1
|
Liu F, Lu JY, Li S, Zhang Y. Protein S-acylation, a new panacea for plant fitness. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2102-2108. [PMID: 39056533 DOI: 10.1111/jipb.13750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/06/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024]
Abstract
Protein S-acylation or palmitoylation is a reversible post-translational modification that influences many proteins encoded in plant genomes. Exciting progress in the past 3 years demonstrates that S-acylation modulates subcellular localization, interacting profiles, activity, or turnover of substrate proteins in plants, participating in developmental processes and responses to abiotic or biotic stresses. In this review, we summarize and discuss the role of S-acylation in the targeting of substrate proteins. We highlight complex roles of S-acylation in receptor signaling. We also point out that feedbacks of protein S-acyl transferase by signaling initiated from their substrate proteins may be a recurring theme. Finally, the reversibility of S-acylation makes it a rapid and efficient way to respond to environmental cues. Future efforts on exploring these important aspects of S-acylation will give a better understanding of how plants enhance their fitness under ever changing and often harsh environments.
Collapse
Affiliation(s)
- Fei Liu
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jin-Yu Lu
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Sha Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yan Zhang
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
2
|
Boutin C, Clément C, Rivoal J. Post-Translational Modifications to Cysteine Residues in Plant Proteins and Their Impact on the Regulation of Metabolism and Signal Transduction. Int J Mol Sci 2024; 25:9845. [PMID: 39337338 PMCID: PMC11432348 DOI: 10.3390/ijms25189845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/21/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Cys is one of the least abundant amino acids in proteins. However, it is often highly conserved and is usually found in important structural and functional regions of proteins. Its unique chemical properties allow it to undergo several post-translational modifications, many of which are mediated by reactive oxygen, nitrogen, sulfur, or carbonyl species. Thus, in addition to their role in catalysis, protein stability, and metal binding, Cys residues are crucial for the redox regulation of metabolism and signal transduction. In this review, we discuss Cys post-translational modifications (PTMs) and their role in plant metabolism and signal transduction. These modifications include the oxidation of the thiol group (S-sulfenylation, S-sulfinylation and S-sulfonylation), the formation of disulfide bridges, S-glutathionylation, persulfidation, S-cyanylation S-nitrosation, S-carbonylation, S-acylation, prenylation, CoAlation, and the formation of thiohemiacetal. For each of these PTMs, we discuss the origin of the modifier, the mechanisms involved in PTM, and their reversibility. Examples of the involvement of Cys PTMs in the modulation of protein structure, function, stability, and localization are presented to highlight their importance in the regulation of plant metabolic and signaling pathways.
Collapse
Affiliation(s)
- Charlie Boutin
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke est, Montréal, QC H1X 2B2, Canada
| | - Camille Clément
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke est, Montréal, QC H1X 2B2, Canada
| | - Jean Rivoal
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke est, Montréal, QC H1X 2B2, Canada
| |
Collapse
|
3
|
Yang B, Tan Z, Yan J, Zhang K, Ouyang Z, Fan R, Lu Y, Zhang Y, Yao X, Zhao H, Wang X, Lu S, Guo L. Phospholipase-mediated phosphate recycling during plant leaf senescence. Genome Biol 2024; 25:199. [PMID: 39075580 PMCID: PMC11285201 DOI: 10.1186/s13059-024-03348-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Phosphorus is a macronutrient necessary for plant growth and development and its availability and efficient use affect crop yields. Leaves are the largest tissue that uses phosphorus in plants, and membrane phospholipids are the main source of cellular phosphorus usage. RESULTS Here we identify a key process for plant cellular phosphorus recycling mediated by membrane phospholipid hydrolysis during leaf senescence. Our results indicate that over 90% of lipid phosphorus, accounting for more than one-third of total cellular phosphorus, is recycled from senescent leaves before falling off the plants. Nonspecific phospholipase C4 (NPC4) and phospholipase Dζ2 (PLDζ2) are highly induced during leaf senescence, and knockouts of PLDζ2 and NPC4 decrease the loss of membrane phospholipids and delay leaf senescence. Conversely, overexpression of PLDζ2 and NPC4 accelerates the loss of phospholipids and leaf senescence, promoting phosphorus remobilization from senescent leaves to young tissues and plant growth. We also show that this phosphorus recycling process in senescent leaves mediated by membrane phospholipid hydrolysis is conserved in plants. CONCLUSIONS These results indicate that PLDζ2- and NPC4-mediated membrane phospholipid hydrolysis promotes phosphorus remobilization from senescent leaves to growing tissues and that the phospholipid hydrolysis-mediated phosphorus recycling improves phosphorus use efficiency in plants.
