1
|
Xiao Y, Ray S, Burdman S, Teper D. Host-Driven Selection, Revealed by Comparative Analysis of Xanthomonas Type III Secretion Effectoromes, Unveils Novel Recognized Effectors. PHYTOPATHOLOGY 2024; 114:2207-2220. [PMID: 39133938 DOI: 10.1094/phyto-04-24-0147-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2024]
Abstract
Xanthomonas species are specialized plant pathogens, often exhibiting a narrow host range. They rely on the translocation of effector proteins through the type III secretion system to colonize their respective hosts. The effector arsenal varies among Xanthomonas spp., typically displaying species-specific compositions. This species-specific effector composition, collectively termed the effectorome, is thought to influence host specialization. We determined the plant host-derived effectoromes of more than 300 deposited genomes of Xanthomonas species associated with either Solanaceae or Brassicaceae hosts. Comparative analyses revealed clear species-specific effectorome signatures. However, Solanaceae or Brassicaceae host-associated effectorome signatures were not detected. Nevertheless, host biases in the presence or absence of specific effector classes were observed. To assess whether host-associated effector absence results from selective pressures, we introduced effectors unique to Solanaceae pathogens to X. campestris pv. campestris and effectors unique to Brassicaceae pathogens to X. euvesicatoria pv. euvesicatoria (Xeue) and evaluated if these introductions hindered virulence on their respective hosts. Introducing the effector XopI into X. campestris pv. campestris reduced virulence on white cabbage leaves without affecting localized or systemic colonization. Introducing the XopAC or XopJ5 effectors into Xeue reduced virulence and colonization on tomato but not on pepper. Additionally, XopAC and XopJ5 induced a hypersensitive response on tomato leaves when delivered by Xeue or through Agrobacterium-mediated transient expression, confirming recognition in tomato. This study demonstrates the role of host-derived selection in establishing species-specific effectoromes, identifying XopAC and XopJ5 as recognized effectors in tomato.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Plant Pathology and Weed Research, Agricultural Research Organization-Volcani Institute, Rishon LeZion, Israel
- Department of Plant Pathology and Microbiology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shatrupa Ray
- Department of Plant Pathology and Weed Research, Agricultural Research Organization-Volcani Institute, Rishon LeZion, Israel
| | - Saul Burdman
- Department of Plant Pathology and Microbiology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Doron Teper
- Department of Plant Pathology and Weed Research, Agricultural Research Organization-Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
2
|
Yan Y, Wang H, Bi Y, Song F. Rice E3 ubiquitin ligases: From key modulators of host immunity to potential breeding applications. PLANT COMMUNICATIONS 2024:101128. [PMID: 39245936 DOI: 10.1016/j.xplc.2024.101128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/17/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
To combat pathogen attacks, plants have developed a highly advanced immune system, which requires tight regulation to initiate robust defense responses while simultaneously preventing autoimmunity. The ubiquitin-proteasome system (UPS), which is responsible for degrading excess or misfolded proteins, has vital roles in ensuring strong and effective immune responses. E3 ligases, as key UPS components, play extensively documented roles in rice immunity by modulating the ubiquitination and degradation of downstream substrates involved in various immune signaling pathways. Here, we summarize the crucial roles of rice E3 ligases in both pathogen/microbe/damage-associated molecular pattern-triggered immunity and effector-triggered immunity, highlight the molecular mechanisms by which E3 ligases function in rice immune signaling, and emphasize the functions of E3 ligases as targets of pathogen effectors for pathogenesis. We also discuss potential strategies for application of immunity-associated E3 ligases in breeding of disease-resistant rice varieties without growth penalty. This review provides a comprehensive and updated understanding of the sophisticated and interconnected regulatory functions of E3 ligases in rice immunity and in balancing immunity with growth and development.
