1
|
Kovacik M, Nowicka A, Zwyrtková J, Strejčková B, Vardanega I, Esteban E, Pasha A, Kaduchová K, Krautsova M, Červenková M, Šafář J, Provart NJ, Simon R, Pecinka A. The transcriptome landscape of developing barley seeds. THE PLANT CELL 2024; 36:2512-2530. [PMID: 38635902 PMCID: PMC11218782 DOI: 10.1093/plcell/koae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 03/05/2024] [Indexed: 04/20/2024]
Abstract
Cereal grains are an important source of food and feed. To provide comprehensive spatiotemporal information about biological processes in developing seeds of cultivated barley (Hordeum vulgare L. subsp. vulgare), we performed a transcriptomic study of the embryo, endosperm, and seed maternal tissues collected from grains 4-32 days after pollination. Weighted gene co-expression network and motif enrichment analyses identified specific groups of genes and transcription factors (TFs) potentially regulating barley seed tissue development. We defined a set of tissue-specific marker genes and families of TFs for functional studies of the pathways controlling barley grain development. Assessing selected groups of chromatin regulators revealed that epigenetic processes are highly dynamic and likely play a major role during barley endosperm development. The repressive H3K27me3 modification is globally reduced in endosperm tissues and at specific genes related to development and storage compounds. Altogether, this atlas uncovers the complexity of developmentally regulated gene expression in developing barley grains.
Collapse
Affiliation(s)
- Martin Kovacik
- Institute of Experimental Botany, Czech Acad Sci, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | - Anna Nowicka
- Institute of Experimental Botany, Czech Acad Sci, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
- Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30 239 Kraków, Poland
| | - Jana Zwyrtková
- Institute of Experimental Botany, Czech Acad Sci, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
| | - Beáta Strejčková
- Institute of Experimental Botany, Czech Acad Sci, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
| | - Isaia Vardanega
- Institute for Developmental Genetics, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Eddi Esteban
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St., Toronto, ON M5S 3B2, Canada
| | - Asher Pasha
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St., Toronto, ON M5S 3B2, Canada
| | - Kateřina Kaduchová
- Institute of Experimental Botany, Czech Acad Sci, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
| | - Maryna Krautsova
- Institute of Experimental Botany, Czech Acad Sci, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
| | - Marie Červenková
- Institute of Experimental Botany, Czech Acad Sci, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
| | - Jan Šafář
- Institute of Experimental Botany, Czech Acad Sci, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
| | - Nicholas J Provart
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St., Toronto, ON M5S 3B2, Canada
| | - Rüdiger Simon
- Institute for Developmental Genetics, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Ales Pecinka
- Institute of Experimental Botany, Czech Acad Sci, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| |
Collapse
|
2
|
Zeng Z, Zhang W, Shi Y, Wei H, Zhou C, Huang X, Chen Z, Xiang T, Wang L, Han N, Bian H. Coordinated Transcriptome and Metabolome Analyses of a Barley hvhggt Mutant Reveal a Critical Role of Tocotrienols in Endosperm Starch Accumulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1146-1161. [PMID: 38181192 DOI: 10.1021/acs.jafc.3c06301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Tocotrienols and tocopherols (vitamin E) are potent antioxidants that are synthesized in green plants. Unlike ubiquitous tocopherols, tocotrienols predominantly accumulate in the endosperm of monocot grains, catalyzed by homogentiate geranylgeranyl transferase (HGGT). Previously, we generated a tocotrienol-deficient hvhggt mutant with shrunken barley grains. However, the relationship between tocotrienols and grain development remains unclear. Here, we found that the hvhggt lines displayed hollow endosperms with defective transfer cells and reduced aleurone layers. The carbohydrate and starch contents of the hvhggt endosperm decreased by approximately 20 and 23%, respectively. Weighted gene coexpression network analyses identified a critical gene module containing HvHGGT, which was strongly associated with the hvhggt mutation and enriched with gene functions in starch and sucrose metabolism. Metabolome measurements revealed an elevated soluble sugar content in the hvhggt endosperm, which was significantly associated with the identified gene modules. The hvhggt endosperm had significantly higher NAD(H) and NADP(H) contents and lower levels of ADPGlc (regulated by redox balance) than the wild-type, consistent with the absence of tocotrienols. Interestingly, exogenous α-tocotrienol spraying on developing hvhggt spikes partially rescued starch accumulation and endosperm defects. Our study supports a potential novel function of tocotrienols in grain starch accumulation and endosperm development in monocot crops.
