1
|
Héreil A, Guillaume M, Duboscq R, Carretero Y, Pelpoir E, Bitton F, Giraud C, Karlova R, Testerink C, Stevens R, Causse M. Characterisation of a major QTL for sodium accumulation in tomato grown in high salinity. PLANT, CELL & ENVIRONMENT 2024; 47:5089-5103. [PMID: 39148196 DOI: 10.1111/pce.15082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/09/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024]
Abstract
Soil salinity is a serious concern for tomato culture, affecting both yield and quality parameters. Although some genes involved in tomato salt tolerance have been identified, their genetic diversity has been rarely studied. In the present study, we assessed salt tolerance-related traits at juvenile and adult stages in a large core collection and identified salt tolerance quantitative trait loci (QTLs) by genome-wide association study (GWAS). The results suggested that a major QTL is involved in leaf sodium accumulation at both physiological stages. We were able to identify the underlying candidate gene, coding for a well-known sodium transporter, called SlHKT1.2. We showed that an eQTL for the expression of this gene in roots colocalized with the above ground sodium content QTL. A polymorphism putatively responsible for its variation was identified in the gene promoter. Finally, to extend the applicability of these results, we carried out the same analysis on a test-cross panel composed of the core collection crossed with a distant line. The results indicated that the identified QTL retained its functional impact even in a hybrid genetic context: this paves the way for its use in breeding programs aimed at improving salinity tolerance in tomato cultivars.
Collapse
Affiliation(s)
- A Héreil
- UR1052 GAFL, INRAE, Montfavet, France
| | - M Guillaume
- GAUTIER Semences, Route d'Avignon, Eyragues, France
| | - R Duboscq
- UR1052 GAFL, INRAE, Montfavet, France
| | | | - E Pelpoir
- UR1052 GAFL, INRAE, Montfavet, France
| | - F Bitton
- UR1052 GAFL, INRAE, Montfavet, France
| | - C Giraud
- UE A2M, INRAE, Montfavet, France
| | - R Karlova
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University & Research, Wageningen, The Netherlands
| | - C Testerink
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University & Research, Wageningen, The Netherlands
| | - R Stevens
- UR1052 GAFL, INRAE, Montfavet, France
| | - M Causse
- UR1052 GAFL, INRAE, Montfavet, France
| |
Collapse
|
2
|
Desaint H, Héreil A, Belinchon-Moreno J, Carretero Y, Pelpoir E, Pascal M, Brault M, Dumont D, Lecompte F, Laugier P, Duboscq R, Bitton F, Grumic M, Giraud C, Ferrante P, Giuliano G, Sunseri F, Causse M. Integration of QTL and transcriptome approaches for the identification of genes involved in tomato response to nitrogen deficiency. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5880-5896. [PMID: 38869971 DOI: 10.1093/jxb/erae265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/12/2024] [Indexed: 06/15/2024]
Abstract
Optimizing plant nitrogen (N) usage and inhibiting N leaching loss in the soil-crop system is crucial to maintaining crop yield and reducing environmental pollution. This study aimed at identifying quantitative trait loci (QTLs) and differentially expressed genes (DEGs) between two N treatments in order to list candidate genes related to nitrogen-related contrasting traits in tomato varieties. We characterized a genetic diversity core-collection (CC) and a multi-parental advanced generation intercross (MAGIC) tomato population grown in a greenhouse under two nitrogen levels and assessed several N-related traits and mapped QTLs. Transcriptome response under the two N conditions was also investigated through RNA sequencing of fruit and leaves in four parents of the MAGIC population. Significant differences in response to N input reduction were observed at the phenotypic level for biomass and N-related traits. Twenty-seven QTLs were detected for three target traits (leaf N content, leaf nitrogen balance index, and petiole NO3- content), 10 and six in the low and high N condition, respectively, while 19 QTLs were identified for plasticity traits. At the transcriptome level, 4752 and 2405 DEGs were detected between the two N conditions in leaves and fruits, respectively, among which 3628 (50.6%) in leaves and 1717 (71.4%) in fruit were genotype specific. When considering all the genotypes, 1677 DEGs were shared between organs or tissues. Finally, we integrated DEG and QTL analyses to identify the most promising candidate genes. The results highlighted a complex genetic architecture of N homeostasis in tomato and novel putative genes useful for breeding tomato varieties requiring less N input.
Collapse
Affiliation(s)
| | | | | | | | | | - Michel Pascal
- INRAE, UR407, Pathologie Végétale, 84143 Montfavet, France
| | | | | | | | | | | | | | | | | | - Paola Ferrante
- Italian National Agency for New technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Res Ctr, Via Anguillarese 301, 00123 Rome, Italy
| | - Giovanni Giuliano
- Italian National Agency for New technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Res Ctr, Via Anguillarese 301, 00123 Rome, Italy
| | | | | |
Collapse
|
3
|
Saighani K, Kashiwagi M, Habibi S, Simpson CG, Yamada T, Kanekatsu M. Screening of NIAS World Rice Core Collection for Seeds with Long Longevity as Useful Potential Breeding Materials Focusing on the Stability of Embryonic RNAs. PLANTS (BASEL, SWITZERLAND) 2024; 13:1869. [PMID: 38999709 PMCID: PMC11244364 DOI: 10.3390/plants13131869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024]
Abstract
Seed longevity is a crucial trait for the seed industry and genetic resource preservation. To develop excellent cultivars with extended seed lifespans, it is important to understand the mechanism of keeping seed germinability long term and to find useful genetic resources as prospective breeding materials. This study was conducted to identify the best cultivars with a high and stable seed longevity trait in the germplasm of rice (Oryza sativa L.) and to analyze the correlation between seed longevity and embryonic RNA integrity. Seeds from 69 cultivars of the world rice core collection selected by the NIAS in Japan were harvested in different years and subjected to long-term storage or controlled deterioration treatment (CDT). The long-term storage (4 °C, RH under 35%, 10 years) was performed on seeds harvested in 2010 and 2013. The seeds harvested in 2016 and 2019 were used for CDT (36 °C, RH of 80%, 40 days). Seed longevity and embryonic RNA integrity were estimated by a decrease in the germination percentage and RNA integrity number (RIN) after long-term storage or CDT. The RIN value was obtained by the electrophoresis of the total RNA extracted from the seed embryos. Seeds of "Vandaran (indica)", "Tupa 729 (japonica)", and "Badari Dhan (indica)" consistently showed higher seed longevity and embryonic RNA integrity both under long-term storage and CDT conditions regardless of the harvest year. A strong correlation (R2 = 0.93) was observed between the germination percentages and RIN values of the seeds after the long-term storage or CDT among nine cultivars selected based on differences in their seed longevity. The study findings revealed the relationship between rice seed longevity and embryo RNA stability and suggested potential breeding materials including both japonica and indica cultivars for improving rice seed longevity.
