complexity of polyploid regulatory networks. CONCLUSION Comparative analyses between two B. hybridum lineages of distinct evolutionary ages revealed that although the recent lineage ABR113 exhibited an additive pattern of rDNA loci distribution, the ancient lineage Bhyb26 demonstrated a pronounced tendency toward diploidisation manifested by the reduction in the number of both 35S and 5S loci. In conclusion, the age of the allopolyploid appears to be a decisive factor in rDNA turnover in B. hybridum.
Collapse
Affiliation(s)
- Dana Trunova
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-032, Poland
| | - Natalia Borowska-Zuchowska
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-032, Poland
| | - Serhii Mykhailyk
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-032, Poland
| | - Kai Xia
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
| | - Yuanbin Zhu
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
| | - Ruben Sancho
- Department of Agricultural and Environmental Sciences, High Polytechnic School of Huesca, University of Zaragoza, Huesca, 22071, Spain
| | - Magdalena Rojek-Jelonek
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-032, Poland
| | - Sònia Garcia
- Institut Botànic de Barcelona IBB (CSIC-CMCNB), Barcelona, Catalonia, 08038, Spain
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
| | - Pilar Catalan
- Department of Agricultural and Environmental Sciences, High Polytechnic School of Huesca, University of Zaragoza, Huesca, 22071, Spain
| | - Ales Kovarik
- Department of Molecular Epigenetics, Institute of Biophysics, Czech Academy of Sciences, Brno, CZ- 61200, Czech Republic
| | - Robert Hasterok
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-032, Poland
| | - Bozena Kolano
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-032, Poland.
| |
Collapse
|
3
|
Mandáková T, Krumpolcová A, Matyášek R, Volkov R, Lysak MA, Kovařík A. Uniparental silencing of 5S rRNA genes in plant allopolyploids - insights from Cardamine (Brassicaceae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38838061 DOI: 10.1111/tpj.16850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024]
Abstract
While the phenomenon of uniparental silencing of 35S rDNA in interspecific hybrids and allopolyploids is well documented, there is a notable absence of information regarding whether such silencing extends to the 5S RNA component of ribosomes. To address this gap in knowledge, we analyzed the 5S and 35S rDNA expression in Cardamine (Brassicaceae) allopolyploids, namely C. × insueta (2n = 3x = 24, genome composition RRA), C. flexuosa (2n = 4x = 32, AAHH), and C. scutata (2n = 4x = 32, PPAA) which share a common diploid ancestor (AA). We employed high-throughput sequencing of transcriptomes and genomes and phylogenetic analyses of 5S rRNA variants. The genomic organization of rDNA was further scrutinized through clustering and fluorescence in situ hybridization. In the C. × insueta allotriploid, we observed uniparental dominant expression of 5S and 35S rDNA loci. In the C. flexuosa and C. scutata allotetraploids, the expression pattern differed, with the 35S rDNA being expressed from the A subgenome, whereas the 5S rDNA was expressed from the partner subgenome. Both C. flexuosa and C. scutata but not C. × insueta showed copy and locus number changes. We conclude that in stabilized allopolyploids, transcription of ribosomal RNA components occurs from different subgenomes. This phenomenon appears to result in the formation of chimeric ribosomes comprising rRNA molecules derived from distinct parental origins. We speculate that the interplay of epigenetic silencing and rDNA rearrangements introduces an additional layer of variation in multimolecule ribosomal complexes, potentially contributing to the evolutionary success of allopolyploids.