Collapse
Affiliation(s)
- Bao Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Department of Biology, University of Missouri, St. Louis, MO, 63121, USA
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Zengdong Tan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Yazhouwan National Laboratory, Sanya, 572025, Hainan, China
| | - Jiayu Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ke Zhang
- Department of Biology, University of Missouri, St. Louis, MO, 63121, USA
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Zhewen Ouyang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ruyi Fan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yefei Lu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yuting Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Yazhouwan National Laboratory, Sanya, 572025, Hainan, China
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Yazhouwan National Laboratory, Sanya, 572025, Hainan, China
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xuemin Wang
- Department of Biology, University of Missouri, St. Louis, MO, 63121, USA
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Yazhouwan National Laboratory, Sanya, 572025, Hainan, China.
| |
Collapse
|
4
|
Li T, Zhang S, Yao S, Li X, Jia Q, Yuan J, Zhang W, Wang X, Zhang Q. Nonspecific phospholipases C3 and C4 interact with PIN-FORMED2 to regulate growth and tropic responses in Arabidopsis. THE PLANT CELL 2024; 36:2310-2327. [PMID: 38442314 PMCID: PMC11132888 DOI: 10.1093/plcell/koae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 03/07/2024]
Abstract
The dynamic changes in membrane phospholipids affect membrane biophysical properties and cell signaling, thereby influencing numerous biological processes. Nonspecific phospholipase C (NPC) enzymes hydrolyze common phospholipids to release diacylglycerol (DAG), which is converted to phosphatidic acid (PA) and other lipids. In this study, 2 Arabidopsis (Arabidopsis thaliana) tandemly arrayed genes, NPC3 and NPC4, were identified as critical factors modulating auxin-controlled plant growth and tropic responses. Moreover, NPC3 and NPC4 were shown to interact with the auxin efflux transporter PIN-FORMED2 (PIN2). The loss of NPC3 and NPC4 enhanced the endocytosis and vacuolar degradation of PIN2, which disrupted auxin gradients and slowed gravitropic and halotropic responses. Furthermore, auxin-triggered activation of NPC3 and NPC4 is required for the asymmetric PA distribution that controls PIN2 trafficking dynamics and auxin-dependent tropic responses. Collectively, our study reveals an NPC-derived PA signaling pathway in Arabidopsis auxin fluxes that is essential for fine-tuning the balance between root growth and environmental responses.
Collapse
Affiliation(s)
- Teng Li
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Shujuan Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Shuaibing Yao
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Xuebing Li
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Qianru Jia
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Jingya Yuan
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Wenhua Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xuemin Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Qun Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, P.R. China
| |
Collapse
|
5
|
Gu J, Guan Z, Jiao Y, Liu K, Hong D. The story of a decade: Genomics, functional genomics, and molecular breeding in Brassica napus. PLANT COMMUNICATIONS 2024; 5:100884. [PMID: 38494786 PMCID: PMC11009362 DOI: 10.1016/j.xplc.2024.100884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/01/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Rapeseed (Brassica napus L.) is one of the major global sources of edible vegetable oil and is also used as a feed and pioneer crop and for sightseeing and industrial purposes. Improvements in genome sequencing and molecular marker technology have fueled a boom in functional genomic studies of major agronomic characters such as yield, quality, flowering time, and stress resistance. Moreover, introgression and pyramiding of key functional genes have greatly accelerated the genetic improvement of important traits. Here we summarize recent progress in rapeseed genomics and genetics, and we discuss effective molecular breeding strategies by exploring these findings in rapeseed. These insights will extend our understanding of the molecular mechanisms and regulatory networks underlying agronomic traits and facilitate the breeding process, ultimately contributing to more sustainable agriculture throughout the world.