Collapse
Affiliation(s)
- Kalimullah Saighani
- School of Biology, Biomedical Sciences Research Complex, University of St. Andrews, Fife KY16 9TS, UK
| | - Megumi Kashiwagi
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; (M.K.); (T.Y.); (M.K.)
| | - Safiullah Habibi
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Saiwai-Cho 3-5-8, Tokyo 183-8509, Japan;
| | - Craig G. Simpson
- Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, UK;
| | - Tetsuya Yamada
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; (M.K.); (T.Y.); (M.K.)
| | - Motoki Kanekatsu
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; (M.K.); (T.Y.); (M.K.)
| |
Collapse
|
4
|
Petitpas M, Lapous R, Le Duc M, Lariagon C, Lemoine J, Langrume C, Manzanares-Dauleux MJ, Jubault M. Environmental conditions modulate the effect of epigenetic factors controlling the response of Arabidopsis thaliana to Plasmodiophora brassicae. FRONTIERS IN PLANT SCIENCE 2024; 15:1245545. [PMID: 38872892 PMCID: PMC11171141 DOI: 10.3389/fpls.2024.1245545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 04/26/2024] [Indexed: 06/15/2024]
Abstract
The resistance of Arabidopsis thaliana to clubroot, a major disease of Brassicaceae caused by the obligate protist Plasmodiophora brassicae, is controlled in part by epigenetic factors. The detection of some of these epigenetic quantitative trait loci (QTLepi) has been shown to depend on experimental conditions. The aim of the present study was to assess whether and how temperature and/or soil water availability influenced both the detection and the extent of the effect of response QTLepi. The epigenetic recombinant inbred line (epiRIL) population, derived from the cross between ddm1-2 and Col-0 (partially resistant and susceptible to clubroot, respectively), was phenotyped for response to P. brassicae under four abiotic conditions including standard conditions, a 5°C temperature increase, drought, and flooding. The abiotic constraints tested had a significant impact on both the leaf growth of the epiRIL population and the outcome of the epiRIL-pathogen interaction. Linkage analysis led to the detection of a total of 31 QTLepi, 18 of which were specific to one abiotic condition and 13 common to at least two environments. EpiRIL showed significant plasticity under epigenetic control, which appeared to be specific to the traits evaluated and to the abiotic conditions. These results highlight that the environment can affect the epigenetic architecture of plant growth and immune responses and advance our understanding of the epigenetic factors underlying plasticity in response to climate change.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mélanie Jubault
- IGEPP, Institut Agro Rennes-Angers – INRAE – Université de Rennes, Le Rheu, France
| |
Collapse
|
5
|
Graci S, Cigliano RA, Barone A. Exploring the gene expression network involved in the heat stress response of a thermotolerant tomato genotype. BMC Genomics 2024; 25:509. [PMID: 38783170 PMCID: PMC11112777 DOI: 10.1186/s12864-024-10393-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The increase in temperatures due to the current climate change dramatically affects crop cultivation, resulting in yield losses and altered fruit quality. Tomato is one of the most extensively grown and consumed horticultural products, and although it can withstand a wide range of climatic conditions, heat stress can affect plant growth and development specially on the reproductive stage, severely influencing the final yield. In the present work, the heat stress response mechanisms of one thermotolerant genotype (E42) were investigated by exploring its regulatory gene network. This was achieved through a promoter analysis based on the identification of the heat stress elements (HSEs) mapping in the promoters, combined with a gene co-expression network analysis aimed at identifying interactions among heat-related genes. RESULTS Results highlighted 82 genes presenting HSEs in the promoter and belonging to one of the 52 gene networks obtained by the GCN analysis; 61 of these also interact with heat shock factors (Hsfs). Finally, a list of 13 candidate genes including two Hsfs, nine heat shock proteins (Hsps) and two GDSL esterase/lipase (GELPs) were retrieved by focusing on those E42 genes exhibiting HSEs in the promoters, interacting with Hsfs and showing variants, compared to Heinz reference genome, with HIGH and/or MODERATE impact on the translated protein. Among these, the Gene Ontology annotation analysis evidenced that only LeHsp100 (Solyc02g088610) belongs to a network specifically involved in the response to heat stress. CONCLUSIONS As a whole, the combination of bioinformatic analyses carried out on genomic and trascriptomic data available for tomato, together with polymorphisms detected in HS-related genes of the thermotolerant E42 allowed to determine a subset of candidate genes involved in the HS response in tomato. This study provides a novel approach in the investigation of abiotic stress response mechanisms and further studies will be conducted to validate the role of the highlighted genes.
Collapse
Affiliation(s)
- Salvatore Graci
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples, Italy
| | | | - Amalia Barone
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples, Italy.
| |
Collapse
|
6
|
Dou F, Phillip FO, Liu G, Zhu J, Zhang L, Wang Y, Liu H. Transcriptomic and physiological analyses reveal different grape varieties response to high temperature stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1313832. [PMID: 38525146 PMCID: PMC10957553 DOI: 10.3389/fpls.2024.1313832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/17/2024] [Indexed: 03/26/2024]
Abstract
High temperatures affect grape yield and quality. Grapes can develop thermotolerance under extreme temperature stress. However, little is known about the changes in transcription that occur because of high-temperature stress. The heat resistance indices and transcriptome data of five grape cultivars, 'Xinyu' (XY), 'Miguang' (MG), 'Summer Black' (XH), 'Beihong' (BH), and 'Flame seedless' (FL), were compared in this study to evaluate the similarities and differences between the regulatory genes and to understand the mechanisms of heat stress resistance differences. High temperatures caused varying degrees of damage in five grape cultivars, with substantial changes observed in gene expression patterns and enriched pathway responses between natural environmental conditions (35 °C ± 2 °C) and extreme high temperature stress (40 °C ± 2 °C). Genes belonging to the HSPs, HSFs, WRKYs, MYBs, and NACs transcription factor families, and those involved in auxin (IAA) signaling, abscisic acid (ABA) signaling, starch and sucrose pathways, and protein processing in the endoplasmic reticulum pathway, were found to be differentially regulated and may play important roles in the response of grape plants to high-temperature stress. In conclusion, the comparison of transcriptional changes among the five grape cultivars revealed a significant variability in the activation of key pathways that influence grape response to high temperatures. This enhances our understanding of the molecular mechanisms underlying grape response to high-temperature stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Huaifeng Liu
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Crops, Agricultural College, Department of Horticulture, Shihezi University, Shihezi, China
| |
Collapse
|
7
|
Martina M, De Rosa V, Magon G, Acquadro A, Barchi L, Barcaccia G, De Paoli E, Vannozzi A, Portis E. Revitalizing agriculture: next-generation genotyping and -omics technologies enabling molecular prediction of resilient traits in the Solanaceae family. FRONTIERS IN PLANT SCIENCE 2024; 15:1278760. [PMID: 38375087 PMCID: PMC10875072 DOI: 10.3389/fpls.2024.1278760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
This review highlights -omics research in Solanaceae family, with a particular focus on resilient traits. Extensive research has enriched our understanding of Solanaceae genomics and genetics, with historical varietal development mainly focusing on disease resistance and cultivar improvement but shifting the emphasis towards unveiling resilience mechanisms in genebank-preserved germplasm is nowadays crucial. Collecting such information, might help researchers and breeders developing new experimental design, providing an overview of the state of the art of the most advanced approaches for the identification of the genetic elements laying behind resilience. Building this starting point, we aim at providing a useful tool for tackling the global agricultural resilience goals in these crops.