Collapse
Affiliation(s)
- Terezie Mandáková
- Central European Institute of Technology (CEITEC), Masaryk University, 625 00, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 611 37, Brno, Czech Republic
| | - Alice Krumpolcová
- Department of Experimental Biology, Faculty of Science, Masaryk University, 611 37, Brno, Czech Republic
- Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 00, Brno, Czech Republic
| | - Roman Matyášek
- Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 00, Brno, Czech Republic
| | - Roman Volkov
- Department of Molecular Genetics and Biotechnology, Yuriy Fedkovych Chernivtsi National University, 58012, Chernivtsi, Ukraine
| | - Martin A Lysak
- Central European Institute of Technology (CEITEC), Masaryk University, 625 00, Brno, Czech Republic
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, 625 00, Brno, Czech Republic
| | - Ales Kovařík
- Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 00, Brno, Czech Republic
| |
Collapse
|
4
|
Yurkov AP, Kryukov AA, Gorbunova AO, Kudriashova TR, Kovalchuk AI, Gorenkova AI, Bogdanova EM, Laktionov YV, Zhurbenko PM, Mikhaylova YV, Puzanskiy RK, Bagrova TN, Yakhin OI, Rodionov AV, Shishova MF. Diversity of Arbuscular Mycorrhizal Fungi in Distinct Ecosystems of the North Caucasus, a Temperate Biodiversity Hotspot. J Fungi (Basel) 2023; 10:11. [PMID: 38248921 PMCID: PMC10817546 DOI: 10.3390/jof10010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Investigations that are focused on arbuscular mycorrhizal fungus (AMF) biodiversity is still limited. The analysis of the AMF taxa in the North Caucasus, a temperate biodiversity hotspot, used to be limited to the genus level. This study aimed to define the AMF biodiversity at the species level in the North Caucasus biotopes. METHODS The molecular genetic identification of fungi was carried out with ITS1 and ITS2 regions as barcodes via sequencing using Illumina MiSeq, the analysis of phylogenetic trees for individual genera, and searches for operational taxonomic units (OTUs) with identification at the species level. Sequences from MaarjAM and NCBI GenBank were used as references. RESULTS We analyzed >10 million reads in soil samples for three biotopes to estimate fungal biodiversity. Briefly, 50 AMF species belonging to 20 genera were registered. The total number of the AM fungus OTUs for the "Subalpine Meadow" biotope was 171/131, that for "Forest" was 117/60, and that for "River Valley" was 296/221 based on ITS1/ITS2 data. The total number of the AM fungus species (except for virtual taxa) for the "Subalpine Meadow" biotope was 24/19, that for "Forest" was 22/13, and that for "River Valley" was 28/24 based on ITS1/ITS2 data. Greater AMF diversity, as well as number of OTUs and species, in comparison with that of forest biotopes, characterized valley biotopes (disturbed ecosystems; grasslands). The correlation coefficient between "Percentage of annual plants" and "Glomeromycota total reads" r = 0.76 and 0.81 for ITS1 and ITS2, respectively, and the correlation coefficient between "Percentage of annual plants" and "OTUs number (for total species)" was r = 0.67 and 0.77 for ITS1 and ITS2, respectively. CONCLUSION High AMF biodiversity for the river valley can be associated with a higher percentage of annual plants in these biotopes and the active development of restorative successional processes.
Collapse
Affiliation(s)
- Andrey P Yurkov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia
| | - Alexey A Kryukov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia
| | - Anastasiia O Gorbunova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia
| | - Tatyana R Kudriashova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia
- Graduate School of Biotechnology and Food Science, Peter the Great St. Petersburg Polytechnic University, 194064 St. Petersburg, Russia
| | - Anastasia I Kovalchuk
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia
- Graduate School of Biotechnology and Food Science, Peter the Great St. Petersburg Polytechnic University, 194064 St. Petersburg, Russia
| | - Anastasia I Gorenkova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Ekaterina M Bogdanova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Yuri V Laktionov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia
| | - Peter M Zhurbenko
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia
| | - Yulia V Mikhaylova
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia
| | - Roman K Puzanskiy
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia
- Faculty of Ecology, Russian State Hydrometeorological University, 192007 St. Petersburg, Russia
| | - Tatyana N Bagrova
- Faculty of Ecology, Russian State Hydrometeorological University, 192007 St. Petersburg, Russia
| | - Oleg I Yakhin
- Institute of Biochemistry and Genetics, The Ufa Federal Research Center of the Russian Academy of Sciences, 450054 Ufa, Russia
| | - Alexander V Rodionov
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia
| | - Maria F Shishova
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
5
|
Mahelka V, Kopecký D, Majka J, Krak K. Uniparental expression of ribosomal RNA in × Festulolium grasses: a link between the genome and nucleolar dominance. FRONTIERS IN PLANT SCIENCE 2023; 14:1276252. [PMID: 37790792 PMCID: PMC10544908 DOI: 10.3389/fpls.2023.1276252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/30/2023] [Indexed: 10/05/2023]
Abstract
Genome or genomic dominance (GD) is a phenomenon observed in hybrids when one parental genome becomes dominant over the other. It is manifested by the replacement of chromatin of the submissive genome by that of the dominant genome and by biased gene expression. Nucleolar dominance (ND) - the functional expression of only one parental set of ribosomal genes in hybrids - is another example of an intragenomic competitive process which, however, concerns ribosomal DNA only. Although GD and ND are relatively well understood, the nature and extent of their potential interdependence is mostly unknown. Here, we ask whether hybrids showing GD also exhibit ND and, if so, whether the dominant genome is the same. To test this, we used hybrids between Festuca and Lolium grasses (Festulolium), and between two Festuca species in which GD has been observed (with Lolium as the dominant genome in Festulolium and F. pratensis in interspecific Festuca hybrids). Using amplicon sequencing of ITS1 and ITS2 of the 45S ribosomal DNA (rDNA) cluster and molecular cytogenetics, we studied the organization and expression of rDNA in leaf tissue in five hybrid combinations, four generations and 31 genotypes [F. pratensis × L. multiflorum (F1, F2, F3, BC1), L. multiflorum × F. pratensis (F1), L. multiflorum × F. glaucescens (F2), L. perenne × F. pratensis (F1), F. glaucescens × F. pratensis (F1)]. We have found that instant ND occurs in Festulolium, where expression of Lolium-type rDNA reached nearly 100% in all F1 hybrids and was maintained through subsequent generations. Therefore, ND and GD in Festulolium are manifested by the same dominant genome (Lolium). We also confirmed the concordance between GD and ND in an interspecific cross between two Festuca species.
