1
|
Faralli M, Mellers G, Wall S, Vialet-Chabrand S, Forget G, Galle A, Van Rie J, Gardner KA, Ober ES, Cockram J, Lawson T. Exploring natural genetic diversity in a bread wheat multi-founder population: dual imaging of photosynthesis and stomatal kinetics. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6733-6747. [PMID: 38795361 PMCID: PMC11565207 DOI: 10.1093/jxb/erae233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/23/2024] [Indexed: 05/27/2024]
Abstract
Recent research has shown that optimizing photosynthetic and stomatal traits holds promise for improved crop performance. However, standard phenotyping tools such as gas exchange systems have limited throughput. In this work, a novel approach based on a bespoke gas exchange chamber allowing combined measurement of the quantum yield of PSII (Fq'/Fm'), with an estimation of stomatal conductance via thermal imaging was used to phenotype a range of bread wheat (Triticum aestivum L.) genotypes. Using the dual-imaging methods and traditional approaches, we found broad and significant variation in key traits, including photosynthetic CO2 uptake at saturating light and ambient CO2 concentration (Asat), photosynthetic CO2 uptake at saturating light and elevated CO2 concentration (Amax), the maximum velocity of Rubisco for carboxylation (Vcmax), time for stomatal opening (Ki), and leaf evaporative cooling. Anatomical analysis revealed significant variation in flag leaf adaxial stomatal density. Associations between traits highlighted significant relationships between leaf evaporative cooling, leaf stomatal conductance, and Fq'/Fm', highlighting the importance of stomatal conductance and stomatal rapidity in maintaining optimal leaf temperature for photosynthesis in wheat. Additionally, gsmin and gsmax were positively associated, indicating that potential combinations of preferable traits (i.e. inherently high gsmax, low Ki, and maintained leaf evaporative cooling) are present in wheat. This work highlights the effectiveness of thermal imaging in screening dynamic gs in a panel of wheat genotypes. The wide phenotypic variation observed suggested the presence of exploitable genetic variability in bread wheat for dynamic stomatal conductance traits and photosynthetic capacity for targeted optimization within future breeding programmes.
Collapse
Affiliation(s)
- Michele Faralli
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Greg Mellers
- NIAB, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK
| | - Shellie Wall
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| | | | - Guillaume Forget
- University of Bordeaux, INRAE, UMR BIOGECO, Pessac 33615, France
| | - Alexander Galle
- BASF Belgium Coordination Center CommV-Innovation Center Gent, Technologiepark-Zwijnaarde 101, 9052 Gent, Belgium
| | - Jeron Van Rie
- BASF Belgium Coordination Center CommV-Innovation Center Gent, Technologiepark-Zwijnaarde 101, 9052 Gent, Belgium
| | - Keith A Gardner
- NIAB, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK
- International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz, Mexico
| | - Eric S Ober
- NIAB, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK
| | - James Cockram
- NIAB, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| |
Collapse
|
2
|
Hasan MM, Mia MAB, Ahmed JU, Karim MA, Islam AA, Mohi-Ud-Din M. Heat stress tolerance in wheat seedling: Clustering genotypes and identifying key traits using multivariate analysis. Heliyon 2024; 10:e38623. [PMID: 39397944 PMCID: PMC11470501 DOI: 10.1016/j.heliyon.2024.e38623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024] Open
Abstract
Elevated atmospheric heat is considered as one of the bottlenecks for global wheat production. Screening potential wheat genotypes against heat stress and selecting some suitable indicators to assist in understanding thermotolerance could be crucial for sustaining wheat cultivation. Accordingly, 80 diverse bread wheat genotypes were evaluated in controlled lab condition by imposing a week-long heat stress (35/25 °C D/N) at the seedling stage. The response of heat stress was evaluated using multivariate analysis techniques on 20 morpho-physiological traits. Results showed significant variations in the studied traits due to the imposition of heat stress. Eleven seedling traits that contributed significantly to the genotypic variability were identified using principal component analysis (PCA). A substantial correlation between most of the selected seedling attributes was observed. Hierarchical cluster analysis identified three distinct clusters among the tested wheat genotypes. Cluster 1, consisting of 33 genotypes, exhibited the highest tolerance to heat stress, followed by Cluster 2 (18 genotypes) with moderate tolerance and Cluster 3 (29 genotypes) showing susceptibility. Linear discriminant analysis (LDA) approved that nearly 93 % of the wheat genotypes were appropriately ascribed to each cluster. The squared distance analysis confirmed the distinct nature of the clusters. Using multi-trait genotype-ideotype distance index (MGIDI), all 12 identified tolerant genotypes (BG-30, BD-468, BG-24, BD-9908, BG-32, BD-476, BD-594, BD-553, BD-488, BG-33, BD-495, and AS-10627) originated from Cluster 1. Selection gain in MGIDI analysis, broad-sense heritability, and multiple linear regression analysis together identified shoot and root dry and fresh weights, chlorophyll contents (a and total), shoot tissue water content, root-shoot dry weight ratio, and efficiency of photosystem II (PS II) as the most vital discriminatory factors explaining heat stress tolerance of 80 wheat genotypes. The identified genotypes with superior thermotolerance would offer resourceful genetic tools for breeders to improve wheat yield in warmer regions. The traits found to have greater contribution in explaining heat stress tolerance will be equally important in prioritizing future research endeavors.
Collapse
Affiliation(s)
- Md. Mehedi Hasan
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur-1706, Bangladesh
- Department of Crop Botany and Tea Production Technology, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Md. Abdul Baset Mia
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur-1706, Bangladesh
| | - Jalal Uddin Ahmed
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur-1706, Bangladesh
| | - M. Abdul Karim
- Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur-1706, Bangladesh
| | - A.K.M. Aminul Islam
- Department of Genetics & Plant Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur-1706, Bangladesh
| | - Mohammed Mohi-Ud-Din
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur-1706, Bangladesh
| |
Collapse
|
3
|
de Souza MA, de Andrade LIF, Gago J, Pereira EG. Photoprotective mechanisms and higher photorespiration are key points for iron stress tolerance under heatwaves in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112031. [PMID: 38346562 DOI: 10.1016/j.plantsci.2024.112031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/28/2023] [Accepted: 02/09/2024] [Indexed: 02/22/2024]
Abstract
Considering the current climate change scenario, the development of heat-tolerant rice cultivars (Oryza sativa L.) is paramount for cultivation in waterlogged systems affected by iron (Fe) excess. The objective of this work was to investigate the physiological basis of tolerance to excess Fe in rice cultivars that would maintain photosynthetic efficiency at higher temperatures. In an experimental approach, two rice cultivars (IRGA424 - tolerant and IRGA417- susceptible to Fe toxicity) were exposed to two concentrations of FeSO4-EDTA, control (0.019 mM) and excess Fe (7 mM) and subsequent exposition to heatwaves at different temperatures (25 °C - control, 35, 40, 45, 50, and 55 °C). The increase in temperatures resulted in a higher Fe concentration in shoots accompanied by a lower Rubisco carboxylation rate in both cultivars, but with lower damage in the tolerant one. Stomatal limitation only occurred as a late response to Fe toxicity, especially in the sensitive cultivar. The activation of photorespiration as electron sink under Fe excess with increasing temperature during heatwaves appear as a major mechanism to alleviate oxidative stress in cultivars tolerant to excess Fe. The tolerance to iron toxicity and heat stress is associated with increased photoprotective mechanisms driving non-photochemical dissipation.