Collapse
Affiliation(s)
- Matteo Martina
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Grugliasco, Italy
| | - Valeria De Rosa
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Udine, Italy
| | - Gabriele Magon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Laboratory of Plant Genetics and Breeding, University of Padua, Legnaro, Italy
| | - Alberto Acquadro
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Grugliasco, Italy
| | - Lorenzo Barchi
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Grugliasco, Italy
| | - Gianni Barcaccia
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Laboratory of Plant Genetics and Breeding, University of Padua, Legnaro, Italy
| | - Emanuele De Paoli
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Udine, Italy
| | - Alessandro Vannozzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Laboratory of Plant Genetics and Breeding, University of Padua, Legnaro, Italy
| | - Ezio Portis
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Grugliasco, Italy
| |
Collapse
|
8
|
Graci S, Barone A. Tomato plant response to heat stress: a focus on candidate genes for yield-related traits. FRONTIERS IN PLANT SCIENCE 2024; 14:1245661. [PMID: 38259925 PMCID: PMC10800405 DOI: 10.3389/fpls.2023.1245661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024]
Abstract
Climate change and global warming represent the main threats for many agricultural crops. Tomato is one of the most extensively grown and consumed horticultural products and can survive in a wide range of climatic conditions. However, high temperatures negatively affect both vegetative growth and reproductive processes, resulting in losses of yield and fruit quality traits. Researchers have employed different parameters to evaluate the heat stress tolerance, including evaluation of leaf- (stomatal conductance, net photosynthetic rate, Fv/Fm), flower- (inflorescence number, flower number, stigma exertion), pollen-related traits (pollen germination and viability, pollen tube growth) and fruit yield per plant. Moreover, several authors have gone even further, trying to understand the plants molecular response mechanisms to this stress. The present review focused on the tomato molecular response to heat stress during the reproductive stage, since the increase of temperatures above the optimum usually occurs late in the growing tomato season. Reproductive-related traits directly affects the final yield and are regulated by several genes such as transcriptional factors, heat shock proteins, genes related to flower, flowering, pollen and fruit set, and epigenetic mechanisms involving DNA methylation, histone modification, chromatin remodelling and non-coding RNAs. We provided a detailed list of these genes and their function under high temperature conditions in defining the final yield with the aim to summarize the recent findings and pose the attention on candidate genes that could prompt on the selection and constitution of new thermotolerant tomato plant genotypes able to face this abiotic challenge.
Collapse
Affiliation(s)
| | - Amalia Barone
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples, Italy
| |
Collapse
|
9
|
Bollier N, Micol-Ponce R, Dakdaki A, Maza E, Zouine M, Djari A, Bouzayen M, Chevalier C, Delmas F, Gonzalez N, Hernould M. Various tomato cultivars display contrasting morphological and molecular responses to a chronic heat stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1278608. [PMID: 37965003 PMCID: PMC10642206 DOI: 10.3389/fpls.2023.1278608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/06/2023] [Indexed: 11/16/2023]
Abstract
Climate change is one of the biggest threats that human society currently needs to face. Heat waves associated with global warming negatively affect plant growth and development and will increase in intensity and frequency in the coming years. Tomato is one of the most produced and consumed fruit in the world but remarkable yield losses occur every year due to the sensitivity of many cultivars to heat stress (HS). New insights into how tomato plants are responding to HS will contribute to the development of cultivars with high yields under harsh temperature conditions. In this study, the analysis of microsporogenesis and pollen germination rate of eleven tomato cultivars after exposure to a chronic HS revealed differences between genotypes. Pollen development was either delayed and/or desynchronized by HS depending on the cultivar considered. In addition, except for two, pollen germination was abolished by HS in all cultivars. The transcriptome of floral buds at two developmental stages (tetrad and pollen floral buds) of five cultivars revealed common and specific molecular responses implemented by tomato cultivars to cope with chronic HS. These data provide valuable insights into the diversity of the genetic response of floral buds from different cultivars to HS and may contribute to the development of future climate resilient tomato varieties.
Collapse
Affiliation(s)
- N. Bollier
- INRAE, Université de Bordeaux, BFP, Bordeaux, France
| | | | - A. Dakdaki
- INRAE, Université de Bordeaux, BFP, Bordeaux, France
| | - E. Maza
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, Toulouse, France
| | - M. Zouine
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, Toulouse, France
| | - A. Djari
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, Toulouse, France
| | - M. Bouzayen
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, Toulouse, France
| | - C. Chevalier
- INRAE, Université de Bordeaux, BFP, Bordeaux, France
| | - F. Delmas
- INRAE, Université de Bordeaux, BFP, Bordeaux, France
| | - N. Gonzalez
- INRAE, Université de Bordeaux, BFP, Bordeaux, France
| | - M. Hernould
- INRAE, Université de Bordeaux, BFP, Bordeaux, France
| |
Collapse
|
10
|
Bizouerne E, Ly Vu J, Ly Vu B, Diouf I, Bitton F, Causse M, Verdier J, Buitink J, Leprince O. Genetic Variability in Seed Longevity and Germination Traits in a Tomato MAGIC Population in Contrasting Environments. PLANTS (BASEL, SWITZERLAND) 2023; 12:3632. [PMID: 37896095 PMCID: PMC10610530 DOI: 10.3390/plants12203632] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
The stable production of high vigorous seeds is pivotal to crop yield. Also, a high longevity is essential to avoid progressive loss of seed vigour during storage. Both seed traits are strongly influenced by the environment during seed development. Here, we investigated the impact of heat stress (HS) during fruit ripening on tomato seed lifespan during storage at moderate relative humidity, speed (t50) and homogeneity of germination, using a MAGIC population that was produced under optimal and HS conditions. A plasticity index was used to assess the extent of the impact of HS for each trait. HS reduced the average longevity and germination homogeneity by 50% within the parents and MAGIC population. However, there was a high genetic variability in the seed response to heat stress. A total of 39 QTLs were identified, including six longevity QTLs for seeds from control (3) and HS (3) conditions, and six plasticity QTLs for longevity, with only one overlapping with a longevity QTL under HS. Four out of the six longevity QTL co-located with t50 QTL, revealing hotspots for seed quality traits. Twenty-one QTLs with intervals below 3 cM were analyzed using previous transcriptome and gene network data to propose candidate genes for seed vigour and longevity traits.