Collapse
Affiliation(s)
- Václav Mahelka
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czechia
| | - David Kopecký
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
| | - Joanna Majka
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
| | - Karol Krak
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czechia
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
6
|
Huang Y, Liu Y, Guo X, Fan C, Yi C, Shi Q, Su H, Liu C, Yuan J, Liu D, Yang W, Han F. New insights on the evolution of nucleolar dominance in newly resynthesized hexaploid wheat Triticum zhukovskyi. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1298-1315. [PMID: 37246611 DOI: 10.1111/tpj.16320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/11/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
Nucleolar dominance (ND) is a widespread epigenetic phenomenon in hybridizations where nucleolus transcription fails at the nucleolus organizer region (NOR). However, the dynamics of NORs during the formation of Triticum zhukovskyi (GGAu Au Am Am ), another evolutionary branch of allohexaploid wheat, remains poorly understood. Here, we elucidated genetic and epigenetic changes occurring at the NOR loci within the Am , G, and D subgenomes during allopolyploidization by synthesizing hexaploid wheat GGAu Au Am Am and GGAu Au DD. In T. zhukovskyi, Au genome NORs from T. timopheevii (GGAu Au ) were lost, while the second incoming NORs from T. monococcum (Am Am ) were retained. Analysis of the synthesized T. zhukovskyi revealed that rRNA genes from the Am genome were silenced in F1 hybrids (GAu Am ) and remained inactive after genome doubling and subsequent self-pollinations. We observed increased DNA methylation accompanying the inactivation of NORs in the Am genome and found that silencing of NORs in the S1 generation could be reversed by a cytidine methylase inhibitor. Our findings provide insights into the ND process during the evolutionary period of T. zhukovskyi and highlight that inactive rDNA units may serve as a 'first reserve' in the form of R-loops, contributing to the successful evolution of T. zhukovskyi.
Collapse
Affiliation(s)
- Yuhong Huang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xianrui Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chaolan Fan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Congyang Yi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinghua Shi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Handong Su
- Huazhong Agricultural University, Hubei, 430070, China
| | - Chang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Yuan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wuyun Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Borowska-Zuchowska N, Mykhailyk S, Robaszkiewicz E, Matysiak N, Mielanczyk L, Wojnicz R, Kovarik A, Hasterok R. Switch them off or not: selective rRNA gene repression in grasses. TRENDS IN PLANT SCIENCE 2023; 28:661-672. [PMID: 36764871 DOI: 10.1016/j.tplants.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 05/13/2023]
Abstract
Nucleolar dominance (ND) is selective epigenetic silencing of 35-48S rDNA loci. In allopolyploids, it is frequently manifested at the cytogenetic level by the inactivation of nucleolar organiser region(s) (NORs) inherited from one or several evolutionary ancestors. Grasses are ecologically and economically one of the most important land plant groups, which have frequently evolved through hybridisation and polyploidisation events. Here we review common and unique features of ND phenomena in this monocot family from cytogenetic, molecular, and genomic perspectives. We highlight recent advances achieved by using an allotetraploid model grass, Brachypodium hybridum, where ND commonly occurs at a population level, and we cover modern genomic approaches that decipher structural features of core arrays of NORs.
