1
|
Liu M, Li Z, Kang Y, Lv J, Jin Z, Mu S, Yue H, Li L, Chen P, Li Y. A mutation in CsGME encoding GDP-mannose 3,5-epimerase results in little and wrinkled leaf in cucumber. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:114. [PMID: 38678513 DOI: 10.1007/s00122-024-04600-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/13/2024] [Indexed: 05/01/2024]
Abstract
KEY MESSAGE Map-based cloning revealed that a mutation in a highly conserved amino acid of the CsGME gene encoding GDP-mannose 3,5-epimerase, causes the phenotype of little and wrinkled leaves in cucumbers. Leaf size is a critical determinant of plant architecture in cucumbers, yet only a few genes associated with this trait have been mapped or cloned. Here, we identified and characterized a mutant with little and wrinkled leaves, named lwl-1. Genetic analysis revealed that the phenotype of the lwl-1 was controlled by a single recessive gene. Through map-based cloning, the lwl-1 locus was narrowed down to a 12.22-kb region exclusively containing one fully annotated gene CsGME (CsaV3_2G004170). CsGME encodes GDP-mannose 3,5-epimerase, which is involved in the synthesis of ascorbic acid (ASA) and one of the components of pectin, RG-II. Whole-length sequencing of the 12.22 kb DNA fragment revealed the presence of only a non-synonymous mutation located in the sixth exon of CsGME in lwl-1, resulting in an amino acid alteration from Pro363 to Leu363. This mutation was unique among 118 inbred lines from cucumber natural populations. CsGME expression significantly reduced in various organs of lwl-1, accompanied by a significant decrease in ASA and pectin content in leaves. Both CsGME and Csgme proteins were localized to the cytoplasm. The mutant phenotype exhibited partial recovery after the application of exogenous boric acid. Silencing CsGME in cucumber through VIGS confirmed its role as the causal gene for lwl-1. Transcriptome profiling revealed that CsGME greatly affected the expression of genes related to the cell division process and cell plate formation. This study represents the first report to characterize and clone the CsGME in cucumber, indicating its crucial role in regulating leaf size and development.
Collapse
Affiliation(s)
- Mengying Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhaowei Li
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yunfeng Kang
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jinzhao Lv
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhuoshuai Jin
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Siyu Mu
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hongzhong Yue
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, Gansu, China
| | - Lixia Li
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China
| | - Peng Chen
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
2
|
Kfoury B, Rodrigues WFC, Kim SJ, Brandizzi F, Del-Bem LE. Multiple horizontal gene transfer events have shaped plant glycosyl hydrolase diversity and function. THE NEW PHYTOLOGIST 2024; 242:809-824. [PMID: 38417454 DOI: 10.1111/nph.19595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 01/15/2024] [Indexed: 03/01/2024]
Abstract
Plant glycosyl hydrolases (GHs) play a crucial role in selectively breaking down carbohydrates and glycoconjugates during various cellular processes, such as reserve mobilization, pathogen defense, and modification/disassembly of the cell wall. In this study, we examined the distribution of GH genes in the Archaeplastida supergroup, which encompasses red algae, glaucophytes, and green plants. We identified that the GH repertoire expanded from a few tens of genes in early archaeplastidians to over 400 genes in modern angiosperms, spanning 40 GH families in land plants. Our findings reveal that major evolutionary transitions were accompanied by significant changes in the GH repertoire. Specifically, we identified at least 23 GH families acquired by green plants through multiple horizontal gene transfer events, primarily from bacteria and fungi. We found a significant shift in the subcellular localization of GH activity during green plant evolution, with a marked increase in extracellular-targeted GH proteins associated with the diversification of plant cell wall polysaccharides and defense mechanisms against pathogens. In conclusion, our study sheds light on the macroevolutionary processes that have shaped the GH repertoire in plants, highlighting the acquisition of GH families through horizontal transfer and the role of GHs in plant adaptation and defense mechanisms.