Collapse
Affiliation(s)
- Jianwei Gu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Life Science and Technology, Hubei Engineering University, Xiaogan 432100 Hubei, China
| | - Zhilin Guan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074 Hubei, China
| | - Yushun Jiao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Yazhouwan National Laboratory, Sanya 572024 Hainan, China.
| |
Collapse
|
6
|
Takai Y, Hasi RY, Matsumoto N, Fujita C, Ali H, Hayashi J, Kawakami R, Aihara M, Ishikawa T, Imai H, Wakida M, Ando K, Tanaka T. Degradation of glycosylinositol phosphoceramide during plant tissue homogenization. J Biochem 2023; 175:115-124. [PMID: 37827526 DOI: 10.1093/jb/mvad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/15/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023] Open
Abstract
A convenient method for the determination of plant sphingolipids (glycosylinositol phosphoceramide, GIPC; glucosylceramide, GluCer; phytoceramide 1-phosphate, PC1P and phytoceramide, PCer) was developed. This method includes the extraction of lipids using 1-butanol, alkali hydrolysis with methylamine and separation by TLC. The amounts of sphingolipids in the sample were determined based on the relative intensities of standard sphingolipids visualized by primulin/UV on TLC. Using this method, we found that almost all GIPCs were degraded in response to tissue homogenization in cruciferous plants (cabbage, broccoli and Arabidopsis thaliana). The decrease in GIPCs was compensated for by increases in PC1P and PCer, indicating that GIPC was degraded by hydrolysis at the D and C positions of GIPC, respectively. In carrot roots and leaves, most of GIPC degradation was compensated for by an increase in PCer. In rice roots, the decrease in GIPCs was not fully explained by the increases in PC1P and PCer, indicating that enzymes other than phospholipase C and D activities operated. As the visualization of lipids on TLC is useful for detecting the appearance or disappearance of lipids, this method will be available for the characterization of metabolism of sphingolipids in plants.
Collapse
Affiliation(s)
- Yoshimichi Takai
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
| | - Rumana Yesmin Hasi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
| | - Naoko Matsumoto
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
| | - Chiho Fujita
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
| | - Hanif Ali
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
| | - Junji Hayashi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
| | - Ryushi Kawakami
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
| | - Mutsumi Aihara
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
| | - Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Hiroyuki Imai
- Department of Biology, Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan
| | - Mayuko Wakida
- Department of Sustainable System R&D JTEKT Corporation, Kariya 448-8652, Japan
| | - Kazuya Ando
- Department of Sustainable System R&D JTEKT Corporation, Kariya 448-8652, Japan
| | - Tamotsu Tanaka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
| |
Collapse
|
7
|
Yang B, Li J, Yan J, Zhang K, Ouyang Z, Lu Y, Wei H, Li Q, Yao X, Lu S, Hong Y, Wang X, Guo L. Non-specific phospholipase C4 hydrolyzes phosphosphingolipids and phosphoglycerolipids and promotes rapeseed growth and yield. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2421-2436. [PMID: 37642157 DOI: 10.1111/jipb.13560] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
Phosphorus is a major nutrient vital for plant growth and development, with a substantial amount of cellular phosphorus being used for the biosynthesis of membrane phospholipids. Here, we report that NON-SPECIFIC PHOSPHOLIPASE C4 (NPC4) in rapeseed (Brassica napus) releases phosphate from phospholipids to promote growth and seed yield, as plants with altered NPC4 levels showed significant changes in seed production under different phosphate conditions. Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9)-mediated knockout of BnaNPC4 led to elevated accumulation of phospholipids and decreased growth, whereas overexpression (OE) of BnaNPC4 resulted in lower phospholipid contents and increased plant growth and seed production. We demonstrate that BnaNPC4 hydrolyzes phosphosphingolipids and phosphoglycerolipids in vitro, and plants with altered BnaNPC4 function displayed changes in their sphingolipid and glycerolipid contents in roots, with a greater change in glycerolipids than sphingolipids in leaves, particularly under phosphate deficiency conditions. In addition, BnaNPC4-OE plants led to the upregulation of genes involved in lipid metabolism, phosphate release, and phosphate transport and an increase in free inorganic phosphate in leaves. These results indicate that BnaNPC4 hydrolyzes phosphosphingolipids and phosphoglycerolipids in rapeseed to enhance phosphate release from membrane phospholipids and promote growth and seed production.