Collapse
Affiliation(s)
- Moises Alves de Souza
- Setor de Fisiologia Vegetal, Departamento de Biologia, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil.
| | | | - Jorge Gago
- Instituto de investigaciones Agroambientales y de la Economía del Agua (INAGEA), Universitat deles Illes Balears, Palma de Mallorca, Spain
| | - Eduardo Gusmão Pereira
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, Rodovia LMG 818, km 06, Campus UFV-Florestal, Florestal, Minas Gerais, Brazil.
| |
Collapse
|
4
|
Ferguson JN, Jithesh T, Lawson T, Kromdijk J. Excised leaves show limited and species-specific effects on photosynthetic parameters across crop functional types. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6662-6676. [PMID: 37565685 PMCID: PMC10662226 DOI: 10.1093/jxb/erad319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/10/2023] [Indexed: 08/12/2023]
Abstract
Photosynthesis is increasingly becoming a recognized target for crop improvement. Phenotyping photosynthesis-related traits on field-grown material is a key bottleneck to progress here due to logistical barriers and short measurement days. Many studies attempt to overcome these challenges by phenotyping excised leaf material in the laboratory. To date there are no demonstrated examples of the representative nature of photosynthesis measurements performed on excised leaves relative to attached leaves in crops. Here, we tested whether standardized leaf excision on the day prior to phenotyping affected a range of common photosynthesis-related traits across crop functional types using tomato (C3 dicot), barley (C3 monocot), and maize (C4 monocot). Potentially constraining aspects of leaf physiology that could be predicted to impair photosynthesis in excised leaves, namely leaf water potential and abscisic acid accumulation, were not different between attached and excised leaves. We also observed non-significant differences in spectral reflectance and chlorophyll fluorescence traits between the treatments across the three species. However, we did observe some significant differences between traits associated with gas exchange and photosynthetic capacity across all three species. This study represents a useful reference for those who perform measurements of this nature and the differences reported should be considered in associated experimental design and statistical analyses.
Collapse
Affiliation(s)
- John N Ferguson
- Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire, CB2 3EA, UK
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - Tamanna Jithesh
- Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire, CB2 3EA, UK
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - Johannes Kromdijk
- Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire, CB2 3EA, UK
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| |
Collapse
|
5
|
Robson JK, Ferguson JN, McAusland L, Atkinson JA, Tranchant-Dubreuil C, Cubry P, Sabot F, Wells DM, Price AH, Wilson ZA, Murchie EH. Chlorophyll fluorescence-based high-throughput phenotyping facilitates the genetic dissection of photosynthetic heat tolerance in African (Oryza glaberrima) and Asian (Oryza sativa) rice. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5181-5197. [PMID: 37347829 PMCID: PMC10498015 DOI: 10.1093/jxb/erad239] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/20/2023] [Indexed: 06/24/2023]
Abstract
Rising temperatures and extreme heat events threaten rice production. Half of the global population relies on rice for basic nutrition, and therefore developing heat-tolerant rice is essential. During vegetative development, reduced photosynthetic rates can limit growth and the capacity to store soluble carbohydrates. The photosystem II (PSII) complex is a particularly heat-labile component of photosynthesis. We have developed a high-throughput chlorophyll fluorescence-based screen for photosynthetic heat tolerance capable of screening hundreds of plants daily. Through measuring the response of maximum PSII efficiency to increasing temperature, this platform generates data for modelling the PSII-temperature relationship in large populations in a small amount of time. Coefficients from these models (photosynthetic heat tolerance traits) demonstrated high heritabilities across African (Oryza glaberrima) and Asian (Oryza sativa, Bengal Assam Aus Panel) rice diversity sets, highlighting valuable genetic variation accessible for breeding. Genome-wide association studies were performed across both species for these traits, representing the first documented attempt to characterize the genetic basis of photosynthetic heat tolerance in any species to date. A total of 133 candidate genes were highlighted. These were significantly enriched with genes whose predicted roles suggested influence on PSII activity and the response to stress. We discuss the most promising candidates for improving photosynthetic heat tolerance in rice.
Collapse
Affiliation(s)
- Jordan K Robson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - John N Ferguson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- School of Life Sciences, University of Essex, Colchester, UK
| | - Lorna McAusland
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Jonathan A Atkinson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | | | - Phillipe Cubry
- Institut de Recherche pour le Developpement, 911 Av. Agropolis, 34394 Montpellier, France
| | - François Sabot
- Institut de Recherche pour le Developpement, 911 Av. Agropolis, 34394 Montpellier, France
| | - Darren M Wells
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Adam H Price
- Institut de Recherche pour le Developpement, 911 Av. Agropolis, 34394 Montpellier, France
| | - Zoe A Wilson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Erik H Murchie
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
6
|
Moustaka J, Moustakas M. Early-Stage Detection of Biotic and Abiotic Stress on Plants by Chlorophyll Fluorescence Imaging Analysis. BIOSENSORS 2023; 13:796. [PMID: 37622882 PMCID: PMC10452221 DOI: 10.3390/bios13080796] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/30/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023]
Abstract
Most agricultural land, as a result of climate change, experiences severe stress that significantly reduces agricultural yields. Crop sensing by imaging techniques allows early-stage detection of biotic or abiotic stress to avoid damage and significant yield losses. Among the top certified imaging techniques for plant stress detection is chlorophyll a fluorescence imaging, which can evaluate spatiotemporal leaf changes, permitting the pre-symptomatic monitoring of plant physiological status long before any visible symptoms develop, allowing for high-throughput assessment. Here, we review different examples of how chlorophyll a fluorescence imaging analysis can be used to evaluate biotic and abiotic stress. Chlorophyll a is able to detect biotic stress as early as 15 min after Spodoptera exigua feeding, or 30 min after Botrytis cinerea application on tomato plants, or on the onset of water-deficit stress, and thus has potential for early stress detection. Chlorophyll fluorescence (ChlF) analysis is a rapid, non-invasive, easy to perform, low-cost, and highly sensitive method that can estimate photosynthetic performance and detect the influence of diverse stresses on plants. In terms of ChlF parameters, the fraction of open photosystem II (PSII) reaction centers (qp) can be used for early stress detection, since it has been found in many recent studies to be the most accurate and appropriate indicator for ChlF-based screening of the impact of environmental stress on plants.