Collapse
Affiliation(s)
- Beatriz Kfoury
- Graduate Program in Bioinformatics, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
- Del-Bem Lab, Department of Botany, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
| | - Wenderson Felipe Costa Rodrigues
- Del-Bem Lab, Department of Botany, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
- Graduate Program in Plant Biology, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
| | - Sang-Jin Kim
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Luiz-Eduardo Del-Bem
- Graduate Program in Bioinformatics, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
- Del-Bem Lab, Department of Botany, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
- Graduate Program in Plant Biology, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
3
|
Choudury SG, Husbands AY. Pick a side: Integrating gene expression and mechanical forces to polarize aerial organs. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102460. [PMID: 37775406 DOI: 10.1016/j.pbi.2023.102460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 10/01/2023]
Abstract
How organs acquire their shapes is a central question in developmental biology. In plants, aerial lateral organs such as leaves initiate at the flanks of the growing meristem as dome-shaped primordia. These simple structures then grow out along multiple polarity axes to achieve a dizzying array of final shapes. Many of the hormone signaling pathways and genetic interactions that influence growth along these axes have been identified in the past few decades. Open questions include how and when initial gene expression patterns are set in organ primordia, and how these patterns are translated into the physical outcomes observed at the cellular and tissue levels. In this review, we highlight recent studies into the auxin signaling and gene expression dynamics that govern adaxial-abaxial patterning, and the contributions of mechanical forces to the development of flattened structures.
Collapse
Affiliation(s)
- Sarah G Choudury
- Department of Biology, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Aman Y Husbands
- Department of Biology, University of Pennsylvania, Philadelphia PA 19104, USA; Epigenetics Institute, University of Pennsylvania, Philadelphia PA 19104, USA.
| |
Collapse
|
4
|
Fu X, Li G, Hu F, Huang J, Lou Y, Li Y, Li Y, He H, Lv Y, Cheng J. Comparative transcriptome analysis in peaberry and regular bean coffee to identify bean quality associated genes. BMC Genom Data 2023; 24:12. [PMID: 36849914 PMCID: PMC9969625 DOI: 10.1186/s12863-022-01098-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/15/2022] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND The peaberry bean in Arabica coffee has exceptional quality compared to the regular coffee bean. Understanding the molecular mechanism of bean quality is imperative to introduce superior coffee quality traits. Despite high economic importance, the regulatory aspects of bean quality are yet largely unknown in peaberry. A transcriptome analysis was performed by using peaberry and regular coffee beans in this study. RESULTS The result of phenotypic analysis stated a difference in the physical attributes of both coffee beans. In addition, transcriptome analysis revealed low genetic differences. Only 139 differentially expressed genes were detected in which 54 genes exhibited up-regulation and 85 showed down-regulations in peaberry beans compared to regular beans. The majority of differentially expressed genes had functional annotation with cell wall modification, lipid binding, protein binding, oxidoreductase activity, and transmembrane transportation. Many fold lower expression of Ca25840-PMEs1, Ca30827-PMEs2, Ca30828-PMEs3, Ca25839-PMEs4, Ca36469-PGs. and Ca03656-Csl genes annotated with cell wall modification might play a critical role to develop different bean shape patterns in Arabica. The ERECTA family genes Ca15802-ERL1, Ca99619-ERL2, Ca07439-ERL3, Ca97226-ERL4, Ca89747-ERL5, Ca07056-ERL6, Ca01141-ERL7, and Ca32419-ERL8 along lipid metabolic pathway genes Ca06708-ACOX1, Ca29177-ACOX2, Ca01563-ACOX3, Ca34321-CPFA1, and Ca36201-CPFA2 are predicted to regulate different shaped bean development. In addition, flavonoid biosynthesis correlated genes Ca03809-F3H, Ca95013-CYP75A1, and Ca42029-CYP75A2 probably help to generate rarely formed peaberry beans. CONCLUSION Our results provide molecular insights into the formation of peaberry. The data resources will be important to identify candidate genes correlated with the different bean shape patterns in Arabica.