Collapse
Affiliation(s)
- Bao Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianwu Li
- Department of Biology, University of Missouri, St. Louis, MO, 63121, USA
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Jiayu Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ke Zhang
- Department of Biology, University of Missouri, St. Louis, MO, 63121, USA
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Zhewen Ouyang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yefei Lu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huili Wei
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yueyun Hong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuemin Wang
- Department of Biology, University of Missouri, St. Louis, MO, 63121, USA
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| |
Collapse
|
8
|
Wang L, Liang X, Dou S, Yi B, Fu T, Ma C, Dai C. Two aspartic proteases, BnaAP36s and BnaAP39s, regulate pollen tube guidance in Brassica napus. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:27. [PMID: 37313529 PMCID: PMC10248713 DOI: 10.1007/s11032-023-01377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/31/2023] [Indexed: 06/15/2023]
Abstract
Pollen tube (PT) growth towards the micropyle is critical for successful double fertilization. However, the mechanism of micropyle-directed PT growth is still unclear in Brassica napus. In this study, two aspartate proteases, BnaAP36s and BnaAP39s, were identified in B. napus. BnaAP36s and BnaAP39s were localized to the plasma membrane. The homologues of BnaAP36 and BnaAP39 were highly expressed in flower organs, especially in the anther. Sextuple and double mutants of BnaAP36s and BnaAP39s were then generated using CRISPR/Cas9 technology. Compared to WT, the seed-set of cr-bnaap36 and cr-bnaap39 mutants was reduced by 50% and 60%, respectively. The reduction in seed-set was also found when cr-bnaap36 and cr-bnaap39 were used as the female parent in a reciprocal cross assay. Like WT, cr-bnaap36 and cr-bnaap39 pollen were able to germinate and the relative PTs were able to elongate in style. Approximately 36% and 33% of cr-bnaap36 and cr-bnaap39 PTs, respectively, failed to grow towards the micropyle, indicating that BnaAP36s and BnaAP39s are essential for micropyle-directed PT growth. Furthermore, Alexander's staining showed that 10% of cr-bnaap39 pollen grains were aborted, but not cr-bnaap36, suggesting that BnaAP39s may also affect microspore development. These results suggest that BnaAP36s and BnaAP39s play a critical role in the growth of micropyle-directed PTs in B. napus. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01377-1.
Collapse
Affiliation(s)
- Lulin Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Xiaomei Liang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Shengwei Dou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| |
Collapse
|
9
|
Fan R, Zhao F, Gong Z, Chen Y, Yang B, Zhou C, Zhang J, Du Z, Wang X, Yin P, Guo L, Liu Z. Insights into the mechanism of phospholipid hydrolysis by plant non-specific phospholipase C. Nat Commun 2023; 14:194. [PMID: 36635324 PMCID: PMC9837106 DOI: 10.1038/s41467-023-35915-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Non-specific phospholipase C (NPC) hydrolyzes major membrane phospholipids to release diacylglycerol (DAG), a potent lipid-derived messenger regulating cell functions. Despite extensive studies on NPCs reveal their fundamental roles in plant growth and development, the mechanistic understanding of phospholipid-hydrolyzing by NPCs, remains largely unknown. Here we report the crystal structure of Arabidopsis NPC4 at a resolution of 2.1 Å. NPC4 is divided into a phosphoesterase domain (PD) and a C-terminal domain (CTD), and is structurally distinct from other characterized phospholipases. The previously uncharacterized CTD is indispensable for the full activity of NPC4. Mechanistically, CTD contributes NPC4 activity mainly via CTDα1-PD interaction, which ultimately stabilizes the catalytic pocket in PD. Together with a series of structure-guided biochemical studies, our work elucidates the structural basis and provides molecular mechanism of phospholipid hydrolysis by NPC4, and adds new insights into the members of phospholipase family.