Collapse
Affiliation(s)
- Elise Bizouerne
- Institut Agro, INRAE, University Angers, IRHS, SFR QUASAV, 49000 Angers, France; (E.B.); (J.L.V.); (B.L.V.); (J.V.); (J.B.)
| | - Joseph Ly Vu
- Institut Agro, INRAE, University Angers, IRHS, SFR QUASAV, 49000 Angers, France; (E.B.); (J.L.V.); (B.L.V.); (J.V.); (J.B.)
| | - Benoît Ly Vu
- Institut Agro, INRAE, University Angers, IRHS, SFR QUASAV, 49000 Angers, France; (E.B.); (J.L.V.); (B.L.V.); (J.V.); (J.B.)
| | - Isidore Diouf
- Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, INRAE, UR1052, CS60094, 84143 Avignon, France (F.B.); (M.C.)
| | - Frédérique Bitton
- Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, INRAE, UR1052, CS60094, 84143 Avignon, France (F.B.); (M.C.)
| | - Mathilde Causse
- Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, INRAE, UR1052, CS60094, 84143 Avignon, France (F.B.); (M.C.)
| | - Jérôme Verdier
- Institut Agro, INRAE, University Angers, IRHS, SFR QUASAV, 49000 Angers, France; (E.B.); (J.L.V.); (B.L.V.); (J.V.); (J.B.)
| | - Julia Buitink
- Institut Agro, INRAE, University Angers, IRHS, SFR QUASAV, 49000 Angers, France; (E.B.); (J.L.V.); (B.L.V.); (J.V.); (J.B.)
| | - Olivier Leprince
- Institut Agro, INRAE, University Angers, IRHS, SFR QUASAV, 49000 Angers, France; (E.B.); (J.L.V.); (B.L.V.); (J.V.); (J.B.)
| |
Collapse
|
11
|
Mizoi J, Todaka D, Imatomi T, Kidokoro S, Sakurai T, Kodaira KS, Takayama H, Shinozaki K, Yamaguchi-Shinozaki K. The ability to induce heat shock transcription factor-regulated genes in response to lethal heat stress is associated with thermotolerance in tomato cultivars. FRONTIERS IN PLANT SCIENCE 2023; 14:1269964. [PMID: 37868310 PMCID: PMC10585066 DOI: 10.3389/fpls.2023.1269964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023]
Abstract
Heat stress is a severe challenge for plant production, and the use of thermotolerant cultivars is critical to ensure stable production in high-temperature-prone environments. However, the selection of thermotolerant cultivars is difficult due to the complex nature of heat stress and the time and space needed for evaluation. In this study, we characterized genome-wide differences in gene expression between thermotolerant and thermosensitive tomato cultivars and examined the possibility of selecting gene expression markers to estimate thermotolerance among different tomato cultivars. We selected one thermotolerant and one thermosensitive cultivar based on physiological evaluations and compared heat-responsive gene expression in these cultivars under stepwise heat stress and acute heat shock conditions. Transcriptomic analyses reveled that two heat-inducible gene expression pathways, controlled by the heat shock element (HSE) and the evening element (EE), respectively, presented different responses depending on heat stress conditions. HSE-regulated gene expression was induced under both conditions, while EE-regulated gene expression was only induced under gradual heat stress conditions in both cultivars. Furthermore, HSE-regulated genes showed higher expression in the thermotolerant cultivar than the sensitive cultivar under acute heat shock conditions. Then, candidate expression biomarker genes were selected based on the transcriptome data, and the usefulness of these candidate genes was validated in five cultivars. This study shows that the thermotolerance of tomato is correlated with its ability to maintain the heat shock response (HSR) under acute severe heat shock conditions. Furthermore, it raises the possibility that the robustness of the HSR under severe heat stress can be used as an indicator to evaluate the thermotolerance of crop cultivars.
Collapse
Affiliation(s)
- Junya Mizoi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Daisuke Todaka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Imatomi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoshi Kidokoro
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tetsuya Sakurai
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Interdisciplinary Science Unit, Multidisciplinary Science Cluster, Research and Education Faculty, Kochi University, Nankoku, Japan
| | - Ken-Suke Kodaira
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Research Institute for Agricultural and Life Sciences, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
12
|
TS A, Srivastava A, Tomar BS, Behera TK, Krishna H, Jain PK, Pandey R, Singh B, Gupta R, Mangal M. Genetic analysis of heat tolerance in hot pepper: insights from comprehensive phenotyping and QTL mapping. FRONTIERS IN PLANT SCIENCE 2023; 14:1232800. [PMID: 37692444 PMCID: PMC10491018 DOI: 10.3389/fpls.2023.1232800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023]
Abstract
High temperatures present a formidable challenge to the cultivation of hot pepper, profoundly impacting not only vegetative growth but also leading to flower and fruit abscission, thereby causing a significant reduction in yield. To unravel the intricate genetic mechanisms governing heat tolerance in hot pepper, an F2 population was developed through the crossing of two distinct genotypes exhibiting contrasting heat tolerance characteristics: DLS-161-1 (heat tolerant) and DChBL-240 (heat susceptible). The F2 population, along with the parental lines, was subjected to comprehensive phenotyping encompassing diverse morphological, physiological, and biochemical heat-related traits under high temperature conditions (with maximum temperature ranging from 31 to 46.5°C and minimum temperature from 15.4 to 30.5°C). Leveraging the Illumina Nova Seq-6000 platform, Double digest restriction-site associated DNA sequencing (ddRAD-seq) was employed to generate 67.215 Gb data, with subsequent alignment of 218.93 million processed reads against the reference genome of Capsicum annuum. Subsequent variant calling and ordering resulted in 5806 polymorphic SNP markers grouped into 12 LGs. Further QTL analysis identified 64 QTLs with LOD values ranging from 2.517 to 11.170 and explained phenotypic variance ranging from 4.05 to 19.39%. Among them, 21 QTLs, explaining more than 10% phenotypic variance, were identified as major QTLs controlling 9 morphological, 3 physiological, and 2 biochemical traits. Interestingly, several QTLs governing distinct parameters were found to be colocalized, suggesting either a profound correlation between the QTLs regulating these traits or their significant genomic proximity. In addition to the QTLs, we also identified 368380 SSR loci within the identified QTL regions, dinucleotides being the most abundant type (211,381). These findings provide valuable insights into the genetics of heat tolerance in hot peppers. The identified QTLs and SSR markers offer opportunities to develop heat-tolerant varieties, ensuring better crop performance under high-temperature conditions.
Collapse
Affiliation(s)
- Aruna TS
- Division of Vegetable Science, Indian Agricultural Research Institute, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Arpita Srivastava
- Division of Vegetable Science, Indian Agricultural Research Institute, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Bhoopal Singh Tomar
- Division of Vegetable Science, Indian Agricultural Research Institute, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Tusar Kanti Behera
- Indian Council of Agricultural Research-Indian Institute of Vegetable Research (IIVR), Indian Council of Agricultural Research (ICAR), Varanasi, India
| | - Hari Krishna
- Division of Genetics, Indian Agricultural Research Institute, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Pradeep Kumar Jain
- National Institute of Plant Biotechnology, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Renu Pandey
- Division of Plant Physiology, Indian Agricultural Research Institute, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Bhupinder Singh
- Division of Environment Science, Indian Agricultural Research Institute, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Ruchi Gupta
- Department of Computer Sciences, Jamia Milia Islamia, New Delhi, India
| | - Manisha Mangal
- Division of Vegetable Science, Indian Agricultural Research Institute, Indian Council of Agricultural Research (ICAR), New Delhi, India
| |
Collapse
|
13
|
Graci S, Ruggieri V, Francesca S, Rigano MM, Barone A. Genomic Insights into the Origin of a Thermotolerant Tomato Line and Identification of Candidate Genes for Heat Stress. Genes (Basel) 2023; 14:genes14030535. [PMID: 36980808 PMCID: PMC10048601 DOI: 10.3390/genes14030535] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Climate change represents the main problem for agricultural crops, and the constitution of heat-tolerant genotypes is an important breeder’s strategy to reduce yield losses. The aim of the present study was to investigate the whole genome of a heat-tolerant tomato genotype (E42), in order to identify candidate genes involved in its response to high temperature. E42 presented a high variability for chromosomes 1, 4, 7 and 12, and phylogenetic analysis highlighted its relationship with the wild S. pimpinellifolium species. Variants with high (18) and moderate (139) impact on protein function were retrieved from two lists of genes related to heat tolerance and reproduction. This analysis permitted us to prioritize a subset of 35 candidate gene mapping in polymorphic regions, some colocalizing in QTLs controlling flowering in tomato. Among these genes, we identified 23 HSPs, one HSF, six involved in flowering and five in pollen activity. Interestingly, one gene coded for a flowering locus T1 and mapping on chromosome 11 resides in a QTL region controlling flowering and also showed 100% identity with an S. pimpinellifolium allele. This study provides useful information on both the E42 genetic background and heat stress response, and further studies will be conducted to validate these genes.
