1
|
Yao Y, Guo W, Gou J, Hu Z, Liu J, Ma J, Zong Y, Xin M, Chen W, Li Q, Wang Z, Zhang R, Uauy C, Baloch FS, Ni Z, Sun Q. Wheat2035: Integrating pan-omics and advanced biotechnology for future wheat design. MOLECULAR PLANT 2025; 18:272-297. [PMID: 39780492 DOI: 10.1016/j.molp.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
Wheat (Triticum aestivum) production is vital for global food security, providing energy and protein to millions of people worldwide. Recent advancements in wheat research have led to significant increases in production, fueled by technological and scientific innovation. Here, we summarize the major advancements in wheat research, particularly the integration of biotechnologies and a deeper understanding of wheat biology. The shift from multi-omics to pan-omics approaches in wheat research has greatly enhanced our understanding of the complex genome, genomic variations, and regulatory networks to decode complex traits. We also outline key scientific questions, potential research directions, and technological strategies for improving wheat over the next decade. Since global wheat production is expected to increase by 60% in 2050, continued innovation and collaboration are crucial. Integrating biotechnologies and a deeper understanding of wheat biology will be essential for addressing future challenges in wheat production, ensuring sustainable practices and improved productivity.
Collapse
Affiliation(s)
- Yingyin Yao
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jinying Gou
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jie Liu
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jun Ma
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yuan Zong
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Zihao Wang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Ruijie Zhang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Faheem Shehzad Baloch
- Department of Biotechnology, Faculty of Science, Mersin University, Yenişehir, Mersin 33343, Turkey; Department of Plant Resources and Environment, Jeju National University, Jeju City, Republic of Korea
| | - Zhongfu Ni
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Qixin Sun
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Liu G, Zhang R, Wu Z, Yu J, Lou H, Zhu J, Liu J, Gou J, Ni Z, Sun Q, Liang R. TaDL interacts with TaB3 and TaNF-YB1 to synergistically regulate the starch synthesis and grain quality in bread wheat. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024. [PMID: 39714104 DOI: 10.1111/jipb.13815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/19/2024] [Indexed: 12/24/2024]
Abstract
Starch biosynthesis is a critical factor in wheat (Triticum aestivum L.) quality and yield. However, the full scope of its regulation is not fully understood. Here we report that TaDL interacts with TaB3 and TaNF-YB1 to synergistically regulate starch biosynthesis and quality in wheat. Genome-edited tadl mutant lines had smaller and lighter grains with lower total starch and amylose contents compared to wild type (WT). Correspondingly, the transcript levels of starch biosynthesis-related genes, including TaSUS1, TaSUS2, TaAGPL2, TaSBEIIa, TaGBSSII, and TaSWEET2a, were markedly lower at 15 d after flowering (DAF) in tadl mutants. TaDL physically interacted with TaB3 and TaNF-YB1 and activated the transcription of TaSUS2 and TaAGPL2 through direct binding to their promoter regions. A null mutant of TaB3 also affected grain filling, with phenotypes similar to those of tadl mutants, whereas overexpression of TaNF-YB1 promoted grain filling. Our study demonstrated that TaDL plays an essential role in starch biosynthesis and identified an elite allele (TaDL-BI) associated with starch content, providing insights into the underlying molecular mechanism of wheat grain filling, which may be useful in breeding of high-yielding wheat and quality improvement.
Collapse
Affiliation(s)
- Guoyu Liu
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Runqi Zhang
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Ziyan Wu
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jiazheng Yu
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Hongyao Lou
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jun Zhu
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jinying Gou
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Rongqi Liang
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
3
|
Liu Y, Yu R, Shen L, Sun M, Peng Y, Zeng Q, Shen K, Yu X, Wu H, Ye B, Wang Z, Sun Z, Liu D, Sun X, Zhang Z, Dong J, Dong J, Han D, He Z, Hao Y, Wu J, Guo Z. Genomic insights into the modifications of spike morphology traits during wheat breeding. PLANT, CELL & ENVIRONMENT 2024; 47:5470-5482. [PMID: 39205629 DOI: 10.1111/pce.15117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Over the past century, environmental changes have significantly impacted wheat spike morphology, crucial for adaptation and grain yield. However, the changes in wheat spike modifications during this period remain largely unknown. This study examines 16 spike morphology traits in 830 accessions released from 1900 to 2020. It finds that spike weight, grain number per spike (GN), and thousand kernel weight have significantly increased, while spike length has no significant change. The increase in fertile spikelets is due to fewer degenerated spikelets, resulting in a higher GN. Genome-wide association studies identified 49,994 significant SNPs, grouped into 293 genomic regions. The accumulation of favorable alleles in these genomic regions indicates the genetic basis for modification in spike morphology traits. Genetic network analysis of these genomic regions reveals the genetic basis for phenotypic correlations among spike morphology traits. The haplotypes of the identified genomic regions display obvious geographical differentiation in global accessions and environmental adaptation over the past 120 years. In summary, we reveal the genetic basis of adaptive evolution and the interactions of spike morphology, offering valuable resources for the genetic improvement of spike morphology to enhance environmental adaptation.