Collapse
Affiliation(s)
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
7
|
Ren H, Bao J, Gao Z, Sun D, Zheng S, Bai J. How rice adapts to high temperatures. FRONTIERS IN PLANT SCIENCE 2023; 14:1137923. [PMID: 37008476 PMCID: PMC10063981 DOI: 10.3389/fpls.2023.1137923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
High-temperature stress affects crop yields worldwide. Identifying thermotolerant crop varieties and understanding the basis for this thermotolerance would have important implications for agriculture, especially in the face of climate change. Rice (Oryza sativa) varieties have evolved protective strategies to acclimate to high temperature, with different thermotolerance levels. In this review, we examine the morphological and molecular effects of heat on rice in different growth stages and plant organs, including roots, stems, leaves and flowers. We also explore the molecular and morphological differences among thermotolerant rice lines. In addition, some strategies are proposed to screen new rice varieties for thermotolerance, which will contribute to the improvement of rice for agricultural production in the future.
Collapse
Affiliation(s)
- Huimin Ren
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jingpei Bao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zhenxian Gao
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Wheat Research Center, Shijiazhuang, China
| | - Daye Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Shuzhi Zheng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jiaoteng Bai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
8
|
Murchie EH, Reynolds M, Slafer GA, Foulkes MJ, Acevedo-Siaca L, McAusland L, Sharwood R, Griffiths S, Flavell RB, Gwyn J, Sawkins M, Carmo-Silva E. A 'wiring diagram' for source strength traits impacting wheat yield potential. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:72-90. [PMID: 36264277 PMCID: PMC9786870 DOI: 10.1093/jxb/erac415] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/18/2022] [Indexed: 05/06/2023]
Abstract
Source traits are currently of great interest for the enhancement of yield potential; for example, much effort is being expended to find ways of modifying photosynthesis. However, photosynthesis is but one component of crop regulation, so sink activities and the coordination of diverse processes throughout the crop must be considered in an integrated, systems approach. A set of 'wiring diagrams' has been devised as a visual tool to integrate the interactions of component processes at different stages of wheat development. They enable the roles of chloroplast, leaf, and whole-canopy processes to be seen in the context of sink development and crop growth as a whole. In this review, we dissect source traits both anatomically (foliar and non-foliar) and temporally (pre- and post-anthesis), and consider the evidence for their regulation at local and whole-plant/crop levels. We consider how the formation of a canopy creates challenges (self-occlusion) and opportunities (dynamic photosynthesis) for components of photosynthesis. Lastly, we discuss the regulation of source activity by feedback regulation. The review is written in the framework of the wiring diagrams which, as integrated descriptors of traits underpinning grain yield, are designed to provide a potential workspace for breeders and other crop scientists that, along with high-throughput and precision phenotyping data, genetics, and bioinformatics, will help build future dynamic models of trait and gene interactions to achieve yield gains in wheat and other field crops.
Collapse
Affiliation(s)
- Erik H Murchie
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Matthew Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera Mexico-Veracruz, El Batan, Texcoco, Mexico
| | - Gustavo A Slafer
- Department of Crop and Forest Sciences, University of Lleida–AGROTECNIO-CERCA Center, Av. R. Roure 191, 25198 Lleida, Spain
- ICREA (Catalonian Institution for Research and Advanced Studies), Barcelona, Spain
| | - M John Foulkes
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Liana Acevedo-Siaca
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera Mexico-Veracruz, El Batan, Texcoco, Mexico
| | - Lorna McAusland
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Robert Sharwood
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond NSW 2753, Australia
| | - Simon Griffiths
- John Innes Centre, Norwich Research Park, Colney Ln, Norwich NR4 7UH, UK
| | - Richard B Flavell
- International Wheat Yield Partnership, 1500 Research Parkway, College Station, TX 77843, USA
| | - Jeff Gwyn
- International Wheat Yield Partnership, 1500 Research Parkway, College Station, TX 77843, USA
| | - Mark Sawkins
- International Wheat Yield Partnership, 1500 Research Parkway, College Station, TX 77843, USA
| | | |
Collapse
|
9
|
Lysenko EA, Kozuleva MA, Klaus AA, Pshybytko NL, Kusnetsov VV. Lower air humidity reduced both the plant growth and activities of photosystems I and II under prolonged heat stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:246-262. [PMID: 36436415 DOI: 10.1016/j.plaphy.2022.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/05/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The warming is global problem. In natural environments, heat stress is usually accompanied by drought. Under drought conditions, water content decreases in both soil and air; yet,the effect of lower air humidity remains obscure. We supplied maize and barley plants with an unlimited source of water for the root uptake and studied the effect of relative air humidity under heat stress. Young plants were subjected for 48 h to several degrees of heat stress: moderate (37 °C), genuine (42 °C), and nearly lethal (46 °C). The conditions of lower air humidity decreased the photochemical activities of photosystem I and photosystem II. The small effect was revealed in the control (24 °C). Elevating temperature to 37 °C and 42 °C increased the relative activities of both photosystems; the photosystem II was activated more. Probably, this is why the effect of air humidity disappeared at 37 °C; the small inhibiting effect was observed at 42 °C. At 46 °C, lower air humidity substantially magnified the inhibitory effect of heat. As a result, the maximal and relative activities of both photosystems decreased in maize and barley; the photosystem II was inhibited more. Under the conditions of 46 °C at lower air humidity, the plant growth was greatly reduced. Maize plants increased water uptake by roots and survived; barley plants were unable to increase water uptake and died. Therefore, air humidity is an important component of environmental heat stress influencing activities of photosystem I and photosystem II and thereby plant growth and viability under severe stress conditions.