Collapse
Affiliation(s)
- Natalia Borowska-Zuchowska
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice 40-032, Poland.
| | - Serhii Mykhailyk
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice 40-032, Poland
| | - Ewa Robaszkiewicz
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice 40-032, Poland
| | - Natalia Matysiak
- Department of Histology and Cell Pathology, the Medical University of Silesia in Katowice, School of Medicine with the Division of Dentistry, Zabrze, Poland
| | - Lukasz Mielanczyk
- Department of Histology and Cell Pathology, the Medical University of Silesia in Katowice, School of Medicine with the Division of Dentistry, Zabrze, Poland; Silesian Nanomicroscopy Centre in Zabrze, Silesia LabMed - Research and Implementation Centre, Medical University of Silesia, Katowice, Poland
| | - Romuald Wojnicz
- Department of Histology and Cell Pathology, the Medical University of Silesia in Katowice, School of Medicine with the Division of Dentistry, Zabrze, Poland; Silesian Nanomicroscopy Centre in Zabrze, Silesia LabMed - Research and Implementation Centre, Medical University of Silesia, Katowice, Poland
| | - Ales Kovarik
- Department of Molecular Epigenetics, Institute of Biophysics, Czech Academy of Sciences, CZ-61200 Brno, Czech Republic
| | - Robert Hasterok
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice 40-032, Poland.
| |
Collapse
|
8
|
Belyakov EA, Mikhaylova YV, Machs EM, Zhurbenko PM, Rodionov AV. Hybridization and diversity of aquatic macrophyte Sparganium L. (Typhaceae) as revealed by high-throughput nrDNA sequencing. Sci Rep 2022; 12:21610. [PMID: 36517537 PMCID: PMC9750990 DOI: 10.1038/s41598-022-25954-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Sparganium is an emergent aquatic macrophyte widely spread in temperate and subtropical zones. Taxa of this genus feature high phenotypic plasticity and can produce interspecific hybrids. By means of high-throughput sequencing of the internal transcribed spacer (ITS1) of 35S rDNA, the status of 15 Eurasian Sparganium species and subspecies was clarified and the role of hybridization events in the recent evolution of the genus was investigated. It has been shown that a number of species such as S. angustifolium, S. fallax and S. subglobosum have homogenized rDNA represented by one major ribotype. The rDNA of other taxa is represented by two or more major ribotypes. Species with high rDNA heterogeneity are apparently of hybrid origin. Based on the differences in rDNA patterns, intraspecific diversity was identified in S. probatovae and S. emersum. Thus, we have concluded that Sparganium has extensive interspecific hybridization at the subgenus level, and there may also be occasional hybridization between species from different subgenera.
Collapse
Affiliation(s)
- Evgeny A. Belyakov
- grid.464570.40000 0001 1092 3616Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Yaroslavl Region, Nekouz District, 109, Borok, Russia 152742 ,grid.446199.70000 0000 8543 3323Cherepovets State University, Lunacharsky Ave., 5, Cherepovets, Russia 162600
| | - Yulia V. Mikhaylova
- grid.465298.4Komarov Botanical Institute, Russian Academy of Sciences, Prof. Popova St., 2, St. Petersburg, Russia 199376
| | - Eduard M. Machs
- grid.465298.4Komarov Botanical Institute, Russian Academy of Sciences, Prof. Popova St., 2, St. Petersburg, Russia 199376
| | - Peter M. Zhurbenko
- grid.465298.4Komarov Botanical Institute, Russian Academy of Sciences, Prof. Popova St., 2, St. Petersburg, Russia 199376 ,grid.15447.330000 0001 2289 6897St. Petersburg State University, Universitetskaya Embankment, 7-9, St. Petersburg, Russia 199034
| | - Aleksandr V. Rodionov
- grid.465298.4Komarov Botanical Institute, Russian Academy of Sciences, Prof. Popova St., 2, St. Petersburg, Russia 199376 ,grid.15447.330000 0001 2289 6897St. Petersburg State University, Universitetskaya Embankment, 7-9, St. Petersburg, Russia 199034
| |
Collapse
|
9
|
Cytomolecular Organisation of the Nuclear Genome. Int J Mol Sci 2022; 23:ijms232113028. [PMID: 36361813 PMCID: PMC9656038 DOI: 10.3390/ijms232113028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 10/24/2022] [Indexed: 11/28/2022] Open
|
10
|
The Divergence of Chromosome Structures and 45S Ribosomal DNA Organization in Cucumis debilis Inferred by Comparative Molecular Cytogenetic Mapping. PLANTS 2022; 11:plants11151960. [PMID: 35956438 PMCID: PMC9370355 DOI: 10.3390/plants11151960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/09/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022]