Collapse
Affiliation(s)
- Yangyang Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Rui Yu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi, China
| | - Liping Shen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Mengjing Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yanchun Peng
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Kuocheng Shen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuchang Yu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - He Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Botao Ye
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziying Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiweng Sun
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Danning Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohui Sun
- Yantai Academy of Agricultural Sciences, Yantai, China
| | - Zhiliang Zhang
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jiayu Dong
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jing Dong
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, Beijing, China
| | - Yuanfeng Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi, China
| | - Zifeng Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Li X, Sun M, Cui Z, Jiang Y, Yang L, Jiang Y. Transcription factor ZmNAC19 promotes embryo development in Arabidopsis thaliana. PLANT CELL REPORTS 2024; 43:244. [PMID: 39340665 DOI: 10.1007/s00299-024-03335-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024]
Abstract
KEY MESSAGE Overexpression of ZmNAC19, a NAC transcription factor gene from maize, improves embryo development in transgenic Arabidopsis. NAC proteins are plant-specific transcription factors that are involved in multiple aspects of plant growth, development and stress response. Although functions of many NAC transcription factors have been elucidated, little is known about their roles in seed development. In this study, we report the function of a maize NAC transcription factor ZmNAC19 in seed development. ZmNAC19 is highly expressed in embryos of developing maize seeds. ZmNAC19 localizes to nucleus and exhibits transactivation activity in yeast cells. Overexpression of ZmNAC19 in Arabidopsis significantly increases seed size and seed yield. During 3 to 7 days after flowering, embryos of ZmNAC19-overexpression Arabidopsis lines developed faster compared to Col-0, while no visible differences were detected for their endosperms. Furthermore, overexpression of ZmNAC19 in Arabidopsis leads to increased transcription levels of two embryo development-related genes YUC1 and RGE1, and several elements proven to be binding sites of NAC transcription factors were observed in promoters of these two genes. Taken together, these results suggest that ZmNAC19 acts as a positive regulator in plant embryo development.
Collapse
Affiliation(s)
- Xiulan Li
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China.
| | - Mengdi Sun
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Zhenhao Cui
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Yuhan Jiang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Lingkun Yang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Yueshui Jiang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China.
| |
Collapse
|
5
|
Wondifraw MA, Winn ZJ, Haley SD, Stromberger JA, Hudson-Arns EE, Mason RE. Elucidation of the genetic architecture of water absorption capacity in hard winter wheat through genome wide association study. THE PLANT GENOME 2024; 17:e20500. [PMID: 39192589 DOI: 10.1002/tpg2.20500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/23/2024] [Accepted: 06/27/2024] [Indexed: 08/29/2024]
Abstract
Water absorption capacity (WAC) influences various aspects of bread making, such as loaf volume, bread yield, and shelf life. Despite its importance in the baking process and end-product quality, its genetic determinants are less explored. To address this limitation, a genome-wide association study was conducted on 337 hard wheat (Triticum aestivum L.) genotypes evaluated over 5 years in multi-environmental trials. Phenotyping was done using the solvent retention capacity (SRC) test with water (SRC-water), sucrose (SRC-sucrose), lactic acid (SRC-lactic acid), and sodium carbonate (SRC-carbonate) as solvents. Individuals were genotyped using genotyping-by-sequencing to detect single nucleotide polymorphisms across the wheat genome. To detect the genomic regions that underline the SRCs and gluten performance index (GPI), a genome-wide association study was performed using six multi-locus models using the mrMLM package in R. Adjusted means for SRC-water ranged from 54.1% to 66.5%, while SRC-carbonate exhibited a narrow range from 84.9% to 93.9%. Moderate to high genomic heritability values were observed for SRCs and GPI, ranging from h2 = 0.61 to 0.88. The genome-wide association study identified a total of 42 quantitative trait nucleotides (QTNs), of which five explained over 10% of the phenotypic variation (R2 ≥ 10%). Most of the QTNs were detected on chromosomes 1A, 1B, 3B, and 5B. Few QTNs, such as S1A_5190318, S1B_3282665, S4D_472908721, and S7A_37433960, were located near gliadin, glutenin starch synthesis, and galactosyltransferase genes. Overall, these results show WAC to be under polygenic genetic control, with genes involved in the synthesis of key flour components influencing overall water absorption.