Collapse
Affiliation(s)
- Xingfei Fu
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Yunnan, Baoshan, 678000, China
| | - Guiping Li
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Yunnan, Baoshan, 678000, China
| | - Faguang Hu
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Yunnan, Baoshan, 678000, China
| | - Jiaxiong Huang
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Yunnan, Baoshan, 678000, China
| | - Yuqiang Lou
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Yunnan, Baoshan, 678000, China
| | - Yaqi Li
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Yunnan, Baoshan, 678000, China
| | - Yanan Li
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Yunnan, Baoshan, 678000, China
| | - Hongyan He
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Yunnan, Baoshan, 678000, China
| | - YuLan Lv
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Yunnan, Baoshan, 678000, China
| | - Jinhuan Cheng
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Yunnan, Baoshan, 678000, China.
| |
Collapse
|
5
|
Guo J, Cao P, Yuan L, Xia G, Zhang H, Li J, Wang F. Revealing the contribution of GbPR10.5D1 to resistance against Verticillium dahliae and its regulation for structural defense and immune signaling. THE PLANT GENOME 2022; 15:e20271. [PMID: 36281215 DOI: 10.1002/tpg2.20271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
As an important family of pathogenesis-related (PR) proteins, the functional diversification and roles of PR10s in biotic stress have been well documented. However, the molecular basis of PR10s in plant defense responses against pathogens remains to be further understood. In the present study, we analyzed the phylogenetic relationship and function of a novel PR10 named GbPR10.5D1 in Sea-Island (or Pima or Egyptian) cotton (Gossypium barbadense L.), which has been identified as a Verticillium dahliae Kleb.-induced protein in a previous proteomics study. Phylogenetic analysis revealed that GbPR10.5D1, located on chromosome 2, is a unique member of GbPR10. The expression of GbPR10.5D1 was preferably in the root and induced upon V. dahliae infection. GbPR10.5D1 proteins were distributed in both nucleus and cytoplasm. GbPR10.5D1-virus-induced gene-silencing (VIGS) cotton plants were more susceptible to infection by V. dahliae, whereas overexpression (OE) of GbPR10.5D1 in cotton enhanced the resistance. By comparative transcriptome analysis between GbPR10.5D1-OE and wild-type (WT) plants and quantitative real-time polymerase chain reaction (qRT-PCR) verification, we found transcriptional activation of genes involved in cutin, suberine, and wax biosynthesis and mitogen-activated protein kinase (MAPK) signaling under normal conditions. Upon pathogen infection, defense signaling, fatty acid degradation, and glycerolipid metabolism were specifically activated in GbPR10.5D1-OE plants; biological processes (BPs), including glycolysis and gluconeogenesis, DNA replication, and cell wall organization, were specifically repressed in WT plants. Collectively, we proposed that GbPR10.5D1 possibly mediated lipid metabolism pathway to strengthen structural defense and activate defense signaling, which largely released the repression of cell growth caused by V. dahliae infection.
Collapse
Affiliation(s)
- Jin Guo
- College of Life Sciences, Hebei Univ., Baoding, 071002, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, 071002, China
| | - Peihua Cao
- College of Life Sciences, Hebei Univ., Baoding, 071002, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, 071002, China
| | - Leitian Yuan
- College of Life Sciences, Hebei Univ., Baoding, 071002, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, 071002, China
| | - Guixian Xia
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huanyang Zhang
- Institute of Cotton Research, Shanxi Academy of Agricultural Sciences, Yuncheng, Shanxi, 044000, China
| | - Jing Li
- Institute of Cotton Research, Shanxi Academy of Agricultural Sciences, Yuncheng, Shanxi, 044000, China
| | - Fuxin Wang
- College of Life Sciences, Hebei Univ., Baoding, 071002, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, 071002, China
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
6
|