Collapse
Affiliation(s)
- Yuqing Yan
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hui Wang
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yan Bi
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fengming Song
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Langin G, González-Fuente M, Üstün S. The Plant Ubiquitin-Proteasome System as a Target for Microbial Manipulation. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:351-375. [PMID: 37253695 DOI: 10.1146/annurev-phyto-021622-110443] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The plant immune system perceives pathogens to trigger defense responses. In turn, pathogens secrete effector molecules to subvert these defense responses. The initiation and maintenance of defense responses involve not only de novo synthesis of regulatory proteins and enzymes but also their regulated degradation. The latter is achieved through protein degradation pathways such as the ubiquitin-proteasome system (UPS). The UPS regulates all stages of immunity, from the perception of the pathogen to the execution of the response, and, therefore, constitutes an ideal candidate for microbial manipulation of the host. Pathogen effector molecules interfere with the plant UPS through several mechanisms. This includes hijacking general UPS functions or perturbing its ability to degrade specific targets. In this review, we describe how the UPS regulates different immunity-related processes and how pathogens subvert this to promote disease.
Collapse
Affiliation(s)
- Gautier Langin
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany;
- Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | | | - Suayib Üstün
- Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
4
|
Sharma S, Prasad A, Prasad M. Ubiquitination from the perspective of plant pathogens. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4367-4376. [PMID: 37226440 DOI: 10.1093/jxb/erad191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023]
Abstract
The constant battle of survival between pathogens and host plants has played a crucial role in shaping the course of their co-evolution. However, the major determinants of the outcome of this ongoing arms race are the effectors secreted by pathogens into host cells. These effectors perturb the defense responses of plants to promote successful infection. In recent years, extensive research in the area of effector biology has reported an increase in the repertoire of pathogenic effectors that mimic or target the conserved ubiquitin-proteasome pathway. The role of the ubiquitin-mediated degradation pathway is well known to be indispensable for various aspects of a plant's life, and thus targeting or mimicking it seems to be a smart strategy adopted by pathogens. Therefore, this review summarizes recent findings on how some pathogenic effectors mimic or act as one of the components of the ubiquitin-proteasome machinery while others directly target the plant's ubiquitin-proteasome system.
Collapse
Affiliation(s)
| | - Ashish Prasad
- Department of Botany, Kurukshetra University, Kurukshetra, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, India
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
5
|
Fan Y, Li M, Wu Y, Wang X, Wang P, Zhang L, Meng X, Meng F, Li Y. Characterization of thioredoxin gene TaTrxh9 associated with heading-time regulation in wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107903. [PMID: 37499575 DOI: 10.1016/j.plaphy.2023.107903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
Thioredoxins (Trxs) are thiol-disulfide oxidoreductase proteins that play important roles in a spectrum of processes linking redox regulation and signaling in plants. However, little is known about Trxs and their biological functions in wheat, one of the most important food crops worldwide. This study reports the identification and functional characterization of an h-type Trx gene, TaTrxh9, in wheat. Three homoeologs of TaTrxh9 were identified and the sequences in the coding region were highly consistent among the homoeologs. Protein characterization showed that a conserved Trx_family domain, as well as a typical active site with a dithiol signature (WCGPC), was included in TaTrxh9. Structural modeling demonstrated that TaTrxh9 could fold into a canonical thioredoxin structure consisting of five-stranded antiparallel beta sheets sandwiched between four alpha helices. The insulin disulfide reduction assay demonstrated that TaTrxh9 was catalytically active in vitro. TaTrxh9 overexpression in the Arabidopsis mutant trxh9 complemented the abnormal growth phenotypes of the mutant, suggesting is functionality in vivo. The transcription level of TaTrxh9 was higher in leaf tissues and it was differentially expressed during the development of wheat plants. Interestingly, barley stripe mosaic virus-mediated suppression of TaTrxh9 shortened the seedling-heading period of wheat. Furthermore, CRISPR-Cas9 mediated gene knockout confirmed that the TaTrxh9 mutation resulted in early heading of wheat. To our knowledge, this study is the first to report that Trxh is associated with heading-time regulation, which lays a foundation for further exploring the biological function of TaTrxh9 and provides new ideas for molecular breeding focusing on early heading in wheat.