Collapse
Affiliation(s)
- Meseret A Wondifraw
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | | | - Scott D Haley
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - John A Stromberger
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Emily E Hudson-Arns
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - R Esten Mason
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
6
|
Yang Y, Mu J, Hao X, Yang K, Cao Z, Feng J, Li R, Zhang N, Zhou G, Kong Y, Wang D. Identification and Analysis of the Mechanism of Stem Mechanical Strength Enhancement for Maize Inbred Lines QY1. Int J Mol Sci 2024; 25:8195. [PMID: 39125770 PMCID: PMC11312173 DOI: 10.3390/ijms25158195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Enhancing stalk strength is a crucial strategy to reduce lodging. We identified a maize inbred line, QY1, with superior stalk mechanical strength. Comprehensive analyses of the microstructure, cell wall composition, and transcriptome of QY1 were performed to elucidate the underlying factors contributing to its increased strength. Notably, both the vascular bundle area and the thickness of the sclerenchyma cell walls in QY1 were significantly increased. Furthermore, analyses of cell wall components revealed a significant increase in cellulose content and a notable reduction in lignin content. RNA sequencing (RNA-seq) revealed changes in the expression of numerous genes involved in cell wall synthesis and modification, especially those encoding pectin methylesterase (PME). Variations in PME activity and the degree of methylesterification were noted. Additionally, glycolytic efficiency in QY1 was significantly enhanced. These findings indicate that QY1 could be a valuable resource for the development of maize varieties with enhanced stalk mechanical strength and for biofuel production.
Collapse
Affiliation(s)
- Yumeng Yang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.Y.); (J.M.); (X.H.); (K.Y.); (Z.C.); (J.F.); (R.L.); (N.Z.)
| | - Jianing Mu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.Y.); (J.M.); (X.H.); (K.Y.); (Z.C.); (J.F.); (R.L.); (N.Z.)
| | - Xiaoning Hao
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.Y.); (J.M.); (X.H.); (K.Y.); (Z.C.); (J.F.); (R.L.); (N.Z.)
| | - Kangkang Yang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.Y.); (J.M.); (X.H.); (K.Y.); (Z.C.); (J.F.); (R.L.); (N.Z.)
| | - Ziyu Cao
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.Y.); (J.M.); (X.H.); (K.Y.); (Z.C.); (J.F.); (R.L.); (N.Z.)
| | - Jiping Feng
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.Y.); (J.M.); (X.H.); (K.Y.); (Z.C.); (J.F.); (R.L.); (N.Z.)
| | - Runhao Li
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.Y.); (J.M.); (X.H.); (K.Y.); (Z.C.); (J.F.); (R.L.); (N.Z.)
| | - Ning Zhang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.Y.); (J.M.); (X.H.); (K.Y.); (Z.C.); (J.F.); (R.L.); (N.Z.)
| | - Gongke Zhou
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao 266109, China;
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying 257000, China
| | - Yingzhen Kong
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.Y.); (J.M.); (X.H.); (K.Y.); (Z.C.); (J.F.); (R.L.); (N.Z.)
| | - Dian Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.Y.); (J.M.); (X.H.); (K.Y.); (Z.C.); (J.F.); (R.L.); (N.Z.)