Collapse
Affiliation(s)
- Eugene A Lysenko
- Institute of Plant Physiology, Russian Academy of Sciences, ul. Botanicheskaya 35, 127276, Moscow, Russia.
| | - Marina A Kozuleva
- Institute of Plant Physiology, Russian Academy of Sciences, ul. Botanicheskaya 35, 127276, Moscow, Russia; Institute of Basic Biological Problems, Russian Academy of Sciences, ul. Institutskaya 2, 142290, Pushchino, Moscow oblast, Russia.
| | - Alexander A Klaus
- Institute of Plant Physiology, Russian Academy of Sciences, ul. Botanicheskaya 35, 127276, Moscow, Russia.
| | - Natallia L Pshybytko
- Biological Faculty, Belarusian State University, 4 Independence Avenue, 220030, Minsk, Belarus.
| | - Victor V Kusnetsov
- Institute of Plant Physiology, Russian Academy of Sciences, ul. Botanicheskaya 35, 127276, Moscow, Russia.
| |
Collapse
|
10
|
Development of a Multi-Criteria Decision-Making Approach for Evaluating the Comprehensive Application of Herbaceous Peony at Low Latitudes. Int J Mol Sci 2022; 23:ijms232214342. [PMID: 36430818 PMCID: PMC9697995 DOI: 10.3390/ijms232214342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/22/2022] Open
Abstract
The growing region of herbaceous peony (Paeonia lactiflora) has been severely constrained due to the intensification of global warming and extreme weather events, especially at low latitudes. Assessing and selecting stress-tolerant and high-quality peony germplasm is essential for maintaining the normal growth and application of peonies under adverse conditions. This study proposed a modified multi-criteria decision-making (MCDM) model for assessing peonies adapted to low-latitude climates based on our previous study. This model is low-cost, timesaving and suitable for screening the adapted peony germplasm under hot and humid climates. The evaluation was conducted through the analytic hierarchy process (AHP), three major criteria, including adaptability-related, ornamental feature-related and growth habits-related criteria, and eighteen sub-criteria were proposed and constructed in this study. The model was validated on fifteen herbaceous peonies cultivars from different latitudes. The results showed that 'Meiju', 'Hang Baishao', 'Hongpan Tuojin' and 'Bo Baishao' were assessed as Level I, which have strong growth adaptability and high ornamental values, and were recommended for promotion and application at low latitudes. The reliability and stability of the MCDM model were further confirmed by measuring the chlorophyll fluorescence of the selected adaptive cultivars 'Meiju' and 'Hang Baishao' and one maladaptive cultivar 'Zhuguang'. This study could provide a reference for the introduction, breeding and application of perennials under everchanging unfavorable climatic conditions.
Collapse
|
11
|
Mohammed U, Davis J, Rossall S, Swarup K, Czyzewicz N, Bhosale R, Foulkes J, Murchie EH, Swarup R. Phosphite treatment can improve root biomass and nutrition use efficiency in wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:1017048. [PMID: 36388577 PMCID: PMC9662169 DOI: 10.3389/fpls.2022.1017048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Phosphite represents a reduced form of phosphate that belongs to a class of crop growth-promoting chemicals termed biostimulants. Previous research has shown that phosphite application can enhance root growth, but its underlying mechanism, especially during environmental stresses, remains elusive. To uncover this, we undertook a series of morphological and physiological analyses under nutrient, water and heat stresses following a foliar application in wheat. Non-invasive 3D imaging of root system architecture directly in soil using X-ray Computed Tomography revealed that phosphite treatment improves root architectural traits and increased root biomass. Biochemical and physiological assays identified that phosphite treatment significantly increases Nitrate Reductase (NR) activity, leaf photosynthesis and stomatal conductance, suggesting improved Nitrogen and Carbon assimilation, respectively. These differences were more pronounced under heat or drought treatment (photosynthesis and photosystem II stability) and nutrient deficiency (root traits and NR). Overall our results suggest that phosphite treatment improves the ability of plants to tolerate abiotic stresses through improved Nitrogen and Carbon assimilation, combined with improved root growth which may improve biomass and yield.
Collapse
Affiliation(s)
- Umar Mohammed
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Jayne Davis
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Steve Rossall
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Kamal Swarup
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Nathan Czyzewicz
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
- Mars Petcare, Melton Mowbray, United Kingdom
| | - Rahul Bhosale
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
- Future Food Beacon of Excellence, University of Nottingham, Nottingham, United Kingdom
| | - John Foulkes
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Erik H. Murchie
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Ranjan Swarup
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
12
|
Coast O, Posch BC, Rognoni BG, Bramley H, Gaju O, Mackenzie J, Pickles C, Kelly AM, Lu M, Ruan YL, Trethowan R, Atkin OK. Wheat photosystem II heat tolerance: evidence for genotype-by-environment interactions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1368-1382. [PMID: 35781899 DOI: 10.1111/tpj.15894] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
High temperature stress inhibits photosynthesis and threatens wheat production. One measure of photosynthetic heat tolerance is Tcrit - the critical temperature at which incipient damage to photosystem II (PSII) occurs. This trait could be improved in wheat by exploiting genetic variation and genotype-by-environment interactions (GEI). Flag leaf Tcrit of 54 wheat genotypes was evaluated in 12 thermal environments over 3 years in Australia, and analysed using linear mixed models to assess GEI effects. Nine of the 12 environments had significant genetic effects and highly variable broad-sense heritability (H2 ranged from 0.15 to 0.75). Tcrit GEI was variable, with 55.6% of the genetic variance across environments accounted for by the factor analytic model. Mean daily growth temperature in the month preceding anthesis was the most influential environmental driver of Tcrit GEI, suggesting biochemical, physiological and structural adjustments to temperature requiring different durations to manifest. These changes help protect or repair PSII upon exposure to heat stress, and may improve carbon assimilation under high temperature. To support breeding efforts to improve wheat performance under high temperature, we identified genotypes superior to commercial cultivars commonly grown by farmers, and demonstrated potential for developing genotypes with greater photosynthetic heat tolerance.