Collapse
Affiliation(s)
- Salvatore Graci
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy
| | | | - Silvana Francesca
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy
| | - Maria Manuela Rigano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy
| | - Amalia Barone
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy
- Correspondence: ; Tel.: +39-0812539491
| |
Collapse
|
14
|
Naik B, Kumar V, Rizwanuddin S, Chauhan M, Choudhary M, Gupta AK, Kumar P, Kumar V, Saris PEJ, Rather MA, Bhuyan S, Neog PR, Mishra S, Rustagi S. Genomics, Proteomics, and Metabolomics Approaches to Improve Abiotic Stress Tolerance in Tomato Plant. Int J Mol Sci 2023; 24:3025. [PMID: 36769343 PMCID: PMC9918255 DOI: 10.3390/ijms24033025] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
To explore changes in proteins and metabolites under stress circumstances, genomics, proteomics, and metabolomics methods are used. In-depth research over the previous ten years has gradually revealed the fundamental processes of plants' responses to environmental stress. Abiotic stresses, which include temperature extremes, water scarcity, and metal toxicity brought on by human activity and urbanization, are a major cause for concern, since they can result in unsustainable warming trends and drastically lower crop yields. Furthermore, there is an emerging reliance on agrochemicals. Stress is responsible for physiological transformations such as the formation of reactive oxygen, stomatal opening and closure, cytosolic calcium ion concentrations, metabolite profiles and their dynamic changes, expression of stress-responsive genes, activation of potassium channels, etc. Research regarding abiotic stresses is lacking because defense feedbacks to abiotic factors necessitate regulating the changes that activate multiple genes and pathways that are not properly explored. It is clear from the involvement of these genes that plant stress response and adaptation are complicated processes. Targeting the multigenicity of plant abiotic stress responses caused by genomic sequences, transcripts, protein organization and interactions, stress-specific and cellular transcriptome collections, and mutant screens can be the first step in an integrative approach. Therefore, in this review, we focused on the genomes, proteomics, and metabolomics of tomatoes under abiotic stress.
Collapse
Affiliation(s)
- Bindu Naik
- Department of Food Science and Technology, Graphic Era (Deemed to Be) University, Bell Road, Clement Town, Dehradun 248002, Uttarakhand, India
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Rama Nagar, Jolly Grant, Dehradun 248014, Uttarakhand, India
| | - Sheikh Rizwanuddin
- Department of Life Sciences, Graphic Era (Deemed to Be) University, Bell Road, Clement Town, Dehradun 248002, Uttarakhand, India
| | - Mansi Chauhan
- Department of Life Sciences, Graphic Era (Deemed to Be) University, Bell Road, Clement Town, Dehradun 248002, Uttarakhand, India
| | - Megha Choudhary
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Rama Nagar, Jolly Grant, Dehradun 248014, Uttarakhand, India
| | - Arun Kumar Gupta
- Department of Food Science and Technology, Graphic Era (Deemed to Be) University, Bell Road, Clement Town, Dehradun 248002, Uttarakhand, India
| | - Pankaj Kumar
- Department of Microbiology, Dolphin (PG) Institute of Biomedical and Natural Sciences, Dehradun 248007, Uttarakhand, India
| | - Vivek Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Rama Nagar, Jolly Grant, Dehradun 248014, Uttarakhand, India
| | - Per Erik Joakim Saris
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, FI-00014 Helsinki, Finland
| | - Muzamil Ahmad Rather
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Shuvam Bhuyan
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Panchi Rani Neog
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Sadhna Mishra
- Faculty of Agricultural Sciences, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Sarvesh Rustagi
- Department of Food Technology, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| |
Collapse
|
15
|
Bhandari P, Kim J, Lee TG. Genetic architecture of fresh-market tomato yield. BMC PLANT BIOLOGY 2023; 23:18. [PMID: 36624387 PMCID: PMC9827693 DOI: 10.1186/s12870-022-04018-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The fresh-market tomato (Solanum lycopersicum) is bred for direct consumption and is selected for a high yield of large fruits. To understand the genetic variations (distinct types of DNA sequence polymorphism) that influence the yield, we collected the phenotypic variations in the yields of total fruit, extra-large-sized fruit, small-sized fruit, or red-colored fruit from 68 core inbred contemporary U.S. fresh-market tomatoes for three consecutive years and the genomic information in 8,289,741 single nucleotide polymorphism (SNP) positions from the whole-genome resequencing of these tomatoes. RESULTS Genome-wide association (GWA) mapping using the SNP data with or without SNP filtering steps using the regularization methods, validated with quantitative trait loci (QTL) linkage mapping, identified 18 significant association signals for traits evaluated. Among them, 10 of which were not located within genomic regions previously identified as being associated with fruit size/shape. When mapping-driven association signals [558 SNPs associated with 28 yield (component) traits] were used to calculate genomic estimated breeding values (GEBVs) of evaluated traits, the prediction accuracies of the extra-large-sized fruit and small-sized fruit yields were higher than those of the total and red-colored fruit yields, as we tested the generated breeding values in inbred tomatoes and F2 populations. Improved accuracy in GEBV calculation of evaluated traits was achieved by using 364 SNPs identified using the regularization methods. CONCLUSIONS Together, these results provide an understanding of the genetic variations underlying the heritable phenotypic variability in yield in contemporary tomato breeding and the information necessary for improving such economically important and complex quantitative trait through breeding.
Collapse
Affiliation(s)
- Prashant Bhandari
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Juhee Kim
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, 33598, USA
| | - Tong Geon Lee
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA.
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, 33598, USA.
- Plant Breeders Working Group, University of Florida, Gainesville, FL, 32611, USA.
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL, 32611, USA.