Low Temperature Inhibits the Defoliation Efficiency of Thidiazuron in Cotton by Regulating Plant Hormone Synthesis and the Signaling Pathway. Int J Mol Sci 2022; 23:ijms232214208. [PMID: 36430686 PMCID: PMC9694417 DOI: 10.3390/ijms232214208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Thidiazuron (TDZ) is the main defoliant used in production to promote leaf abscission for machine-picked cotton. Under low temperatures, the defoliation rate of cotton treated with TDZ decreases and the time of defoliation is delayed, but there is little information about this mechanism. In this study, RNA-seq and physiological analysis are performed to reveal the transcriptome profiling and change in endogenous phytohormones upon TDZ treatment in abscission zones (AZs) under different temperatures (daily mean temperatures: 25 °C and 15 °C). Genes differentially expressed in AZs between TDZ treatment and control under different temperatures were subjected to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to compare the enriched GO terms and KEGG pathways between the two temperature conditions. The results show that, compared with the corresponding control group, TDZ induces many differentially expressed genes (DEGs) in AZs, and the results of the GO and KEGG analyses show that the plant hormone signaling transduction pathway is significantly regulated by TDZ. However, under low temperature, TDZ induced less DEGs, and the enriched GO terms and KEGG pathways were different with those under normal temperature condition. Many genes in the plant hormone signal transduction pathway could not be induced by TDZ under low temperature conditions. In particular, the upregulated ethylene-signaling genes and downregulated auxin-signaling genes in AZs treated with TDZ were significantly affected by low temperatures. Furthermore, the expression of ethylene and auxin synthesis genes and their content in AZs treated with TDZ were also regulated by low temperature conditions. The upregulated cell wall hydrolase genes induced by TDZ were inhibited by low temperatures. However, the inhibition of low temperature on genes in AZs treated with TDZ was relieved with the extension of the treatment time. Together, these results indicate that the responses of ethylene and auxin synthesis and the signaling pathway to TDZ are inhibited by low temperatures, which could not induce the expression of cell wall hydrolase genes, and then inhibit the separation of AZ cells and the abscission of cotton leaves. This result provides new insights into the mechanism of defoliation induced by TDZ under low temperature conditions.
Collapse
|
7
|
Temple H, Phyo P, Yang W, Lyczakowski JJ, Echevarría-Poza A, Yakunin I, Parra-Rojas JP, Terrett OM, Saez-Aguayo S, Dupree R, Orellana A, Hong M, Dupree P. Golgi-localized putative S-adenosyl methionine transporters required for plant cell wall polysaccharide methylation. NATURE PLANTS 2022; 8:656-669. [PMID: 35681018 DOI: 10.1038/s41477-022-01156-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Polysaccharide methylation, especially that of pectin, is a common and important feature of land plant cell walls. Polysaccharide methylation takes place in the Golgi apparatus and therefore relies on the import of S-adenosyl methionine (SAM) from the cytosol into the Golgi. However, so far, no Golgi SAM transporter has been identified in plants. Here we studied major facilitator superfamily members in Arabidopsis that we identified as putative Golgi SAM transporters (GoSAMTs). Knockout of the two most highly expressed GoSAMTs led to a strong reduction in Golgi-synthesized polysaccharide methylation. Furthermore, solid-state NMR experiments revealed that reduced methylation changed cell wall polysaccharide conformations, interactions and mobilities. Notably, NMR revealed the existence of pectin 'egg-box' structures in intact cell walls and showed that their formation is enhanced by reduced methyl esterification. These changes in wall architecture were linked to substantial growth and developmental phenotypes. In particular, anisotropic growth was strongly impaired in the double mutant. The identification of putative transporters involved in import of SAM into the Golgi lumen in plants provides new insights into the paramount importance of polysaccharide methylation for plant cell wall structure and function.