Abstract
Cucumis debilis W.J.de Wilde & Duyfjes is an annual and monoecious plant. This species is endemic to Southeast Asia, particularly Vietnam. However, C. debilis is rarely studied, and no detailed information is available regarding its basic chromosome number, 45S ribosomal DNA (rDNA) status, and divergence among other Cucumis species. In this study, we characterized the morphological characters and determined and investigated the basic chromosome number and chromosomal distribution of 45S rDNA of C. debilis using the fluorescent in situ hybridization (FISH) technique. A maximum likelihood tree was constructed by combining the chloroplast and internal transcribed spacer of 45S rDNAs to infer its relationship within Cucumis. C. debilis had an oval fruit shape, green fruit peel, and protrusion-like white spots during the immature fruit stage. FISH analysis using 45S rDNA probe showed three pairs of 45S rDNA loci located at the terminal region in C. debilis, similar to C. hystrix. Meanwhile, two, two, and five pairs of 45S rDNA loci were observed for C. melo, C. metuliferus, and C. sativus, respectively. One melon (P90) and cucumber accessions exhibited different chromosomal localizations compared with other members of Cucumis. The majority of Cucumis species showed the terminal location of 45S rDNA, but melon P90 and cucumber exhibited terminal–interstitial and all interstitial orientations of 45S rDNA loci. Based on molecular cytogenetics and phylogenetic evidence, C. debilis is more closely related to cucumber than melon. Therefore, C. debilis may serve as a potential parental accession for genetic improvement of cucumber through interspecific hybridization.
Collapse
|
11
|
Mlinarec J, Boštjančić LL, Malenica N, Jurković A, Boland T, Yakovlev SS, Besendorfer V. Structure and Methylation of 35S rDNA in Allopolyploids Anemone multifida (2 n = 4 x = 32, BBDD) and Anemone baldensis (2 n = 6 x = 48, AABBDD) and Their Parental Species Show Evidence of Nucleolar Dominance. FRONTIERS IN PLANT SCIENCE 2022; 13:908218. [PMID: 35874014 PMCID: PMC9296772 DOI: 10.3389/fpls.2022.908218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/07/2022] [Indexed: 05/26/2023]
Abstract
Transcriptional silencing of 35S rDNA loci inherited from one parental species is occurring relatively frequently in allopolyploids. However, molecular mechanisms by which it is selected for transcriptional silencing remain unclear. We applied NGS, silver staining and bisulfite sequencing to study the structure, expression and methylation landscape of 35S rDNA in two allopolyploids of common origin, allotetraploid Anemone multifida (2n = 4x = 32, genome composition BBDD) and allohexaploid A. baldensis (2n = 6x = 48, AABBDD), and their genome donors, A. sylvestris (2n = 16, AA), A. cylindrica (2n = 16, BB) and A. parviflora (2n = 16, DD). The size of the recovered 35S rDNA units varied from 10,489 bp in A. cylindrica to 12,084 bp in A. sylvestris. Anemone showed an organization typical of most ribosomal 35S rDNA composed of NTS, ETS, rRNA genes, TTS and TIS with structural features of plant IGS sequences and all functional elements needed for rRNA gene activity. The NTS was more variable than the ETS and consisted of SRs which are highly variable among Anemone. Five to six CpG-rich islands were found within the ETS. CpG island located adjacent to the transcription initiation site (TIS) was highly variable regarding the sequence size and methylation level and exhibited in most of the species lower levels of methylation than CpG islands located adjacent to the 18S rRNA gene. Our results uncover hypomethylation of A. sylvestris- and A. parviflora-derived 35S rDNA units in allopolyploids A. multifida and A. baldensis. Hypomethylation of A. parviflora-derived 35S rDNA was more prominent in A. baldensis than in A. multifida. We showed that A. baldensis underwent coupled A. sylvestris-derived 35S rDNA array expansion and A. parviflora-derived 35S rDNA copy number decrease that was accompanied by lower methylation level of A. sylvestris-derived 35S rDNA units in comparison to A. parviflora-derived 35S rDNA units. These observations suggest that in A. baldensis nucleolar dominance is directed toward A. sylvestris-derived chromosomes. This work broadens our current knowledge of the 35S rDNA organization in Anemone and provides evidence of the progenitor-specific 35S rDNA methylation in nucleolar dominance.