- Bayer, Chesterfield, MO, 63017, USA.
| |
Collapse
|
16
|
Rasheed A, Ilyas M, Khan TN, Mahmood A, Riaz U, Chattha MB, Al Kashgry NAT, Binothman N, Hassan MU, Wu Z, Qari SH. Study of genetic variability, heritability, and genetic advance for yield-related traits in tomato ( Solanum lycopersicon MILL.). Front Genet 2023; 13:1030309. [PMID: 36685955 PMCID: PMC9845701 DOI: 10.3389/fgene.2022.1030309] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/29/2022] [Indexed: 01/06/2023] Open
Abstract
Tomato is one of the most significant vegetable crops, which provides several important dietary components. Pakistan has a significant low tomato yield compared to other countries because of low genetic diversity and the absence of improved cultivars. The present study aimed to investigate the genetic variability, heritability, and genetic advance for yield and yield-related traits in tomato. For this purpose, eight tomato parents and their 15 crosses or hybrids were evaluated to study the relevant traits. Significant variation was observed for all studied traits. Higher values of the genotypic coefficient of variability (GCV) and phenotypic coefficient of variability (PCV) were recorded for yield per plant (YP) (kg) (37.62% and 37.79%), as well as the number of fruits per cluster (NFRC) (31.52% and 31.71%), number of flowers per cluster (24.63 and 24.67), and single fruit weight (g) (23.49 and 23.53), which indicated that the selection for these traits would be fruitful. Higher heritability (h2) estimates were observed for the number of flowers per cluster (NFC) (0.99%), single fruit weight (SFW) (g) (0.99%), and yield per plant (YP) (kg) (0.99%). Single fruit weight (SFW) (g) exhibited higher values for all components of variability. High genetic advance as a % of the mean (GAM) coupled with higher heritability (h2) was noted for the yield per plant (YP) (kg) (52.58%) and the number of fruits per cluster (NFRC) (43.91). NFRC and SFW (g) had a highly significant correlation with YP (kg), while FSPC had a significant positive association with YP (kg), and these traits can be selected to enhance YP (kg). Among the 15 hybrids, Nagina × Continental, Pakit × Continental, and Roma × BSX-935 were selected as high-yielding hybrids for further evaluation and analysis. These findings revealed that the best performing hybrids could be used to enhance seed production and to develop high-yielding varieties. The parents could be further tested to develop hybrids suitable for changing climatic conditions. The selection of YP (kg), SFW (g), NFC, and NFRC would be ideal for selecting the best hybrids.
Collapse
Affiliation(s)
- Adnan Rasheed
- Key Laboratory of Plant Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China,Department of Plant Breeding and Molecular Genetics, Faculty of Agriculture, The University of Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan,Vegetable Crops Research Programme, Horticultural Research Institute, National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Muhammad Ilyas
- Department of Plant Breeding and Molecular Genetics, Faculty of Agriculture, The University of Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Taj Naseeb Khan
- Vegetable Crops Research Programme, Horticultural Research Institute, National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Usama Riaz
- Department Entomology, Faculty of Agriculture, The University of Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Muhammad Bilal Chattha
- Department of Agronomy, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | | | - Najat Binothman
- Department of Chemistry, College of Sciences and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Ziming Wu
- Key Laboratory of Plant Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China,*Correspondence: Ziming Wu,
| | - Sameer H. Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
17
|
Fernández-Crespo E, Liu-Xu L, Albert-Sidro C, Scalschi L, Llorens E, González-Hernández AI, Crespo O, Gonzalez-Bosch C, Camañes G, García-Agustín P, Vicedo B. Exploiting Tomato Genotypes to Understand Heat Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2022; 11:3170. [PMID: 36432899 PMCID: PMC9696584 DOI: 10.3390/plants11223170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Increased temperatures caused by climate change constitute a significant threat to agriculture and food security. The selection of improved crop varieties with greater tolerance to heat stress is crucial for the future of agriculture. To overcome this challenge, four traditional tomato varieties from the Mediterranean basin and two commercial genotypes were selected to characterize their responses at high temperatures. The screening of phenotypes under heat shock conditions allowed to classify the tomato genotypes as: heat-sensitive: TH-30, ADX2; intermediate: ISR-10 and Ailsa Craig; heat-tolerant: MM and MO-10. These results reveal the intra-genetical variation of heat stress responses, which can be exploited as promising sources of tolerance to climate change conditions. Two different thermotolerance strategies were observed. The MO-10 plants tolerance was based on the control of the leaf cooling mechanism and the rapid RBOHB activation and ABA signaling pathways. The variety MM displayed a different strategy based on the activation of HSP70 and 90, as well as accumulation of phenolic compounds correlated with early induction of PAL expression. The importance of secondary metabolism in the recovery phase has been also revealed. Understanding the molecular events allowing plants to overcome heat stress constitutes a promising approach for selecting climate resilient tomato varieties.
Collapse
Affiliation(s)
- Emma Fernández-Crespo
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Biología, Bioquímica y Ciencias Naturales, ESTCE, Universitat Jaume I, 12071 Castellón, Spain
| | - Luisa Liu-Xu
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Biología, Bioquímica y Ciencias Naturales, ESTCE, Universitat Jaume I, 12071 Castellón, Spain
| | - Carlos Albert-Sidro
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Biología, Bioquímica y Ciencias Naturales, ESTCE, Universitat Jaume I, 12071 Castellón, Spain
| | - Loredana Scalschi
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Biología, Bioquímica y Ciencias Naturales, ESTCE, Universitat Jaume I, 12071 Castellón, Spain
| | - Eugenio Llorens
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Biología, Bioquímica y Ciencias Naturales, ESTCE, Universitat Jaume I, 12071 Castellón, Spain
| | - Ana Isabel González-Hernández
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Biología, Bioquímica y Ciencias Naturales, ESTCE, Universitat Jaume I, 12071 Castellón, Spain
| | - Oscar Crespo
- Departament de Bioquímica, Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Universitat de València, 46980 Valencia, Spain
| | - Carmen Gonzalez-Bosch
- Departament de Bioquímica, Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Universitat de València, 46980 Valencia, Spain
| | - Gemma Camañes
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Biología, Bioquímica y Ciencias Naturales, ESTCE, Universitat Jaume I, 12071 Castellón, Spain
| | - Pilar García-Agustín
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Biología, Bioquímica y Ciencias Naturales, ESTCE, Universitat Jaume I, 12071 Castellón, Spain
| | - Begonya Vicedo
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Biología, Bioquímica y Ciencias Naturales, ESTCE, Universitat Jaume I, 12071 Castellón, Spain
| |
Collapse
|
18
|
Chaudhary S, Devi P, HanumanthaRao B, Jha UC, Sharma KD, Prasad PVV, Kumar S, Siddique KHM, Nayyar H. Physiological and Molecular Approaches for Developing Thermotolerance in Vegetable Crops: A Growth, Yield and Sustenance Perspective. FRONTIERS IN PLANT SCIENCE 2022; 13:878498. [PMID: 35837452 PMCID: PMC9274134 DOI: 10.3389/fpls.2022.878498] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Vegetables are a distinct collection of plant-based foods that vary in nutritional diversity and form an important part of the healthy diet of the human being. Besides providing basic nutrition, they have great potential for boosting human health. The balanced consumption of vegetables is highly recommended for supplementing the human body with better nutrition density, dietary fiber, minerals, vitamins, and bioactive compounds. However, the production and quality of fresh vegetables are influenced directly or indirectly by exposure to high temperatures or heat stress (HS). A decline in quality traits and harvestable yield are the most common effects of HS among vegetable crops. Heat-induced morphological damage, such as poor vegetative growth, leaf tip burning, and rib discoloration in leafy vegetables and sunburn, decreased fruit size, fruit/pod abortion, and unfilled fruit/pods in beans, are common, often rendering vegetable cultivation unprofitable. Further studies to trace down the possible physiological and biochemical effects associated with crop failure reveal that the key factors include membrane damage, photosynthetic inhibition, oxidative stress, and damage to reproductive tissues, which may be the key factors governing heat-induced crop failure. The reproductive stage of plants has extensively been studied for HS-induced abnormalities. Plant reproduction is more sensitive to HS than the vegetative stages, and affects various reproductive processes like pollen germination, pollen load, pollen tube growth, stigma receptivity, ovule fertility and, seed filling, resulting in poorer yields. Hence, sound and robust adaptation and mitigation strategies are needed to overcome the adverse impacts of HS at the morphological, physiological, and biochemical levels to ensure the productivity and quality of vegetable crops. Physiological traits such as the stay-green trait, canopy temperature depression, cell membrane thermostability, chlorophyll fluorescence, relative water content, increased reproductive fertility, fruit numbers, and fruit size are important for developing better yielding heat-tolerant varieties/cultivars. Moreover, various molecular approaches such as omics, molecular breeding, and transgenics, have been proved to be useful in enhancing/incorporating tolerance and can be potential tools for developing heat-tolerant varieties/cultivars. Further, these approaches will provide insights into the physiological and molecular mechanisms that govern thermotolerance and pave the way for engineering "designer" vegetable crops for better health and nutritional security. Besides these approaches, agronomic methods are also important for adaptation, escape and mitigation of HS protect and improve yields.