Collapse
Affiliation(s)
- Henry Temple
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Pyae Phyo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Weibing Yang
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS) and CAS-JIC Center of Excellence for Plant and Microbial Sciences (CEPAMS), Shanghai, China
| | - Jan J Lyczakowski
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Igor Yakunin
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Juan Pablo Parra-Rojas
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Oliver M Terrett
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Susana Saez-Aguayo
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Ray Dupree
- Department of Physics, University of Warwick, Coventry, UK
| | - Ariel Orellana
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
8
|
Plant immunity by damage-associated molecular patterns (DAMPs). Essays Biochem 2022; 66:459-469. [PMID: 35612381 DOI: 10.1042/ebc20210087] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/17/2022]
Abstract
Recognition by plant receptors of microbe-associated molecular patterns (MAMPs) and pathogenicity effectors activates immunity. However, before evolving the capacity of perceiving and responding to MAMPs and pathogenicity factors, plants, like animals, must have faced the necessity to protect and repair the mechanical wounds used by pathogens as an easy passage into their tissue. Consequently, plants evolved the capacity to react to damage-associated molecular patterns (DAMPs) with responses capable of functioning also in the absence of pathogens. DAMPs include not only primarily cell wall (CW) fragments but also extracellular peptides, nucleotides and amino acids that activate both local and long-distance systemic responses and, in some cases, prime the subsequent responses to MAMPs. It is conceivable that DAMPs and MAMPs act in synergy to activate a stronger plant immunity and that MAMPs exploit the mechanisms and transduction pathways traced by DAMPs. The interest for the biology and mechanism of action of DAMPs, either in the plant or animal kingdom, is expected to substantially increase in the next future. This review focuses on the most recent advances in DAMPs biology, particularly in the field of CW-derived DAMPs.
Collapse
|
9
|
Zhang Q, Deng A, Xiang M, Lan Q, Li X, Yuan S, Gou X, Hao S, Du J, Xiao C. The Root Hair Development of Pectin Polygalacturonase PGX2 Activation Tagging Line in Response to Phosphate Deficiency. FRONTIERS IN PLANT SCIENCE 2022; 13:862171. [PMID: 35586221 PMCID: PMC9108675 DOI: 10.3389/fpls.2022.862171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Pectin, cellulose, and hemicellulose constitute the primary cell wall in eudicots and function in multiple developmental processes in plants. Root hairs are outgrowths of specialized epidermal cells that absorb water and nutrients from the soil. Cell wall architecture influences root hair development, but how cell wall remodeling might enable enhanced root hair formation in response to phosphate (P) deficiency remains relatively unclear. Here, we found that POLYGALACTURONASE INVOLVED IN EXPANSION 2 (PGX2) functions in conditional root hair development. Under low P conditions, a PGX2 activation tagged line (PGX2AT ) displays bubble-like root hairs and abnormal callose deposition and superoxide accumulation in roots. We found that the polar localization and trafficking of PIN2 are altered in PGX2AT roots in response to P deficiency. We also found that actin filaments were less compact but more stable in PGX2AT root hair cells and that actin filament skewness in PGX2AT root hairs was recovered by treatment with 1-N-naphthylphthalamic acid (NPA), an auxin transport inhibitor. These results demonstrate that activation tagging of PGX2 affects cell wall remodeling, auxin signaling, and actin microfilament orientation, which may cooperatively regulate root hair development in response to P starvation.
Collapse
|
10
|
San Clemente H, Kolkas H, Canut H, Jamet E. Plant Cell Wall Proteomes: The Core of Conserved Protein Families and the Case of Non-Canonical Proteins. Int J Mol Sci 2022; 23:4273. [PMID: 35457091 PMCID: PMC9029284 DOI: 10.3390/ijms23084273] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/06/2022] [Accepted: 04/10/2022] [Indexed: 12/25/2022] Open
Abstract
Plant cell wall proteins (CWPs) play critical roles during plant development and in response to stresses. Proteomics has revealed their great diversity. With nearly 1000 identified CWPs, the Arabidopsis thaliana cell wall proteome is the best described to date and it covers the main plant organs and cell suspension cultures. Other monocot and dicot plants have been studied as well as bryophytes, such as Physcomitrella patens and Marchantia polymorpha. Although these proteomes were obtained using various flowcharts, they can be searched for the presence of members of a given protein family. Thereby, a core cell wall proteome which does not pretend to be exhaustive, yet could be defined. It comprises: (i) glycoside hydrolases and pectin methyl esterases, (ii) class III peroxidases, (iii) Asp, Ser and Cys proteases, (iv) non-specific lipid transfer proteins, (v) fasciclin arabinogalactan proteins, (vi) purple acid phosphatases and (vii) thaumatins. All the conserved CWP families could represent a set of house-keeping CWPs critical for either the maintenance of the basic cell wall functions, allowing immediate response to environmental stresses or both. Besides, the presence of non-canonical proteins devoid of a predicted signal peptide in cell wall proteomes is discussed in relation to the possible existence of alternative secretion pathways.