Collapse
Affiliation(s)
| | - Ljudevit Luka Boštjančić
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt, Germany
- Department of Computer Science, ICube, UMR 7357, CNRS, Centre de Recherche en Biomédecine de Strasbourg, University of Strasbourg, Strasbourg, France
| | - Nenad Malenica
- Division of Molecular Biology, Department of Biology, University of Zagreb, Horvatovac, Croatia
| | - Adela Jurković
- Division of Molecular Biology, Department of Biology, University of Zagreb, Horvatovac, Croatia
| | - Todd Boland
- Memorial University of Newfoundland’s Botanical Gardens, St. John’s, NL, Canada
| | - Sonja Siljak Yakovlev
- CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France
| | - Višnja Besendorfer
- Division of Molecular Biology, Department of Biology, University of Zagreb, Horvatovac, Croatia
| |
Collapse
|
12
|
Borowska-Zuchowska N, Senderowicz M, Trunova D, Kolano B. Tracing the Evolution of the Angiosperm Genome from the Cytogenetic Point of View. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11060784. [PMID: 35336666 PMCID: PMC8953110 DOI: 10.3390/plants11060784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 05/05/2023]
Abstract
Cytogenetics constitutes a branch of genetics that is focused on the cellular components, especially chromosomes, in relation to heredity and genome structure, function and evolution. The use of modern cytogenetic approaches and the latest microscopes with image acquisition and processing systems enables the simultaneous two- or three-dimensional, multicolour visualisation of both single-copy and highly-repetitive sequences in the plant genome. The data that is gathered using the cytogenetic methods in the phylogenetic background enable tracing the evolution of the plant genome that involve changes in: (i) genome sizes; (ii) chromosome numbers and morphology; (iii) the content of repetitive sequences and (iv) ploidy level. Modern cytogenetic approaches such as FISH using chromosome- and genome-specific probes have been widely used in studies of the evolution of diploids and the consequences of polyploidy. Nowadays, modern cytogenetics complements analyses in other fields of cell biology and constitutes the linkage between genetics, molecular biology and genomics.
Collapse
|
13
|
Borowska-Zuchowska N, Robaszkiewicz E, Mykhailyk S, Wartini J, Pinski A, Kovarik A, Hasterok R. To Be or Not to Be Expressed: The First Evidence of a Nucleolar Dominance Tissue-Specificity in Brachypodium hybridum. FRONTIERS IN PLANT SCIENCE 2021; 12:768347. [PMID: 34938308 PMCID: PMC8685274 DOI: 10.3389/fpls.2021.768347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/09/2021] [Indexed: 05/20/2023]
Abstract
Nucleolar dominance (ND) is an epigenetic, developmentally regulated phenomenon that describes the selective inactivation of 35S rDNA loci derived from one progenitor of a hybrid or allopolyploid. The presence of ND was documented in an allotetraploid grass, Brachypodium hybridum (genome composition DDSS), which is a polyphyletic species that arose from crosses between two putative ancestors that resembled the modern B. distachyon (DD) and B. stacei (SS). In this work, we investigated the developmental stability of ND in B. hybridum genotype 3-7-2 and compared it with the reference genotype ABR113. We addressed the question of whether the ND is established in generative tissues such as pollen mother cells (PMC). We examined condensation of rDNA chromatin by fluorescence in situ hybridization employing state-of-art confocal microscopy. The transcription of rDNA homeologs was determined by reverse-transcription cleaved amplified polymorphic sequence analysis. In ABR113, the ND was stable in all tissues analyzed (primary and adventitious root, leaf, and spikes). In contrast, the 3-7-2 individuals showed a strong upregulation of the S-genome units in adventitious roots but not in other tissues. Microscopic analysis of the 3-7-2 PMCs revealed extensive decondensation of the D-genome loci and their association with the nucleolus in meiosis. As opposed, the S-genome loci were always highly condensed and localized outside the nucleolus. These results indicate that genotype-specific loss of ND in B. hybridum occurs probably after fertilization during developmental processes. This finding supports our view that B. hybridum is an attractive model to study ND in grasses.
Collapse
Affiliation(s)
- Natalia Borowska-Zuchowska
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
- *Correspondence: Natalia Borowska-Zuchowska,
| | - Ewa Robaszkiewicz
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Serhii Mykhailyk
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Joanna Wartini
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Artur Pinski
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Ales Kovarik
- Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia
| | - Robert Hasterok
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|