Collapse
Affiliation(s)
| | - Poonam Devi
- Department of Botany, Panjab University, Chandigarh, India
| | - Bindumadhava HanumanthaRao
- World Vegetable Center, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Greater Hyderabad, Hyderabad, India
- Marri Channa Reddy Foundation (MCRF), Hyderabad, India
| | - Uday Chand Jha
- Crop Improvement Division, Indian Institute of Pulses Research, Kanpur, India
| | - Kamal Dev Sharma
- Department of Agricultural Biotechnology, Chaudhary Sarwan Kumar Himachal Pradesh Agricultural University, Palampur, India
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Shiv Kumar
- International Center for Agriculture Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Kadambot H. M. Siddique
- The University of Western Australia Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India
| |
Collapse
|
19
|
Gonzalo MJ, da Maia LC, Nájera I, Baixauli C, Giuliano G, Ferrante P, Granell A, Asins MJ, Monforte AJ. Genetic Control of Reproductive Traits under Different Temperature Regimes in Inbred Line Populations Derived from Crosses between S. pimpinellifolium and S. lycopersicum Accessions. PLANTS 2022; 11:plants11081069. [PMID: 35448797 PMCID: PMC9027731 DOI: 10.3390/plants11081069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/02/2022]
Abstract
In the present work, we study the genetic control of reproductive traits under different heat stress conditions in two populations of inbred lines derived from crosses between two S. pimpinellifolium accessions and two tomato cultivars (E9×L5 and E6203×LA1589). The temperature increase affected the reproductive traits, especially at extremely high temperatures, where only a few lines were able to set fruits. Even though a relative modest number of QTLs was identified, two clusters of QTLs involved in the responses of reproductive traits to heat stress were detected in both populations on chromosomes 1 and 2. Interestingly, several epistatic interactions were detected in the E9×L5 population, which were classified into three classes based on the allelic interaction: dominant (one locus suppressed the allelic effects of a second locus), co-adaptive (the double-homozygous alleles from the same parent alleles showed a higher phenotypic value than the combination of homozygous alleles from alternative parents) and transgressive (the combination of double-homozygous alleles from different parents showed better performance than double-homozygous alleles from the same parents). These results reinforce the important role of non-additive genetic variance in the response to heat stress and the potential of the new allelic combinations that arise after wide crosses.
Collapse
Affiliation(s)
- Maria Jose Gonzalo
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46010 Valencia, Spain; (M.J.G.); (L.C.d.M.); (A.G.)
| | - Luciano Carlos da Maia
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46010 Valencia, Spain; (M.J.G.); (L.C.d.M.); (A.G.)
- Plant Genomics and Breeding Center, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas 96010-610, RS, Brazil
| | - Inmaculada Nájera
- Centro de Experiencias de Cajamar en Paiporta, 46200 Paiporta, Spain; (I.N.); (C.B.)
| | - Carlos Baixauli
- Centro de Experiencias de Cajamar en Paiporta, 46200 Paiporta, Spain; (I.N.); (C.B.)
| | - Giovanni Giuliano
- Agenzia Nazionale Per Le Nuove Tecnologie, L’energia e Lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Via Anguillarese 301, 00123 Rome, Italy; (G.G.); (P.F.)
| | - Paola Ferrante
- Agenzia Nazionale Per Le Nuove Tecnologie, L’energia e Lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Via Anguillarese 301, 00123 Rome, Italy; (G.G.); (P.F.)
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46010 Valencia, Spain; (M.J.G.); (L.C.d.M.); (A.G.)
| | - Maria Jose Asins
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera Moncada-Náquera, Km 4.5, Moncada, 46113 Valencia, Spain;
| | - Antonio Jose Monforte
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46010 Valencia, Spain; (M.J.G.); (L.C.d.M.); (A.G.)
- Correspondence:
| |
Collapse
|
20
|
Abstract
On the world stage, the increase in temperatures due to global warming is already a reality that has become one of the main challenges faced by the scientific community. Since agriculture is highly dependent on climatic conditions, it may suffer a great impact in the short term if no measures are taken to adapt and mitigate the agricultural system. Plant responses to abiotic stresses have been the subject of research by numerous groups worldwide. Initially, these studies were concentrated on model plants, and, later, they expanded their studies in several economically important crops such as rice, corn, soybeans, coffee, and others. However, agronomic evaluations for the launching of cultivars and the classical genetic improvement process focus, above all, on productivity, historically leaving factors such as tolerance to abiotic stresses in the background. Considering the importance of the impact that abiotic stresses can have on agriculture in the short term, new strategies are currently being sought and adopted in breeding programs to understand the physiological, biochemical, and molecular responses to environmental disturbances in plants of agronomic interest, thus ensuring the world food security. Moreover, integration of these approaches is bringing new insights on breeding. We will discuss how water deficit, high temperatures, and salinity exert effects on plants.