Collapse
Affiliation(s)
- Yadong Fan
- Henan Technology Innovation Center of Wheat, Henan Agricultural University, Zhengzhou, 450046, China; College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China; State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Mengyuan Li
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China; College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yujie Wu
- Henan Technology Innovation Center of Wheat, Henan Agricultural University, Zhengzhou, 450046, China; College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China; State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiaoteng Wang
- Henan Technology Innovation Center of Wheat, Henan Agricultural University, Zhengzhou, 450046, China; College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China; State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Putong Wang
- Henan Technology Innovation Center of Wheat, Henan Agricultural University, Zhengzhou, 450046, China; College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China; State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Li Zhang
- Henan Technology Innovation Center of Wheat, Henan Agricultural University, Zhengzhou, 450046, China; College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiaodan Meng
- Henan Technology Innovation Center of Wheat, Henan Agricultural University, Zhengzhou, 450046, China; College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Fanrong Meng
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China; College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Yongchun Li
- Henan Technology Innovation Center of Wheat, Henan Agricultural University, Zhengzhou, 450046, China; College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China; State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
6
|
Ullah C, Chen YH, Ortega MA, Tsai CJ. The diversity of salicylic acid biosynthesis and defense signaling in plants: Knowledge gaps and future opportunities. CURRENT OPINION IN PLANT BIOLOGY 2023; 72:102349. [PMID: 36842224 DOI: 10.1016/j.pbi.2023.102349] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/09/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
The phytohormone salicylic acid (SA) is known to regulate plant immunity against pathogens. Plants synthesize SA via the isochorismate synthase (ICS) pathway or the phenylalanine ammonia-lyase (PAL) pathway. The ICS pathway has been fully characterized using Arabidopsis thaliana, a model plant that exhibits pathogen-inducible SA accumulation. Many species including Populus (poplar) depend instead on the partially understood PAL pathway for constitutive as well as pathogen-stimulated SA synthesis. Diversity of SA-mediated defense is also evident in SA accumulation, redox regulation, and interplay with other hormones like jasmonic acid. This review highlights the contrast between Arabidopsis and poplar, discusses potential drivers of SA diversity in plant defenses, and offers future research directions.
Collapse
Affiliation(s)
- Chhana Ullah
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Yen-Ho Chen
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - María A Ortega
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA; School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA; Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Chung-Jui Tsai
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA; School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA; Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
7
|
Bi Y, Wang H, Yuan X, Yan Y, Li D, Song F. The NAC transcription factor ONAC083 negatively regulates rice immunity against Magnaporthe oryzae by directly activating transcription of the RING-H2 gene OsRFPH2-6. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:854-875. [PMID: 36308720 DOI: 10.1111/jipb.13399] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
NAC transcription factors (TFs) play critical roles in plant immunity by modulating the expression of downstream genes via binding to specific cis-elements in promoters. Here, we report the function and regulatory network of a pathogen- and defense phytohormone-inducible NAC TF gene, ONAC083, in rice (Oryza sativa) immunity. ONAC083 localizes to the nucleus and exhibits transcriptional activation activity that depends on its C-terminal region. Knockout of ONAC083 enhances rice immunity against Magnaporthe oryzae, strengthening pathogen-induced defense responses, and boosting chitin-induced pattern-triggered immunity (PTI), whereas ONAC083 overexpression has opposite effects. We identified ONAC083-binding sites in the promoters of 82 genes, and showed that ONAC083 specifically binds to a conserved element with the core sequence ACGCAA. ONAC083 activated the transcription of the genes OsRFPH2-6, OsTrx1, and OsPUP4 by directly binding to the ACGCAA element. OsRFPH2-6, encoding a RING-H2 protein with an N-terminal transmembrane region and a C-terminal typical RING domain, negatively regulated rice immunity against M. oryzae and chitin-triggered PTI. These data demonstrate that ONAC083 negatively contributes to rice immunity against M. oryzae by directly activating the transcription of OsRFPH2-6 through the ACGCAA element in its promoter. Overall, our study provides new insight into the molecular regulatory network of NAC TFs in rice immunity.