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying 257000, China
| |
Collapse
|
7
|
Zhou L, Chang G, Shen C, Teng W, He X, Zhao X, Jing Y, Huang Z, Tong Y. Functional divergences of natural variations of TaNAM-A1 in controlling leaf senescence during wheat grain filling. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1242-1260. [PMID: 38656698 DOI: 10.1111/jipb.13658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/13/2024] [Indexed: 04/26/2024]
Abstract
Leaf senescence is an essential physiological process related to grain yield potential and nutritional quality. Green leaf duration (GLD) after anthesis directly reflects the leaf senescence process and exhibits large genotypic differences in common wheat; however, the underlying gene regulatory mechanism is still lacking. Here, we identified TaNAM-A1 as the causal gene of the major loci qGLD-6A for GLD during grain filling by map-based cloning. Transgenic assays and TILLING mutant analyses demonstrated that TaNAM-A1 played a critical role in regulating leaf senescence, and also affected spike length and grain size. Furthermore, the functional divergences among the three haplotypes of TaNAM-A1 were systematically evaluated. Wheat varieties with TaNAM-A1d (containing two mutations in the coding DNA sequence of TaNAM-A1) exhibited a longer GLD and superior yield-related traits compared to those with the wild type TaNAM-A1a. All three haplotypes were functional in activating the expression of genes involved in macromolecule degradation and mineral nutrient remobilization, with TaNAM-A1a showing the strongest activity and TaNAM-A1d the weakest. TaNAM-A1 also modulated the expression of the senescence-related transcription factors TaNAC-S-7A and TaNAC016-3A. TaNAC016-3A enhanced the transcriptional activation ability of TaNAM-A1a by protein-protein interaction, thereby promoting the senescence process. Our study offers new insights into the fine-tuning of the leaf functional period and grain yield formation for wheat breeding under various geographical climatic conditions.
Collapse
Affiliation(s)
- Longxi Zhou
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guowei Chang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chuncai Shen
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wan Teng
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xue He
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xueqiang Zhao
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanfu Jing
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Sciences, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhixiong Huang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Sciences, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiping Tong
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Sciences, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
8
|
Chakraborty A, Singh B, Pandey V, Parida SK, Bhatia S. MicroRNA164e suppresses NAC100 transcription factor-mediated synthesis of seed storage proteins in chickpea. THE NEW PHYTOLOGIST 2024; 242:2652-2668. [PMID: 38649769 DOI: 10.1111/nph.19770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/27/2024] [Indexed: 04/25/2024]
Abstract
Development of protein-enriched chickpea varieties necessitates an understanding of specific genes and key regulatory circuits that govern the synthesis of seed storage proteins (SSPs). Here, we demonstrated the novel involvement of Ca-miR164e-CaNAC100 in regulating SSP synthesis in chickpea. Ca-miRNA164e was significantly decreased during seed maturation, especially in high-protein accessions. The miRNA was found to directly target the transactivation conferring C-terminal region of a nuclear-localized transcription factor, CaNAC100 as revealed using RNA ligase-mediated-rapid amplification of cDNA ends and target mimic assays. The functional role of CaNAC100 was demonstrated through seed-specific overexpression (NACOE) resulting in significantly augmented seed protein content (SPC) consequential to increased SSP transcription. Further, NACOE lines displayed conspicuously enhanced seed weight but reduced numbers and yield. Conversely, a downregulation of CaNAC100 and SSP transcripts was evident in seed-specific overexpression lines of Ca-miR164e that culminated in significantly lowered SPC. CaNAC100 was additionally demonstrated to transactivate the SSP-encoding genes by directly binding to their promoters as demonstrated using electrophoretic mobility shift and dual-luciferase reporter assays. Taken together, our study for the first time established a distinct role of CaNAC100 in positively influencing SSP synthesis and its critical regulation by CamiR164e, thereby serving as an understanding that can be utilized for developing SPC-rich chickpea varieties.
Collapse
Affiliation(s)
- Anirban Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India
| | - Baljinder Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India
| | - Vimal Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India
| | - Swarup K Parida
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India
| | - Sabhyata Bhatia
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India
| |
Collapse
|
9
|
Fuertes-Aguilar J, Matilla AJ. Transcriptional Control of Seed Life: New Insights into the Role of the NAC Family. Int J Mol Sci 2024; 25:5369. [PMID: 38791407 PMCID: PMC11121595 DOI: 10.3390/ijms25105369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Transcription factors (TFs) regulate gene expression by binding to specific sequences on DNA through their DNA-binding domain (DBD), a universal process. This update conveys information about the diverse roles of TFs, focusing on the NACs (NAM-ATAF-CUC), in regulating target-gene expression and influencing various aspects of plant biology. NAC TFs appeared before the emergence of land plants. The NAC family constitutes a diverse group of plant-specific TFs found in mosses, conifers, monocots, and eudicots. This update discusses the evolutionary origins of plant NAC genes/proteins from green algae to their crucial roles in plant development and stress response across various plant species. From mosses and lycophytes to various angiosperms, the number of NAC proteins increases significantly, suggesting a gradual evolution from basal streptophytic green algae. NAC TFs play a critical role in enhancing abiotic stress tolerance, with their function conserved in angiosperms. Furthermore, the modular organization of NACs, their dimeric function, and their localization within cellular compartments contribute to their functional versatility and complexity. While most NAC TFs are nuclear-localized and active, a subset is found in other cellular compartments, indicating inactive forms until specific cues trigger their translocation to the nucleus. Additionally, it highlights their involvement in endoplasmic reticulum (ER) stress-induced programmed cell death (PCD) by activating the vacuolar processing enzyme (VPE) gene. Moreover, this update provides a comprehensive overview of the diverse roles of NAC TFs in plants, including their participation in ER stress responses, leaf senescence (LS), and growth and development. Notably, NACs exhibit correlations with various phytohormones (i.e., ABA, GAs, CK, IAA, JA, and SA), and several NAC genes are inducible by them, influencing a broad spectrum of biological processes. The study of the spatiotemporal expression patterns provides insights into when and where specific NAC genes are active, shedding light on their metabolic contributions. Likewise, this review emphasizes the significance of NAC TFs in transcriptional modules, seed reserve accumulation, and regulation of seed dormancy and germination. Overall, it effectively communicates the intricate and essential functions of NAC TFs in plant biology. Finally, from an evolutionary standpoint, a phylogenetic analysis suggests that it is highly probable that the WRKY family is evolutionarily older than the NAC family.