Collapse
Affiliation(s)
| | | | | | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, 31320 Auzeville-Tolosane, France; (H.S.C.); (H.K.); (H.C.)
| |
Collapse
|
11
|
Du J, Anderson CT, Xiao C. Dynamics of pectic homogalacturonan in cellular morphogenesis and adhesion, wall integrity sensing and plant development. NATURE PLANTS 2022; 8:332-340. [PMID: 35411046 DOI: 10.1038/s41477-022-01120-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Homogalacturonan (HG) is the most abundant pectin subtype in plant cell walls. Although it is a linear homopolymer, its modification states allow for complex molecular encoding. HG metabolism affects its structure, chemical properties, mobility and binding capacity, allowing it to interact dynamically with other polymers during wall assembly and remodelling and to facilitate anisotropic cell growth, cell adhesion and separation, and organ morphogenesis. HGs have also recently been found to function as signalling molecules that transmit information about wall integrity to the cell. Here we highlight recent advances in our understanding of the dual functions of HG as a dynamic structural component of the cell wall and an initiator of intrinsic and environmental signalling. We also predict how HG might interconnect the cell wall, plasma membrane and intracellular components with transcriptional networks to regulate plant growth and development.
Collapse
Affiliation(s)
- Juan Du
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Charles T Anderson
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Chaowen Xiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
12
|
Li F, Wu Q, Liao B, Yu K, Huo Y, Meng L, Wang S, Wang B, Du M, Tian X, Li Z. Thidiazuron Promotes Leaf Abscission by Regulating the Crosstalk Complexities between Ethylene, Auxin, and Cytokinin in Cotton. Int J Mol Sci 2022; 23:ijms23052696. [PMID: 35269837 PMCID: PMC8910847 DOI: 10.3390/ijms23052696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 01/27/2023] Open
Abstract
Thidiazuron (TDZ) is widely used as a defoliant to induce leaf abscission in cotton. However, the underlying molecular mechanism is still unclear. In this study, RNA-seq and enzyme-linked immunosorbent assays (ELISA) were performed to reveal the dynamic transcriptome profiling and the change of endogenous phytohormones upon TDZ treatment in leaf, petiole, and abscission zone (AZ). We found that TDZ induced the gene expression of ethylene biosynthesis and signal, and promoted ethylene accumulation earlier in leaf than that in AZ. While TDZ down-regulated indole-3-acetic acid (IAA) biosynthesis genes mainly in leaf and IAA signal and transport genes. Furthermore, the IAA content reduced more sharply in the leaf than that in AZ to change the auxin gradient for abscission. TDZ suppressed CTK biosynthesis genes and induced CTK metabolic genes to reduce the IPA accumulation for the reduction of ethylene sensitivity. Furthermore, TDZ regulated the gene expression of abscisic acid (ABA) biosynthesis and signal and induced ABA accumulation between 12-48 h, which could up-regulate ABA response factor genes and inhibit IAA transporter genes. Our data suggest that TDZ orchestrates metabolism and signal of ethylene, auxin, and cytokinin, and also the transport of auxin in leaf, petiole, and AZ, to control leaf abscission.
Collapse
Affiliation(s)
- Fangjun Li
- Engineering Research Center of Plant Growth Regulator, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (F.L.); (B.L.); (K.Y.); (Y.H.); (L.M.); (S.W.); (B.W.); (X.T.); (Z.L.)
| | - Qian Wu
- Institute of Agricultural Information, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Baopeng Liao
- Engineering Research Center of Plant Growth Regulator, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (F.L.); (B.L.); (K.Y.); (Y.H.); (L.M.); (S.W.); (B.W.); (X.T.); (Z.L.)
| | - Keke Yu
- Engineering Research Center of Plant Growth Regulator, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (F.L.); (B.L.); (K.Y.); (Y.H.); (L.M.); (S.W.); (B.W.); (X.T.); (Z.L.)
| | - Yini Huo
- Engineering Research Center of Plant Growth Regulator, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (F.L.); (B.L.); (K.Y.); (Y.H.); (L.M.); (S.W.); (B.W.); (X.T.); (Z.L.)
| | - Lu Meng
- Engineering Research Center of Plant Growth Regulator, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (F.L.); (B.L.); (K.Y.); (Y.H.); (L.M.); (S.W.); (B.W.); (X.T.); (Z.L.)