Collapse
Affiliation(s)
- Yan Bi
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Hui Wang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xi Yuan
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yuqing Yan
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Dayong Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
8
|
Ji H, Li T, Li X, Li J, Yu J, Zhang X, Liu D. XopZ and ORP1C cooperate to regulate the virulence of Xanthomonas oryzae pv. oryzae on Nipponbare. PLANT SIGNALING & BEHAVIOR 2022; 17:2035126. [PMID: 35184695 PMCID: PMC8959505 DOI: 10.1080/15592324.2022.2035126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae (Xoo) has always been considered to be one of the most severe worldwide diseases in rice. Xoo strains usually use the highly conserved type III secretion system (T3SS) to deliver virulence effectors into rice cells and further suppress the host's immunity. Previous studies reported that different Xanthomonas outer protein (Xop) effectors include XopZ from one strain appear to share functional redundancies on suppressing rice PAMP-triggered immunity (PTI). But only xopZ, except other xop genes, could significantly impaire Xoo virulence when individually deleting in PXO99 strains. Thus, the XopZ effector should not only suppress rice PTI pathway, but also has other unknown indispensable pathological functions in PXO99-rice interactions. Here, we also found that ∆xopZ mutant strains displayed lower virulence on Nipponbare leaves compared with PXO99 strains. We identified an oxysterol-binding related protein, ORP1C, as a XopZ-interacting protein in rice. Further studies found that rice ORP1C preliminarily played a positive role in regulating the resistance to PXO99 strains, and XopZ-ORP1C interactions cooperated to regulate the compatible interactions of PXO99-Nipponbare rice. The reactive oxygen species (ROS) burst and PTI marker gene expression data indicated that ORP1C were not directly relevant to the PTI pathway in rice. The deeper mechanisms underlying XopZ-ORP1C interaction and how XopZ and ORP1C cooperate for regulating the PXO99-rice interactions require further exploration.
Collapse
Affiliation(s)
- Hongtao Ji
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Taoran Li
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Xiaochen Li
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Jiangyu Li
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Jiayi Yu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Xin Zhang
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Delong Liu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
9
|
Jiang Z, Jin X, Yang M, Pi Q, Cao Q, Li Z, Zhang Y, Wang XB, Han C, Yu J, Li D. Barley stripe mosaic virus γb protein targets thioredoxin h-type 1 to dampen salicylic acid-mediated defenses. PLANT PHYSIOLOGY 2022; 189:1715-1727. [PMID: 35325212 PMCID: PMC9237698 DOI: 10.1093/plphys/kiac137] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/27/2022] [Indexed: 05/14/2023]
Abstract
Salicylic acid (SA) acts as a signaling molecule to perceive and defend against pathogen infections. Accordingly, pathogens evolve versatile strategies to disrupt the SA-mediated signal transduction, and how plant viruses manipulate the SA-dependent defense responses requires further characterization. Here, we show that barley stripe mosaic virus (BSMV) infection activates the SA-mediated defense signaling pathway and upregulates the expression of Nicotiana benthamiana thioredoxin h-type 1 (NbTRXh1). The γb protein interacts directly with NbTRXh1 in vivo and in vitro. The overexpression of NbTRXh1, but not a reductase-defective mutant, impedes BSMV infection, whereas low NbTRXh1 expression level results in increased viral accumulation. Similar with its orthologs in Arabidopsis (Arabidopsis thaliana), NbTRXh1 also plays an essential role in SA signaling transduction in N. benthamiana. To counteract NbTRXh1-mediated defenses, the BSMV γb protein targets NbTRXh1 to dampen its reductase activity, thereby impairing downstream SA defense gene expression to optimize viral cell-to-cell movement. We also found that NbTRXh1-mediated resistance defends against lychnis ringspot virus, beet black scorch virus, and beet necrotic yellow vein virus. Taken together, our results reveal a role for the multifunctional γb protein in counteracting plant defense responses and an expanded broad-spectrum antibiotic role of the SA signaling pathway.
Collapse
Affiliation(s)
- Zhihao Jiang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Meng Yang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Qinglin Pi
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Qing Cao
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Zhenggang Li
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Xian-Bing Wang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Chenggui Han
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Jialin Yu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
10
|
Deb S, Madhavan VN, Gokulan CG, Patel HK, Sonti RV. Arms and ammunitions: effectors at the interface of rice and it's pathogens and pests. RICE (NEW YORK, N.Y.) 2021; 14:94. [PMID: 34792681 PMCID: PMC8602583 DOI: 10.1186/s12284-021-00534-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
The plant immune system has evolved to resist attack by pathogens and pests. However, successful phytopathogens deliver effector proteins into plant cells where they hijack the host cellular machinery to suppress the plant immune responses and promote infection. This manipulation of the host cellular pathways is done by the pathogen using various enzymatic activities, protein- DNA or protein- protein interactions. Rice is one the major economically important crops and its yield is affected by several pathogens and pests. In this review, we summarize the various effectors at the plant- pathogen/ pest interface for the major pathogens and pests of rice, specifically, on the mode of action and target genes of the effector proteins. We then compare this across the major rice pathogens and pests in a bid to understand probable conserved pathways which are under attack from pathogens and pests in rice. This analysis highlights conserved patterns of effector action, as well as unique host pathways targeted by the pathogens and pests.