Collapse
Affiliation(s)
- Ruyi Fan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.,Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Fen Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhou Gong
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yanke Chen
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Bao Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chen Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhangmeng Du
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuemin Wang
- Department of Biology, University of Missouri, St. Louis, MO, 63121, USA.,Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zhu Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China. .,Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China.
| |
Collapse
|
10
|
Hasi RY, Ishikawa T, Sunagawa K, Takai Y, Ali H, Hayashi J, Kawakami R, Yuasa K, Aihara M, Kanemaru K, Imai H, Tanaka T. Nonspecific phospholipase C3 of radish has phospholipase D activity towards glycosylinositol phosphoceramide. FEBS Lett 2022; 596:3024-3036. [PMID: 36266963 DOI: 10.1002/1873-3468.14520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 12/14/2022]
Abstract
Glycosylinositol phosphoceramide (GIPC) is a major sphingolipid in the plasma membranes of plants. Previously, we found an enzyme activity that produces phytoceramide 1-phosphate (PC1P) by hydrolysis of the D position of GIPC in cabbage and named this activity as GIPC-phospholipase D (PLD). Here, we purified GIPC-PLD by sequential chromatography from radish roots. Peptide mass fingerprinting analysis revealed that the potential candidate for GIPC-PLD protein was nonspecific phospholipase C3 (NPC3), which has not been characterized as a PLD. The recombinant NPC3 protein obtained by heterologous expression system in Escherichia coli produced PC1P from GIPC and showed essentially the same enzymatic properties as those we characterized as GIPC-PLD in cabbage, radish and Arabidopsis thaliana. From these results, we conclude that NPC3 is one of the enzymes that degrade GIPC.
Collapse
Affiliation(s)
- Rumana Yesmin Hasi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Japan
| | - Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, Japan
| | - Keigo Sunagawa
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Japan
| | - Yoshimichi Takai
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Japan
| | - Hanif Ali
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Japan
| | - Junji Hayashi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Japan
| | - Ryushi Kawakami
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Japan
| | - Keizo Yuasa
- Graduate School of Science and Engineering, Setsunan University, Neyagawa, Japan
| | - Mutsumi Aihara
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Japan
| | - Kaori Kanemaru
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Japan
| | - Hiroyuki Imai
- Graduate School of Natural Science, Konan University, Kobe, Japan
| | - Tamotsu Tanaka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Japan
| |
Collapse
|
11
|
Tang S, Guo N, Tang Q, Peng F, Liu Y, Xia H, Lu S, Guo L. Pyruvate transporter BnaBASS2 impacts seed oil accumulation in Brassica napus. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2406-2417. [PMID: 36056567 PMCID: PMC9674310 DOI: 10.1111/pbi.13922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 05/11/2023]
Abstract
Bile acid: sodium symporter family protein 2 (BASS2) is a sodium-dependent pyruvate transporter, which transports pyruvate from cytosol into plastid in plants. In this study, we investigated the function of chloroplast envelope membrane-localized BnaBASS2 in seed metabolism and seed oil accumulation of Brassica napus (B. napus). Four BASS2 genes were identified in the genome of B. napus. BnaA05.BASS2 was overexpressed while BnaA05.BASS2 and BnaC04.BASS2-1 were mutated by CRISPR in B. napus. Metabolite analysis revealed that the manipulation of BnaBASS2 caused significant changes in glycolysis-, fatty acid synthesis-, and energy-related metabolites in the chloroplasts of 31 day-after-flowering (DAF) seeds. The analysis of fatty acids and lipids in developing seeds showed that BnaBASS2 could affect lipid metabolism and oil accumulation in developing seeds. Moreover, the overexpression (OE) of BnaA05.BASS2 could promote the expression level of multiple genes involved in the synthesis of oil and the formation of oil body during seed development. Disruption of BnaA05.BASS2 and BnaC04.BASS2-1 resulted in decreasing the seed oil content (SOC) by 2.8%-5.0%, while OE of BnaA05.BASS2 significantly promoted the SOC by 1.4%-3.4%. Together, our results suggest that BnaBASS2 is a potential target gene for breeding B. napus with high SOC.