Collapse
|
21
|
Li X, Cai K, Zhao Q, Li H, Wang X, Tigabu M, Sederoff R, Ma W, Zhao X. Morphological and Comparative Transcriptome Analysis of Three Species of Five-Needle Pines: Insights Into Phenotypic Evolution and Phylogeny. FRONTIERS IN PLANT SCIENCE 2022; 13:795631. [PMID: 35222462 PMCID: PMC8866173 DOI: 10.3389/fpls.2022.795631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Pinus koraiensis, Pinus sibirica, and Pinus pumila are the major five-needle pines in northeast China, with substantial economic and ecological values. The phenotypic variation, environmental adaptability and evolutionary relationships of these three five-needle pines remain largely undecided. It is therefore important to study their genetic differentiation and evolutionary history. To obtain more genetic information, the needle transcriptomes of the three five-needle pines were sequenced and assembled. To explore the relationship of sequence information and adaptation to a high mountain environment, data on needle morphological traits [needle length (NL), needle width (NW), needle thickness (NT), and fascicle width (FW)] and 19 climatic variables describing the patterns and intensity of temperature and precipitation at six natural populations were recorded. Geographic coordinates of altitude, latitude, and longitude were also obtained. The needle morphological data was combined with transcriptome information, location, and climate data, for a comparative analysis of the three five-needle pines. We found significant differences for needle traits among the populations of the three five-needle pine species. Transcriptome analysis showed that the phenotypic variation and environmental adaptation of the needles of P. koraiensis, P. sibirica, and P. pumila were related to photosynthesis, respiration, and metabolites. Analysis of orthologs from 11 Pinus species indicated a closer genetic relationship between P. koraiensis and P. sibirica compared to P. pumila. Our study lays a foundation for genetic improvement of these five-needle pines and provides insights into the adaptation and evolution of Pinus species.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Kewei Cai
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Qiushuang Zhao
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Hanxi Li
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Xuelai Wang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Mulualem Tigabu
- Southern Swedish Forest Research Centre, Faculty of Forest Science, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Ronald Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Xiyang Zhao
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
| |
Collapse
|
22
|
Salinier J, Lefebvre V, Besombes D, Burck H, Causse M, Daunay MC, Dogimont C, Goussopoulos J, Gros C, Maisonneuve B, McLeod L, Tobal F, Stevens R. The INRAE Centre for Vegetable Germplasm: Geographically and Phenotypically Diverse Collections and Their Use in Genetics and Plant Breeding. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030347. [PMID: 35161327 PMCID: PMC8838894 DOI: 10.3390/plants11030347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 05/14/2023]
Abstract
The French National Research Institute for Agriculture, Food and the Environment (INRAE) conserves and distributes five vegetable collections as seeds: the aubergine* (in this article the word aubergine refers to eggplant), pepper, tomato, melon and lettuce collections, together with their wild or cultivated relatives, are conserved in Avignon, France. Accessions from the collections have geographically diverse origins, are generally well-described and fixed for traits of agronomic or scientific interest and have available passport data. In addition to currently conserving over 10,000 accessions (between 900 and 3000 accessions per crop), the centre maintains scientific collections such as core collections and bi- or multi-parental populations, which have also been genotyped with SNP markers. Each collection has its own merits and highlights, which are discussed in this review: the aubergine collection is a rich source of crop wild relatives of Solanum; the pepper, melon and lettuce collections have been screened for resistance to plant pathogens, including viruses, fungi, oomycetes and insects; and the tomato collection has been at the heart of genome-wide association studies for fruit quality traits and environmental stress tolerance.
Collapse
|
23
|
Hoshikawa K, Pham D, Ezura H, Schafleitner R, Nakashima K. Genetic and Molecular Mechanisms Conferring Heat Stress Tolerance in Tomato Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:786688. [PMID: 35003175 PMCID: PMC8739973 DOI: 10.3389/fpls.2021.786688] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/29/2021] [Indexed: 05/17/2023]
Abstract
Climate change is a major threat to global food security. Changes in climate can directly impact food systems by reducing the production and genetic diversity of crops and their wild relatives, thereby restricting future options for breeding improved varieties and reducing the ability to adapt crops to future challenges. The global surface temperature is predicted to rise by an average of 0.3°C during the next decade, and the Paris Agreement (Paris Climate Accords) aims to limit global warming to below an average of 2°C, preferably to 1.5°C compared to pre-industrial levels. Even if the goal of the Paris Agreement can be met, the predicted rise in temperatures will increase the likelihood of extreme weather events, including heatwaves, making heat stress (HS) a major global abiotic stress factor for many crops. HS can have adverse effects on plant morphology, physiology, and biochemistry during all stages of vegetative and reproductive development. In fruiting vegetables, even moderate HS reduces fruit set and yields, and high temperatures may result in poor fruit quality. In this review, we emphasize the effects of abiotic stress, especially at high temperatures, on crop plants, such as tomatoes, touching upon key processes determining plant growth and yield. Specifically, we investigated the molecular mechanisms involved in HS tolerance and the challenges of developing heat-tolerant tomato varieties. Finally, we discuss a strategy for effectively improving the heat tolerance of vegetable crops.
Collapse
Affiliation(s)
- Ken Hoshikawa
- Japan International Research Center for Agricultural Sciences, Tsukuba, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
- Vegetable Diversity and Improvement, World Vegetable Center, Tainan, Taiwan
| | - Dung Pham
- Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Hiroshi Ezura
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | | | - Kazuo Nakashima
- Japan International Research Center for Agricultural Sciences, Tsukuba, Japan
| |
Collapse
|
24
|
Chen Y, Guo Z, Dong L, Fu Z, Zheng Q, Zhang G, Qin L, Sun X, Shi Z, Fahad S, Xie F, Saud S. Turf performance and physiological responses of native Poa species to summer stress in Northeast China. PeerJ 2021; 9:e12252. [PMID: 34703673 PMCID: PMC8487621 DOI: 10.7717/peerj.12252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/14/2021] [Indexed: 11/20/2022] Open
Abstract
Rapid rise in temperature in summer causes severe injury to cool-season turfgrass of both native species and introduced ones in Heilongjiang of Northeast China. The objectives of this study were to compare physiological responses to seasonal heat stresses and turf performances between native and introduced commercial Poa accessions. Three Chinese native Poa species (i.e., P. pratensis, P. sibirica and P. sphondylodes) and three USA Kentucky bluegrass cultivars (ie. 'Midnight', 'Moonlight' and 'BlueChip') were evaluated under field conditions in 2017 and 2018. All accessions showed unique characteristics and considerable seasonal differences in response to temperatures. However, performances over all accessions were largely similar in early spring and autumn. In summer, native P. pratensis performed similar to 'Midnight', 'Moonlight' or 'BlueChip', with respect to such traits or parameters as quality, coverage, color intensity, growth rate, osmolytes, ROS and anti-oxidant production. Native P. pratensis could be used as a new turf resource for further improvement and application under the specific climatic conditions in Heilongjiang; native P. sphondylodes may be used in repairing damaged environments or for alternative seasonal greenness.
Collapse
Affiliation(s)
- Yajun Chen
- College of Horticulture and Landscaping, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhixin Guo
- College of Horticulture and Landscaping, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Lili Dong
- College of Horticulture and Landscaping, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhenxuan Fu
- College of Horticulture and Landscaping, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Qianjiao Zheng
- College of Horticulture and Landscaping, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Gaoyun Zhang
- College of Horticulture and Landscaping, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ligang Qin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiaoyang Sun
- College of Horticulture and Landscaping, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhenjie Shi
- College of Horticulture and Landscaping, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shah Fahad
- Department of Agronomy, University of Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Fuchun Xie
- College of Horticulture and Landscaping, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shah Saud
- College of Horticulture and Landscaping, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|