Collapse
Affiliation(s)
- Sohini Deb
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007 India
- Present Address: Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | | | - C. G. Gokulan
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007 India
| | - Hitendra K. Patel
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007 India
| | - Ramesh V. Sonti
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007 India
- Present Address: Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507 India
| |
Collapse
|
11
|
Hu B, Zhou Y, Zhou Z, Sun B, Zhou F, Yin C, Ma W, Chen H, Lin Y. Repressed OsMESL expression triggers reactive oxygen species-mediated broad-spectrum disease resistance in rice. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1511-1522. [PMID: 33567155 PMCID: PMC8384603 DOI: 10.1111/pbi.13566] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 02/04/2021] [Indexed: 05/03/2023]
Abstract
A few reports have indicated that a single gene confers resistance to bacterial blight, sheath blight and rice blast. In this study, we identified a novel disease resistance mutant gene, methyl esterase-like (osmesl) in rice. Mutant rice with T-DNA insertion displayed significant resistance to bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo), sheath blight caused by Rhizoctonia solani and rice blast caused by Magnaporthe oryzae. Additionally, CRISPR-Cas9 knockout mutants and RNAi lines displayed resistance to these pathogens. Complementary T-DNA mutants demonstrated a phenotype similar to the wild type (WT), thereby indicating that osmesl confers resistance to pathogens. Protein interaction experiments revealed that OsMESL affects reactive oxygen species (ROS) accumulation by interacting with thioredoxin OsTrxm in rice. Moreover, qRT-PCR results showed significantly reduced mRNA levels of multiple ROS scavenging-related genes in osmesl mutants. Nitroblue tetrazolium staining showed that the pathogens cause ROS accumulation, and quantitative detection revealed significantly increased levels of H2 O2 in the leaves of osmesl mutants and RNAi lines after infection. The abundance of JA, a hormone associated with disease resistance, was significantly more in osmesl mutants than in WT plants. Overall, these results suggested that osmesl enhances disease resistance to Xoo, R. solani and M. oryzae by modulating the ROS balance.
Collapse
Affiliation(s)
- Bin Hu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
| | - Yong Zhou
- College of Bioscience and BioengineeringJiangxi Agricultural UniversityNanchangChina
| | - Zaihui Zhou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
| | - Bo Sun
- Wuhan Towin Biotechnology Company LimitedWuhanChina
| | - Fei Zhou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
| | - Changxi Yin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
| | - Hao Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
| |
Collapse
|
12
|
Schreiber KJ, Chau-Ly IJ, Lewis JD. What the Wild Things Do: Mechanisms of Plant Host Manipulation by Bacterial Type III-Secreted Effector Proteins. Microorganisms 2021; 9:1029. [PMID: 34064647 PMCID: PMC8150971 DOI: 10.3390/microorganisms9051029] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 01/05/2023] Open
Abstract
Phytopathogenic bacteria possess an arsenal of effector proteins that enable them to subvert host recognition and manipulate the host to promote pathogen fitness. The type III secretion system (T3SS) delivers type III-secreted effector proteins (T3SEs) from bacterial pathogens such as Pseudomonas syringae, Ralstonia solanacearum, and various Xanthomonas species. These T3SEs interact with and modify a range of intracellular host targets to alter their activity and thereby attenuate host immune signaling. Pathogens have evolved T3SEs with diverse biochemical activities, which can be difficult to predict in the absence of structural data. Interestingly, several T3SEs are activated following injection into the host cell. Here, we review T3SEs with documented enzymatic activities, as well as T3SEs that facilitate virulence-promoting processes either indirectly or through non-enzymatic mechanisms. We discuss the mechanisms by which T3SEs are activated in the cell, as well as how T3SEs modify host targets to promote virulence or trigger immunity. These mechanisms may suggest common enzymatic activities and convergent targets that could be manipulated to protect crop plants from infection.
Collapse
Affiliation(s)
- Karl J. Schreiber
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
| | - Ilea J. Chau-Ly
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
| | - Jennifer D. Lewis
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
- Plant Gene Expression Center, United States Department of Agriculture, University of California, Berkeley, CA 94710, USA
| |
Collapse
|