Collapse
Affiliation(s)
- Onoriode Coast
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK
- School of Environmental and Rural Sciences, Faculty of Science Agriculture Business and Law, University of New England, Armidale, NSW, 2351, Australia
| | - Bradley C Posch
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Bethany G Rognoni
- Department of Agriculture and Fisheries, Leslie Research Facility, Toowoomba, QLD, 4350, Australia
| | - Helen Bramley
- School of Life and Environmental Sciences, Plant Breeding Institute, Sydney Institute of Agriculture, The University of Sydney, Narrabri, NSW, 2390, Australia
| | - Oorbessy Gaju
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- Lincoln Institute of Agri-Food Technology, University of Lincoln, Riseholme Park, Lincoln, Lincolnshire, LN2 2LG, UK
| | - John Mackenzie
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Claire Pickles
- Birchip Cropping Group, 73 Cumming Avenue, Birchip, VIC, 3483, Australia
| | - Alison M Kelly
- Department of Agriculture and Fisheries, Leslie Research Facility, Toowoomba, QLD, 4350, Australia
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Toowoomba, QLD, 4350, Australia
| | - Meiqin Lu
- Australian Grain Technologies, 12656 Newell Highway, Narrabri, NSW, 2390, Australia
| | - Yong-Ling Ruan
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Richard Trethowan
- School of Life and Environmental Sciences, Plant Breeding Institute, Sydney Institute of Agriculture, The University of Sydney, Narrabri, NSW, 2390, Australia
- School of Life and Environmental Sciences, Plant Breeding Institute, Sydney Institute of Agriculture, The University of Sydney, Cobbitty, NSW, 2570, Australia
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
13
|
Prasertthai P, Paethaisong W, Theerakulpisut P, Dongsansuk A. High Temperature Alters Leaf Lipid Membrane Composition Associated with Photochemistry of PSII and Membrane Thermostability in Rice Seedlings. PLANTS (BASEL, SWITZERLAND) 2022; 11:1454. [PMID: 35684228 PMCID: PMC9183074 DOI: 10.3390/plants11111454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Rice cultivated in the tropics is exposed to high temperature (HT) stress which threatens its growth and survival. This study aimed at characterizing the HT response in terms of PSII efficiency and membrane stability, and to identify leaf fatty acid changes that may be associated with HT tolerance or sensitivity of rice genotypes. Twenty-eight-day-old seedlings of two Thai rice cultivars (CN1 and KDML105), a standard heat tolerance (N22), and a heat sensitive (IR64) rice genotype were treated at 42 °C for 7 days. Under HT, N22 showed the highest heat tolerance displaying the lowest increase in electrolyte leakage (EL), no increments in malondialdehyde (MDA) and stable maximum quantum yield of PSII efficiency (Fv/Fm). Compared to KDML105 and IR64, CN1 was more tolerant of HT, showing a lower increase in EL and MDA, and less reduction in Fv/Fm. N22 and CN1 showed a higher percentage reduction of unsaturated fatty acids (C18:2 and C18:3), which are the major components of the thylakoid membrane, rendering the optimum thylakoid membrane fluidity and intactness of PSII complex. Moreover, they exhibited sharp increases in long-chain fatty acids, particularly C22:1, while the heat sensitive IR64 and KDML105 showed significant reductions. Dramatic increases in long-chain fatty acids may lead to cuticular wax synthesis which provides protective roles for heat tolerance. Thus, the reduction in unsaturated fatty acid composition of the thylakoid membrane and dramatic increases in long-chain fatty acids may lead to high photosynthetic performance and an enhanced synthesis of cuticular wax which further provided additional protective roles for heat tolerance ability in rice.
Collapse
Affiliation(s)
- Paphitchaya Prasertthai
- Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand;
- Salt Tolerant Rice Research Group, Khon Kaen University, Khon Kaen 40002, Thailand; (W.P.); (P.T.)
| | - Warunya Paethaisong
- Salt Tolerant Rice Research Group, Khon Kaen University, Khon Kaen 40002, Thailand; (W.P.); (P.T.)
| | - Piyada Theerakulpisut
- Salt Tolerant Rice Research Group, Khon Kaen University, Khon Kaen 40002, Thailand; (W.P.); (P.T.)
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Anoma Dongsansuk
- Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand;
- Salt Tolerant Rice Research Group, Khon Kaen University, Khon Kaen 40002, Thailand; (W.P.); (P.T.)
| |
Collapse
|
14
|
Posch BC, Hammer J, Atkin OK, Bramley H, Ruan YL, Trethowan R, Coast O. Wheat photosystem II heat tolerance responds dynamically to short- and long-term warming. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:erac039. [PMID: 35604885 PMCID: PMC9127437 DOI: 10.1093/jxb/erac039] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 05/10/2023]
Abstract
Wheat photosynthetic heat tolerance can be characterized using minimal chlorophyll fluorescence to quantify the critical temperature (Tcrit) above which incipient damage to the photosynthetic machinery occurs. We investigated intraspecies variation and plasticity of wheat Tcrit under elevated temperature in field and controlled-environment experiments, and assessed whether intraspecies variation mirrored interspecific patterns of global heat tolerance. In the field, wheat Tcrit varied diurnally-declining from noon through to sunrise-and increased with phenological development. Under controlled conditions, heat stress (36 °C) drove a rapid (within 2 h) rise in Tcrit that peaked after 3-4 d. The peak in Tcrit indicated an upper limit to PSII heat tolerance. A global dataset [comprising 183 Triticum and wild wheat (Aegilops) species] generated from the current study and a systematic literature review showed that wheat leaf Tcrit varied by up to 20 °C (roughly two-thirds of reported global plant interspecies variation). However, unlike global patterns of interspecies Tcrit variation that have been linked to latitude of genotype origin, intraspecific variation in wheat Tcrit was unrelated to that. Overall, the observed genotypic variation and plasticity of wheat Tcrit suggest that this trait could be useful in high-throughput phenotyping of wheat photosynthetic heat tolerance.