- High Latitude Crops Institute, Shanxi Agriculture University, Datong 037008, China
| | - Songman Wang
- Engineering Research Center of Plant Growth Regulator, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (F.L.); (B.L.); (K.Y.); (Y.H.); (L.M.); (S.W.); (B.W.); (X.T.); (Z.L.)
| | - Baomin Wang
- Engineering Research Center of Plant Growth Regulator, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (F.L.); (B.L.); (K.Y.); (Y.H.); (L.M.); (S.W.); (B.W.); (X.T.); (Z.L.)
| | - Mingwei Du
- Engineering Research Center of Plant Growth Regulator, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (F.L.); (B.L.); (K.Y.); (Y.H.); (L.M.); (S.W.); (B.W.); (X.T.); (Z.L.)
- Correspondence: ; Tel.: +86-10-6273-3049
| | - Xiaoli Tian
- Engineering Research Center of Plant Growth Regulator, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (F.L.); (B.L.); (K.Y.); (Y.H.); (L.M.); (S.W.); (B.W.); (X.T.); (Z.L.)
| | - Zhaohu Li
- Engineering Research Center of Plant Growth Regulator, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (F.L.); (B.L.); (K.Y.); (Y.H.); (L.M.); (S.W.); (B.W.); (X.T.); (Z.L.)
| |
Collapse
|
13
|
Roeder AHK, Otegui MS, Dixit R, Anderson CT, Faulkner C, Zhang Y, Harrison MJ, Kirchhelle C, Goshima G, Coate JE, Doyle JJ, Hamant O, Sugimoto K, Dolan L, Meyer H, Ehrhardt DW, Boudaoud A, Messina C. Fifteen compelling open questions in plant cell biology. THE PLANT CELL 2022; 34:72-102. [PMID: 34529074 PMCID: PMC8774073 DOI: 10.1093/plcell/koab225] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/02/2021] [Indexed: 05/02/2023]
Abstract
As scientists, we are at least as excited about the open questions-the things we do not know-as the discoveries. Here, we asked 15 experts to describe the most compelling open questions in plant cell biology. These are their questions: How are organelle identity, domains, and boundaries maintained under the continuous flux of vesicle trafficking and membrane remodeling? Is the plant cortical microtubule cytoskeleton a mechanosensory apparatus? How are the cellular pathways of cell wall synthesis, assembly, modification, and integrity sensing linked in plants? Why do plasmodesmata open and close? Is there retrograde signaling from vacuoles to the nucleus? How do root cells accommodate fungal endosymbionts? What is the role of cell edges in plant morphogenesis? How is the cell division site determined? What are the emergent effects of polyploidy on the biology of the cell, and how are any such "rules" conditioned by cell type? Can mechanical forces trigger new cell fates in plants? How does a single differentiated somatic cell reprogram and gain pluripotency? How does polarity develop de-novo in isolated plant cells? What is the spectrum of cellular functions for membraneless organelles and intrinsically disordered proteins? How do plants deal with internal noise? How does order emerge in cells and propagate to organs and organisms from complex dynamical processes? We hope you find the discussions of these questions thought provoking and inspiring.