Collapse
Affiliation(s)
- Zhanghui Zeng
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou 311121, China
| | - Wenqian Zhang
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yaqi Shi
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Haonan Wei
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Chun Zhou
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xiaoping Huang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou 311121, China
| | - Zhehao Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou 311121, China
| | - Taihe Xiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou 311121, China
| | - Lilin Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Ning Han
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Hongwu Bian
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
3
|
Hertig C, Rutten T, Melzer M, Schippers JHM, Thiel J. Dissection of Developmental Programs and Regulatory Modules Directing Endosperm Transfer Cell and Aleurone Identity in the Syncytial Endosperm of Barley. PLANTS (BASEL, SWITZERLAND) 2023; 12:1594. [PMID: 37111818 PMCID: PMC10142620 DOI: 10.3390/plants12081594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/10/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Endosperm development in barley starts with the formation of a multinucleate syncytium, followed by cellularization in the ventral part of the syncytium generating endosperm transfer cells (ETCs) as first differentiating subdomain, whereas aleurone (AL) cells will originate from the periphery of the enclosing syncytium. Positional signaling in the syncytial stage determines cell identity in the cereal endosperm. Here, we performed a morphological analysis and employed laser capture microdissection (LCM)-based RNA-seq of the ETC region and the peripheral syncytium at the onset of cellularization to dissect developmental and regulatory programs directing cell specification in the early endosperm. Transcriptome data revealed domain-specific characteristics and identified two-component signaling (TCS) and hormone activities (auxin, ABA, ethylene) with associated transcription factors (TFs) as the main regulatory links for ETC specification. On the contrary, differential hormone signaling (canonical auxin, gibberellins, cytokinin) and interacting TFs control the duration of the syncytial phase and timing of cellularization of AL initials. Domain-specific expression of candidate genes was validated by in situ hybridization and putative protein-protein interactions were confirmed by split-YFP assays. This is the first transcriptome analysis dissecting syncytial subdomains of cereal seeds and provides an essential framework for initial endosperm differentiation in barley, which is likely also valuable for comparative studies with other cereal crops.
Collapse
Affiliation(s)
- Christian Hertig
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), D-06466 Seeland, Germany
| | - Twan Rutten
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), D-06466 Seeland, Germany
| | - Michael Melzer
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), D-06466 Seeland, Germany
| | - Jos H. M. Schippers
- Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), D-06466 Seeland, Germany
| | - Johannes Thiel
- Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), D-06466 Seeland, Germany
| |
Collapse
|
4
|
Royo J, Muñiz LM, Gómez E, Añazco-Guenkova AM, Hueros G. Distinct Hormone Signalling-Modulation Activities Characterize Two Maize Endosperm-Specific Type-A Response Regulators. PLANTS 2022; 11:plants11151992. [PMID: 35956471 PMCID: PMC9370639 DOI: 10.3390/plants11151992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022]
Abstract
ZmTCRR1 and 2 are type-A response regulators expressed in the maize endosperm transfer cells (TC). While type-B response regulators transcriptionally control canonical type-A response regulators, as part of the cytokinin signal transduction mechanism, the ZmTCRRs are regulated by ZmMRP1, a master regulator of TC identity. In addition, the corresponding proteins are not detected in the TC, accumulating in the inner endosperm cells instead. These features suggest these molecules are not involved in classical, cell-autonomous, cytokinin signalling pathways. Using transgenic Arabidopsis plants ectopically expressing these genes, we have shown that ZmTCRR1 and 2 can modulate auxin and cytokinin signalling, respectively. In Arabidopsis, the ectopic expression of ZmTCRR2 blocked, almost completely, cytokinin perception. Given the conservation of these signalling pathways at the molecular level, our results suggest that the ZmTCRRs modulate cytokinin and auxin perception in the inner endosperm cells.
Collapse
|
5
|
Povilus RA, Gehring M. Maternal-filial transfer structures in endosperm: A nexus of nutritional dynamics and seed development. CURRENT OPINION IN PLANT BIOLOGY 2022; 65:102121. [PMID: 34801784 DOI: 10.1016/j.pbi.2021.102121] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Although the ultimate purpose of a seed is the successful establishment of the next generation, seed development involves more than embryo growth. In angiosperms, seed development requires the intimate coordination of three distinct entities - maternal tissue and two offspring, embryo and embryo-nourishing endosperm. Although seeds are cornerstones of many terrestrial ecosystems and human diets, we are only beginning to understand the interactions among seed tissues and the molecular processes and genes that determine them. Recent studies of gene expression and function in distantly related angiosperms, combined with over 100 years of embryological research, have repeatedly highlighted the endosperm associated with maternal-filial boundaries as a central point in seed developmental dynamics. In this review, we highlight evidence that links this zone with nutritional dynamics, developmental signaling, and imprinted gene expression. We suggest that the underappreciated diversity of this specialized endosperm across angiosperms deserves further study from developmental, molecular, and genetic perspectives.
Collapse
Affiliation(s)
- Rebecca A Povilus
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | - Mary Gehring
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
6
|
Hoang XLT, Prerostova S, Thu NBA, Thao NP, Vankova R, Tran LSP. Histidine Kinases: Diverse Functions in Plant Development and Responses to Environmental Conditions. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:297-323. [PMID: 34143645 DOI: 10.1146/annurev-arplant-080720-093057] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The two-component system (TCS), which is one of the most evolutionarily conserved signaling pathway systems, has been known to regulate multiple biological activities and environmental responses in plants. Significant progress has been made in characterizing the biological functions of the TCS components, including signal receptor histidine kinase (HK) proteins, signal transducer histidine-containing phosphotransfer proteins, and effector response regulator proteins. In this review, our scope is focused on the diverse structure, subcellular localization, and interactions of the HK proteins, as well as their signaling functions during development and environmental responses across different plant species. Based on data collected from scientific studies, knowledge about acting mechanisms and regulatory roles of HK proteins is presented. This comprehensive summary ofthe HK-related network provides a panorama of sophisticated modulating activities of HK members and gaps in understanding these activities, as well as the basis for developing biotechnological strategies to enhance the quality of crop plants.
Collapse
Affiliation(s)
- Xuan Lan Thi Hoang
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; , ,
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Sylva Prerostova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague 6, Czech Republic; ,
| | - Nguyen Binh Anh Thu
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; , ,
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Phuong Thao
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; , ,
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague 6, Czech Republic; ,
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas 79409, USA;
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|