Collapse
Affiliation(s)
- Bradley C Posch
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Julia Hammer
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- Department of Biology, The University of Western Ontario, 1151 Richmond St, N6A 3K7, London, Canada
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Helen Bramley
- Plant Breeding Institute, Sydney Institute of Agriculture & School of Life and Environmental Sciences, The University of Sydney, Narrabri, NSW 2390, Australia
| | - Yong-Ling Ruan
- Australia-China Research Centre for Crop Improvement and School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Richard Trethowan
- Plant Breeding Institute, Sydney Institute of Agriculture & School of Life and Environmental Sciences, The University of Sydney, Narrabri, NSW 2390, Australia
- School of Life and Environmental Sciences, Plant Breeding Institute, Sydney Institute of Agriculture, The University of Sydney, Cobbitty, NSW 2570, Australia
| | - Onoriode Coast
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK
- School of Environmental and Rural Sciences, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
15
|
Nahar L, Aycan M, Hanamata S, Baslam M, Mitsui T. Impact of Single and Combined Salinity and High-Temperature Stresses on Agro-Physiological, Biochemical, and Transcriptional Responses in Rice and Stress-Release. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040501. [PMID: 35214835 PMCID: PMC8876766 DOI: 10.3390/plants11040501] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 05/09/2023]
Abstract
Here, for the first time, we aimed to identify in rice the key mechanisms and processes underlying tolerance to high-temperature (HT) or salt stress (SS) alone, the co-occurrence of both stresses, and recovery using physiological and biochemical measurements and gene expression analysis. We also investigated whether recovery from the two stressors depended on the relative intensities/relief of each stressor. Wild type ('Yukinkomai') rice plants were found to be more susceptible to salinity or heat applied individually. SS leads to a depletion of cellular water content, higher accumulation of Na+, and alterations in photosynthetic pigments. The stress-tolerant cultivar 'YNU31-2-4' (YNU) displayed a lower Na+/K+ ratio, higher water content in cells and improved photosynthetic traits, antioxidant system, and expression of defence genes. Strikingly, the SS + HT combination provided a significant level of protection to rice plants from the effects of SS alone. The expression pattern of a selected set of genes showed a specific response and dedicated pathways in plants subjected to each of the different stresses, while other genes were explicitly activated when the stresses were combined. Aquaporin genes were activated by SS, while stress-related (P5CS, MSD1, HSPs, and ions transporters) genes were shaped by HT. Hierarchical clustering and principal component analyses showed that several traits exhibited a gradually aggravating effect as plants were exposed to the combined stresses and identified heat as a mitigating factor, clearly separating heat + salt-stressed from salt-non-heat-stressed plants. Furthermore, seedling recovery was far more dependent on the relative intensities of stressors and cultivars, demonstrating the influence of one stressor over another upon stress-release. Taken together, our data show the uniqueness and complexity of the physiological and molecular network modules used by rice plants to respond to single and combined stresses and recovery.
Collapse
Affiliation(s)
- Lutfun Nahar
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan;
- Department of Agricultural Botany, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Murat Aycan
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan; (M.A.); (S.H.)
| | - Shigeru Hanamata
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan; (M.A.); (S.H.)
| | - Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan; (M.A.); (S.H.)
- Correspondence: (M.B.); (T.M.); Tel.: +81-25-262-6641 (T.M.)
| | - Toshiaki Mitsui
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan;
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan; (M.A.); (S.H.)
- Correspondence: (M.B.); (T.M.); Tel.: +81-25-262-6641 (T.M.)
| |
Collapse
|
16
|
Yu B, Ming F, Liang Y, Wang Y, Gan Y, Qiu Z, Yan S, Cao B. Heat Stress Resistance Mechanisms of Two Cucumber Varieties from Different Regions. Int J Mol Sci 2022; 23:ijms23031817. [PMID: 35163740 PMCID: PMC8837171 DOI: 10.3390/ijms23031817] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/12/2022] [Accepted: 01/22/2022] [Indexed: 02/01/2023] Open
Abstract
High temperatures affect the yield and quality of vegetable crops. Unlike thermosensitive plants, thermotolerant plants have excellent systems for withstanding heat stress. This study evaluated various heat resistance indexes of the thermotolerant cucumber (TT) and thermosensitive cucumber (TS) plants at the seedling stage. The similarities and differences between the regulatory genes were assessed through transcriptome analysis to understand the mechanisms for heat stress resistance in cucumber. The TT plants exhibited enhanced leaf status, photosystem, root viability, and ROS scavenging under high temperature compared to the TS plants. Additionally, transcriptome analysis showed that the genes involved in photosynthesis, the chlorophyll metabolism, and defense responses were upregulated in TT plants but downregulated in TS plants. Zeatin riboside (ZR), brassinosteroid (BR), and jasmonic acid (JA) levels were higher in TT plants than in TS. The heat stress increased gibberellic acid (GA) and indoleacetic acid (IAA) levels in both plant lines; however, the level of GA was higher in TT. Correlation and interaction analyses revealed that heat cucumber heat resistance is regulated by a few transcription factor family genes and metabolic pathways. Our study revealed different phenotypic and physiological mechanisms of the heat response by the thermotolerant and thermosensitive cucumber plants. The plants were also shown to exhibit different expression profiles and metabolic pathways. The heat resistant pathways and genes of two cucumber varieties were also identified. These results enhance our understanding of the molecular mechanisms of cucumber response to high-temperature stress.
Collapse
Affiliation(s)
- Bingwei Yu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (B.Y.); (F.M.); (Y.L.); (Y.W.); (Y.G.); (Z.Q.)
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Fangyan Ming
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (B.Y.); (F.M.); (Y.L.); (Y.W.); (Y.G.); (Z.Q.)
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Yonggui Liang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (B.Y.); (F.M.); (Y.L.); (Y.W.); (Y.G.); (Z.Q.)
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Yixi Wang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (B.Y.); (F.M.); (Y.L.); (Y.W.); (Y.G.); (Z.Q.)
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Yuwei Gan
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (B.Y.); (F.M.); (Y.L.); (Y.W.); (Y.G.); (Z.Q.)
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Zhengkun Qiu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (B.Y.); (F.M.); (Y.L.); (Y.W.); (Y.G.); (Z.Q.)
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Shuangshuang Yan
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (B.Y.); (F.M.); (Y.L.); (Y.W.); (Y.G.); (Z.Q.)
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (S.Y.); (B.C.)
| | - Bihao Cao
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (B.Y.); (F.M.); (Y.L.); (Y.W.); (Y.G.); (Z.Q.)
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (S.Y.); (B.C.)