Collapse
Affiliation(s)
- Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology and School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, New York 14853, USA
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin 53706, USA
| | - Ram Dixit
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St Louis, Missouri 63130, USA
| | - Charles T Anderson
- Department of Biology and Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Christine Faulkner
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | | | - Charlotte Kirchhelle
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, Lyon Cedex 07, France
| | - Gohta Goshima
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Jeremy E Coate
- Department of Biology, Reed College, Portland, Oregon 97202, USA
| | - Jeff J Doyle
- School of Integrative Plant Science, Section of Plant Biology and Section of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, Lyon Cedex 07, France
| | - Keiko Sugimoto
- Center for Sustainable Resource Science, RIKEN, Kanagawa 230-0045, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Liam Dolan
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Vienna 1030, Austria
| | - Heather Meyer
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - David W Ehrhardt
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - Arezki Boudaoud
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau Cedex 91128 France
| | | |
Collapse
|
14
|
Ohashi T, Sari N, Misaki R, Fujiyama K. Biochemical characterization of Arabidopsis clade F polygalacturonase shows a substrate preference toward oligogalacturonic acids. J Biosci Bioeng 2021; 133:1-7. [PMID: 34690060 DOI: 10.1016/j.jbiosc.2021.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 11/25/2022]
Abstract
Polygalacturonases (PGs) hydrolyze α-1,4-linked d-galacturonic acid (GalUA) in polygalacturonic acid. Previously, PG activity in pea seedlings was found in the Golgi apparatus, where pectin biosynthesis occurs. However, the corresponding genes encoding Golgi-localized PG proteins have never been identified in the higher plants. In this study, we cloned the 5 Arabidopsis genes encoding putative membrane-bound PGs from clade F PGs (AtPGFs) as the first step for the discovery of the Golgi-localized PGs. Five AtPGF proteins (AtPGF3, AtPGF6, AtPGF10, AtPGF14 and AtPGF16) were heterologously produced in Schizosaccharomyces pombe. Among these, only the AtPGF10 protein showed in vitro exo-type PG activity toward fluorogenic pyridylaminated-oligogalacturonic acids (PA-OGAs) as a substrate. The optimum PG activity was observed at pH 5.5 and 60°C. The recombinant AtPGF10 protein showed the maximum PG activities toward PA-OGA with 10 degrees of polymerization. The apparent Km values for the PA-OGAs with 7, 11 and 14 degrees of polymerization were 8.0, 22, and 5.9 μM, respectively. This is the first report of the identification and enzymatic characterization of AtPGF10 as PG carrying putative membrane-bound domain.
Collapse
Affiliation(s)
- Takao Ohashi
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Nabilah Sari
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryo Misaki
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan; Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
| | - Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan; Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan; Cooperative Research Station in Southeast Asia (OU:CRS), Faculty of Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
15
|
Shin Y, Chane A, Jung M, Lee Y. Recent Advances in Understanding the Roles of Pectin as an Active Participant in Plant Signaling Networks. PLANTS (BASEL, SWITZERLAND) 2021; 10:1712. [PMID: 34451757 PMCID: PMC8399534 DOI: 10.3390/plants10081712] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 01/02/2023]
Abstract
Pectin is an abundant cell wall polysaccharide with essential roles in various biological processes. The structural diversity of pectins, along with the numerous combinations of the enzymes responsible for pectin biosynthesis and modification, plays key roles in ensuring the specificity and plasticity of cell wall remodeling in different cell types and under different environmental conditions. This review focuses on recent progress in understanding various aspects of pectin, from its biosynthetic and modification processes to its biological roles in different cell types. In particular, we describe recent findings that cell wall modifications serve not only as final outputs of internally determined pathways, but also as key components of intercellular communication, with pectin as a major contributor to this process. The comprehensive view of the diverse roles of pectin presented here provides an important basis for understanding how cell wall-enclosed plant cells develop, differentiate, and interact.
Collapse
Affiliation(s)
- Yesol Shin
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea; (Y.S.); (A.C.); (M.J.)
| | - Andrea Chane
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea; (Y.S.); (A.C.); (M.J.)
| | - Minjung Jung
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea; (Y.S.); (A.C.); (M.J.)
| | - Yuree Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea; (Y.S.); (A.C.); (M.J.)
- Research Center for Plant Plasticity, Seoul National University, Seoul 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
16
|
Verhage L. Get in shape - how a polygalacturonase affects plant morphology. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1491-1492. [PMID: 34296489 DOI: 10.1111/tpj.15366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
|