Collapse
Affiliation(s)
- Shan Tang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Ning Guo
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Qingqing Tang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Fei Peng
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Yunhao Liu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Hui Xia
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Liang Guo
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| |
Collapse
|
12
|
Advances in Plant Lipid Metabolism Responses to Phosphate Scarcity. PLANTS 2022; 11:plants11172238. [PMID: 36079619 PMCID: PMC9460063 DOI: 10.3390/plants11172238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
Abstract
Low phosphate (Pi) availability in soils severely limits crop growth and production. Plants have evolved to have numerous physiological and molecular adaptive mechanisms to cope with Pi starvation. The release of Pi from membrane phospholipids is considered to improve plant phosphorus (P) utilization efficiency in response to Pi starvation and accompanies membrane lipid remodeling. In this review, we summarize recent discoveries related to this topic and the molecular basis of membrane phospholipid alteration and triacylglycerol metabolism in response to Pi depletion in plants at different subcellular levels. These findings will help to further elucidate the molecular mechanisms underlying plant adaptation to Pi starvation and thus help to develop crop cultivars with high P utilization efficiency.
Collapse
|
13
|
Li J, Zhang M, Zhou L. Protein S-acyltransferases and acyl protein thioesterases, regulation executors of protein S-acylation in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:956231. [PMID: 35968095 PMCID: PMC9363829 DOI: 10.3389/fpls.2022.956231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Protein S-acylation, also known as palmitoylation, is an important lipid post-translational modification of proteins in eukaryotes. S-acylation plays critical roles in a variety of protein functions involved in plant development and responses to abiotic and biotic stresses. The status of S-acylation on proteins is dynamic and reversible, which is catalyzed by protein S-acyltransferases (PATs) and reversed by acyl protein thioesterases. The cycle of S-acylation and de-S-acylation provides a molecular mechanism for membrane-associated proteins to undergo cycling and trafficking between different cell compartments and thus works as a switch to initiate or terminate particular signaling transductions on the membrane surface. In plants, thousands of proteins have been identified to be S-acylated through proteomics. Many S-acylated proteins and quite a few PAT-substrate pairs have been functionally characterized. A recently characterized acyl protein thioesterases family, ABAPT family proteins in Arabidopsis, has provided new insights into the de-S-acylation process. However, our understanding of the regulatory mechanisms controlling the S-acylation and de-S-acylation process is surprisingly incomplete. In this review, we discuss how protein S-acylation level is regulated with the focus on catalyzing enzymes in plants. We also propose the challenges and potential developments for the understanding of the regulatory mechanisms controlling protein S-acylation in plants.
Collapse
Affiliation(s)
- Jincheng Li
- College of Forestry, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Manqi Zhang
- College of Forestry, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Lijuan Zhou
- College of Forestry, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
14
|
Zhao Y, Ma X, Zhou M, Wang J, Wang G, Su C. Validating a Major Quantitative Trait Locus and Predicting Candidate Genes Associated With Kernel Width Through QTL Mapping and RNA-Sequencing Technology Using Near-Isogenic Lines in Maize. FRONTIERS IN PLANT SCIENCE 2022; 13:935654. [PMID: 35845666 PMCID: PMC9280665 DOI: 10.3389/fpls.2022.935654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Kernel size is an important agronomic trait for grain yield in maize. The purpose of this study was to validate a major quantitative trait locus (QTL), qKW-1, which was identified in the F2 and F2:3 populations from a cross between the maize inbred lines SG5/SG7 and to predict candidate genes for kernel width (KW) in maize. A major QTL, qKW-1, was mapped in multiple environments in our previous study. To validate and fine map qKW-1, near-isogenic lines (NILs) with 469 individuals were developed by continuous backcrossing between SG5 as the donor parent and SG7 as the recurrent parent. Marker-assisted selection was conducted from the BC2F1 generation with simple sequence repeat (SSR) markers near qKW-1. A secondary linkage map with four markers, PLK12, PLK13, PLK15, and PLK17, was developed and used for mapping the qKW-1 locus. Finally, qKW-1 was mapped between the PLK12 and PLK13 intervals, with a distance of 2.23 cM to PLK12 and 0.04 cM to PLK13, a confidence interval of 5.3 cM and a phenotypic contribution rate of 23.8%. The QTL mapping result obtained was further validated by using selected overlapping recombinant chromosomes on the target segment of maize chromosome 3. Transcriptome analysis showed that a total of 12 out of 45 protein-coding genes differentially expressed between the two parents were detected in the identified qKW-1 physical interval by blasting with the Zea_Mays_B73 v4 genome. GRMZM2G083176 encodes the Niemann-Pick disease type C, and GRMZM2G081719 encodes the nitrate transporter 1 (NRT1) protein. The two genes GRMZM2G083176 and GRMZM2G081719 were predicted to be candidate genes of qKW-1. Reverse transcription-polymerase chain reaction (RT-qPCR) validation was conducted, and the results provide further proof of the two candidate genes most likely responsible for qKW-1. The work will not only help to understand the genetic mechanisms of KW in maize but also lay a foundation for further cloning of promising loci.