| |
Collapse
|
17
|
Gojon A, Nussaume L, Luu DT, Murchie EH, Baekelandt A, Rodrigues Saltenis VL, Cohan J, Desnos T, Inzé D, Ferguson JN, Guiderdonni E, Krapp A, Klein Lankhorst R, Maurel C, Rouached H, Parry MAJ, Pribil M, Scharff LB, Nacry P. Approaches and determinants to sustainably improve crop production. Food Energy Secur 2022. [DOI: 10.1002/fes3.369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Alain Gojon
- BPMP Institut Agro Univ Montpellier INRAE CNRS Montpellier France
| | - Laurent Nussaume
- UMR7265 Laboratoire de Biologie du Développement des Plantes Service de Biologie Végétale et de Microbiologie Environnementales Institut de Biologie Environnementale et Biotechnologie CNRS‐CEA‐Université Aix‐Marseille Saint‐Paul‐lez‐Durance France
| | - Doan T. Luu
- BPMP Institut Agro Univ Montpellier INRAE CNRS Montpellier France
| | - Erik H. Murchie
- School of Biosciences University of Nottingham Loughborough UK
| | - Alexandra Baekelandt
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | | | | | - Thierry Desnos
- UMR7265 Laboratoire de Biologie du Développement des Plantes Service de Biologie Végétale et de Microbiologie Environnementales Institut de Biologie Environnementale et Biotechnologie CNRS‐CEA‐Université Aix‐Marseille Saint‐Paul‐lez‐Durance France
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | - John N. Ferguson
- School of Biosciences University of Nottingham Loughborough UK
- Department of Plant Sciences University of Cambridge Cambridge UK
| | | | - Anne Krapp
- Institut Jean‐Pierre Bourgin INRAE AgroParisTech Université Paris‐Saclay Versailles France
| | - René Klein Lankhorst
- Wageningen Plant Research Wageningen University & Research Wageningen The Netherlands
| | | | - Hatem Rouached
- BPMP Institut Agro Univ Montpellier INRAE CNRS Montpellier France
- Department of Plant, Soil, and Microbial Sciences Michigan State University East Lansing Michigan USA
| | | | - Mathias Pribil
- Department of Plant and Environmental Sciences Copenhagen Plant Science Centre University of Copenhagen Frederiksberg Denmark
| | - Lars B. Scharff
- Department of Plant and Environmental Sciences Copenhagen Plant Science Centre University of Copenhagen Frederiksberg Denmark
| | - Philippe Nacry
- BPMP Institut Agro Univ Montpellier INRAE CNRS Montpellier France
| |
Collapse
|
18
|
Sadura I, Janeczko A. Brassinosteroids and the Tolerance of Cereals to Low and High Temperature Stress: Photosynthesis and the Physicochemical Properties of Cell Membranes. Int J Mol Sci 2021; 23:342. [PMID: 35008768 PMCID: PMC8745458 DOI: 10.3390/ijms23010342] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
Cereals, which belong to the Poaceae family, are the most economically important group of plants. Among abiotic stresses, temperature stresses are a serious and at the same time unpredictable problem for plant production. Both frost (in the case of winter cereals) and high temperatures in summer (especially combined with a water deficit in the soil) can result in significant yield losses. Plants have developed various adaptive mechanisms that have enabled them to survive periods of extreme temperatures. The processes of acclimation to low and high temperatures are controlled, among others, by phytohormones. The current review is devoted to the role of brassinosteroids (BR) in cereal acclimation to temperature stress with special attention being paid to the impact of BR on photosynthesis and the membrane properties. In cereals, the exogenous application of BR increases frost tolerance (winter rye, winter wheat), tolerance to cold (maize) and tolerance to a high temperature (rice). Disturbances in BR biosynthesis and signaling are accompanied by a decrease in frost tolerance but unexpectedly an improvement of tolerance to high temperature (barley). BR exogenous treatment increases the efficiency of the photosynthetic light reactions under various temperature conditions (winter rye, barley, rice), but interestingly, BR mutants with disturbances in BR biosynthesis are also characterized by an increased efficiency of PSII (barley). BR regulate the sugar metabolism including an increase in the sugar content, which is of key importance for acclimation, especially to low temperatures (winter rye, barley, maize). BR either participate in the temperature-dependent regulation of fatty acid biosynthesis or control the processes that are responsible for the transport or incorporation of the fatty acids into the membranes, which influences membrane fluidity (and subsequently the tolerance to high/low temperatures) (barley). BR may be one of the players, along with gibberellins or ABA, in acquiring tolerance to temperature stress in cereals (particularly important for the acclimation of cereals to low temperature).
Collapse
Affiliation(s)
- Iwona Sadura
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Kraków, Poland
| | - Anna Janeczko
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Kraków, Poland
| |
Collapse
|
19
|
Sales CRG, Wang Y, Evers JB, Kromdijk J. Improving C4 photosynthesis to increase productivity under optimal and suboptimal conditions. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5942-5960. [PMID: 34268575 PMCID: PMC8411859 DOI: 10.1093/jxb/erab327] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/09/2021] [Indexed: 05/05/2023]
Abstract
Although improving photosynthetic efficiency is widely recognized as an underutilized strategy to increase crop yields, research in this area is strongly biased towards species with C3 photosynthesis relative to C4 species. Here, we outline potential strategies for improving C4 photosynthesis to increase yields in crops by reviewing the major bottlenecks limiting the C4 NADP-malic enzyme pathway under optimal and suboptimal conditions. Recent experimental results demonstrate that steady-state C4 photosynthesis under non-stressed conditions can be enhanced by increasing Rubisco content or electron transport capacity, both of which may also stimulate CO2 assimilation at supraoptimal temperatures. Several additional putative bottlenecks for photosynthetic performance under drought, heat, or chilling stress or during photosynthetic induction await further experimental verification. Based on source-sink interactions in maize, sugarcane, and sorghum, alleviating these photosynthetic bottlenecks during establishment and growth of the harvestable parts are likely to improve yield. The expected benefits are also shown to be augmented by the increasing trend in planting density, which increases the impact of photosynthetic source limitation on crop yields.
Collapse
Affiliation(s)
- Cristina R G Sales
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Yu Wang
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jochem B Evers
- Centre for Crops Systems Analysis (WUR), Wageningen University, Wageningen, The Netherlands
| | - Johannes Kromdijk
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
20
|
Ferguson JN, Tidy AC, Murchie EH, Wilson ZA. The potential of resilient carbon dynamics for stabilizing crop reproductive development and productivity during heat stress. PLANT, CELL & ENVIRONMENT 2021; 44:2066-2089. [PMID: 33538010 DOI: 10.1111/pce.14015] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 05/20/2023]
Abstract
Impaired carbon metabolism and reproductive development constrain crop productivity during heat stress. Reproductive development is energy intensive, and its requirement for respiratory substrates rises as associated metabolism increases with temperature. Understanding how these processes are integrated and the extent to which they contribute to the maintenance of yield during and following periods of elevated temperatures is important for developing climate-resilient crops. Recent studies are beginning to demonstrate links between processes underlying carbon dynamics and reproduction during heat stress, consequently a summation of research that has been reported thus far and an evaluation of purported associations are needed to guide and stimulate future research. To this end, we review recent studies relating to source-sink dynamics, non-foliar photosynthesis and net carbon gain as pivotal in understanding how to improve reproductive development and crop productivity during heat stress. Rapid and precise phenotyping during narrow phenological windows will be important for understanding mechanisms underlying these processes, thus we discuss the development of relevant high-throughput phenotyping approaches that will allow for more informed decision-making regarding future crop improvement.