Collapse
Affiliation(s)
- Yanming Zhao
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, China
| | - Xiaojie Ma
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Miaomiao Zhou
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Junyan Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Guiying Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Chengfu Su
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
15
|
Tian Y, Zeng H, Wu J, Huang J, Gao Q, Tang D, Cai L, Liao Z, Wang Y, Liu X, Lin J. Screening DHHCs of S-acylated proteins using an OsDHHC cDNA library and bimolecular fluorescence complementation in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1763-1780. [PMID: 35411551 DOI: 10.1111/tpj.15769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 05/28/2023]
Abstract
S-acylation is an important lipid modification that primarily involves DHHC proteins (DHHCs) and associated S-acylated proteins. No DHHC-S-acylated protein pair has been reported so far in rice (Oryza sativa L.) and the molecular mechanisms underlying S-acylation in plants are largely unknown. We constructed an OsDHHC cDNA library for screening corresponding pairs of DHHCs and S-acylated proteins using bimolecular fluorescence complementation assays. Five DHHC-S-acylated protein pairs (OsDHHC30-OsCBL2, OsDHHC30-OsCBL3, OsDHHC18-OsNOA1, OsDHHC13-OsNAC9, and OsDHHC14-GSD1) were identified in rice. Among the pairs, OsCBL2 and OsCBL3 were S-acylated by OsDHHC30 in yeast and rice. The localization of OsCBL2 and OsCBL3 in the endomembrane depended on S-acylation mediated by OsDHHC30. Meanwhile, all four OsDHHCs screened complemented the thermosensitive phenotype of an akr1 yeast mutant, and their DHHC motifs were required for S-acyltransferase activity. Overexpression of OsDHHC30 in rice plants improved their salt and oxidative tolerance. Together, these results contribute to our understanding of the molecular mechanism underlying S-acylation in plants.
Collapse
Affiliation(s)
- Ye Tian
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Hui Zeng
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Jicai Wu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Jian Huang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Qiang Gao
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Dongying Tang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Lipeng Cai
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Zhaoyi Liao
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Yan Wang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Xuanming Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Jianzhong Lin
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| |
Collapse
|
16
|
Ali U, Lu S, Fadlalla T, Iqbal S, Yue H, Yang B, Hong Y, Wang X, Guo L. The functions of phospholipases and their hydrolysis products in plant growth, development and stress responses. Prog Lipid Res 2022; 86:101158. [PMID: 35134459 DOI: 10.1016/j.plipres.2022.101158] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 12/15/2022]
Abstract
Cell membranes are the initial site of stimulus perception from environment and phospholipids are the basic and important components of cell membranes. Phospholipases hydrolyze membrane lipids to generate various cellular mediators. These phospholipase-derived products, such as diacylglycerol, phosphatidic acid, inositol phosphates, lysophopsholipids, and free fatty acids, act as second messengers, playing vital roles in signal transduction during plant growth, development, and stress responses. This review focuses on the structure, substrate specificities, reaction requirements, and acting mechanism of several phospholipase families. It will discuss their functional significance in plant growth, development, and stress responses. In addition, it will highlight some critical knowledge gaps in the action mechanism, metabolic and signaling roles of these phospholipases and their products in the context of plant growth, development and stress responses.
Collapse
Affiliation(s)
- Usman Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Tarig Fadlalla
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Sidra Iqbal
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Hong Yue
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Bao Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yueyun Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xuemin Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|