Collapse
Affiliation(s)
- John N Ferguson
- Division of Plant & Crop Science, University of Nottingham, Leicestershire, UK
- Future Food Beacon of Excellence, School of Biosciences, University of Nottingham, Leicestershire, UK
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Alison C Tidy
- Division of Plant & Crop Science, University of Nottingham, Leicestershire, UK
| | - Erik H Murchie
- Division of Plant & Crop Science, University of Nottingham, Leicestershire, UK
| | - Zoe A Wilson
- Division of Plant & Crop Science, University of Nottingham, Leicestershire, UK
| |
Collapse
|
21
|
Shao Y, Li S, Gao L, Sun C, Hu J, Ullah A, Gao J, Li X, Liu S, Jiang D, Cao W, Tian Z, Dai T. Magnesium Application Promotes Rubisco Activation and Contributes to High-Temperature Stress Alleviation in Wheat During the Grain Filling. FRONTIERS IN PLANT SCIENCE 2021; 12:675582. [PMID: 34177993 PMCID: PMC8231710 DOI: 10.3389/fpls.2021.675582] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/21/2021] [Indexed: 06/01/2023]
Abstract
Inhibited photosynthesis caused by post-anthesis high-temperature stress (HTS) leads to decreased wheat grain yield. Magnesium (Mg) plays critical roles in photosynthesis; however, its function under HTS during wheat grain filling remains poorly understood. Therefore, in this study, we investigated the effects of Mg on the impact of HTS on photosynthesis during wheat grain filling by conducting pot experiments in controlled-climate chambers. Plants were subjected to a day/night temperature cycle of 32°C/22°C for 5 days during post-anthesis; the control temperature was set at 26°C/16°C. Mg was applied at the booting stage, with untreated plants used as a control. HTS reduced the yield and net photosynthetic rate (P n ) of wheat plants. The maximum carboxylation rate (V Cmax ), which is limited by Rubisco activity, decreased earlier than the light-saturated potential electron transport rate. This decrease in V Cmax was caused by decreased Rubisco activation state under HTS. Mg application reduced yield loss by stabilizing P n . Rubisco activation was enhanced by increasing Rubisco activase activity following Mg application, thereby stabilizing P n . We conclude that Mg maintains Rubisco activation, thereby helping to stabilize P n under HTS.
Collapse
Affiliation(s)
- Yuhang Shao
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Shiyu Li
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Lijun Gao
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Chuanjiao Sun
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Jinling Hu
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Attiq Ullah
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Jingwen Gao
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Xinxin Li
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Sixi Liu
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
- Chengdu Agricultural Technology Extension Station, Chengdu, China
| | - Dong Jiang
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Weixing Cao
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Zhongwei Tian
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Tingbo Dai
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
22
|
Moore CE, Meacham-Hensold K, Lemonnier P, Slattery RA, Benjamin C, Bernacchi CJ, Lawson T, Cavanagh AP. The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2822-2844. [PMID: 33619527 PMCID: PMC8023210 DOI: 10.1093/jxb/erab090] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/19/2021] [Indexed: 05/03/2023]
Abstract
As global land surface temperature continues to rise and heatwave events increase in frequency, duration, and/or intensity, our key food and fuel cropping systems will likely face increased heat-related stress. A large volume of literature exists on exploring measured and modelled impacts of rising temperature on crop photosynthesis, from enzymatic responses within the leaf up to larger ecosystem-scale responses that reflect seasonal and interannual crop responses to heat. This review discusses (i) how crop photosynthesis changes with temperature at the enzymatic scale within the leaf; (ii) how stomata and plant transport systems are affected by temperature; (iii) what features make a plant susceptible or tolerant to elevated temperature and heat stress; and (iv) how these temperature and heat effects compound at the ecosystem scale to affect crop yields. Throughout the review, we identify current advancements and future research trajectories that are needed to make our cropping systems more resilient to rising temperature and heat stress, which are both projected to occur due to current global fossil fuel emissions.
Collapse
Affiliation(s)
- Caitlin E Moore
- School of Agriculture and Environment, The University of Western Australia, Crawley, Australia
- Institute for Sustainability, Energy & Environment, University of Illinois at Urbana-Champaign, Urbana, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Katherine Meacham-Hensold
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
| | | | - Rebecca A Slattery
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Claire Benjamin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Carl J Bernacchi
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture–Agricultural Research Service, Urbana, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, UK
| | - Amanda P Cavanagh
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
- School of Life Sciences, University of Essex, Colchester, UK
| |
Collapse
|
23
|
Ozone Response of Leaf Physiological and Stomatal Characteristics in Brassica juncea L. at Supraoptimal Temperatures. LAND 2021. [DOI: 10.3390/land10040357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Plants are affected by the features of their surrounding environment, such as climate change and air pollution caused by anthropogenic activities. In particular, agricultural production is highly sensitive to environmental characteristics. Since no environmental factor is independent, the interactive effects of these factors on plants are essential for agricultural production. In this context, the interactive effects of ozone (O3) and supraoptimal temperatures remain unclear. Here, we investigated the physiological and stomatal characteristics of leaf mustard (Brassica juncea L.) in the presence of charcoal-filtered (target concentration, 10 ppb) and elevated (target concentration, 120 ppb) O3 concentrations and/or optimal (22/20 °C day/night) and supraoptimal temperatures (27/25 °C). Regarding physiological characteristics, the maximum rate of electron transport and triose phosphate use significantly decreased in the presence of elevated O3 at a supraoptimal temperature (OT conditions) compared with those in the presence of elevated O3 at an optimal temperature (O conditions). Total chlorophyll content was also significantly affected by supraoptimal temperature and elevated O3. The chlorophyll a/b ratio significantly reduced under OT conditions compared to C condition at 7 days after the beginning of exposure (DAE). Regarding stomatal characteristics, there was no significant difference in stomatal pore area between O and OT conditions, but stomatal density under OT conditions was significantly increased compared with that under O conditions. At 14 DAE, the levels of superoxide (O2-), which is a reactive oxygen species, were significantly increased under OT conditions compared with those under O conditions. Furthermore, leaf weight was significantly reduced under OT conditions compared with that under O conditions. Collectively, these results indicate that temperature is a key driver of the O3 response of B. juncea via changes in leaf physiological and stomatal characteristics.
Collapse
|