Collapse
Affiliation(s)
| | - Angel J. Matilla
- Departamento de Biología Funcional, Universidad de Santiago de Compostela, 14971 Santiago de Compostela, Spain
| |
Collapse
|
10
|
Fan N, Su L, Lv A, Wen W, Gao L, You X, Zhou P, An Y. PECTIN ACETYLESTERASE12 regulates shoot branching via acetic acid and auxin accumulation in alfalfa shoots. PLANT PHYSIOLOGY 2024; 195:518-533. [PMID: 38365203 DOI: 10.1093/plphys/kiae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/06/2023] [Accepted: 12/24/2023] [Indexed: 02/18/2024]
Abstract
Shoot branching is an important biological trait affecting alfalfa (Medicago sativa L.) production, but its development is complicated and the mechanism is not fully clear. In the present study, pectin acetylesterase 12 (MsPAE12) and NAM/ATAF/CUC-domain transcription factor gene (MsNAC73) were isolated from alfalfa. MsPAE12 was highly expressed in shoot apexes, and MsNAC73 was found to be a key transcriptional repressor of MsPAE12 by directly binding to salicylic acid (SA) and jasmonic acid (JA) elements in the MsPAE12 promoter. The biological functions of MsPAE12 and MsNAC73 were studied through overexpression (OE) and down-expression (RNAi) of the 2 genes in alfalfa. The numbers of shoot branches increased in MsPAE12-OE lines but decreased in MsPAE12-RNAi and MsNAC73-OE plants, which was negatively related to their indole-3-acetic acid (IAA) accumulation in shoot apexes. Furthermore, the contents of acetic acid (AA) in shoot apexes decreased in MsPAE12-OE plants but increased in MsPAE12-RNAi and MsNAC73-OE plants. The changes of AA contents were positively related to the expression of TRYPTOPHAN AMINOTRANSFERASE 1 (MsTAA1), TRYPTOPHAN AMINOTRANSFERASE-RELATED 2 (MsTAR2), and YUCCA flavin monooxygenase (MsYUCC4) and the contents of tryptophan (Trp), indole-3-pyruvic acid (IPA), and IAA in shoot apexes of MsPAE12-OE, MsPAE12-RNAi, and MsNAC73-OE plants. Exogenous application of AA to wild type (WT) and MsPAE12-OE plants increased Trp, IPA, and IAA contents and decreased branch number. Exogenous IAA suppressed shoot branching in MsPAE12-OE plants, but exogenous IAA inhibitors increased shoot branching in MsPAE12-RNAi plants. These results indicate that the MsNAC73-MsPAE12 module regulates auxin-modulated shoot branching via affecting AA accumulation in shoot apexes of alfalfa.
Collapse
Affiliation(s)
- Nana Fan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- College of Life Science, Yulin University, Yulin 719000, China
| | - Liantai Su
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Aimin Lv
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Wuwu Wen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li Gao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiangkai You
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peng Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuan An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai 201101, China
| |
Collapse
|
11
|
Cao S, Liu B, Wang D, Rasheed A, Xie L, Xia X, He Z. Orchestrating seed storage protein and starch accumulation toward overcoming yield-quality trade-off in cereal crops. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:468-483. [PMID: 38409921 DOI: 10.1111/jipb.13633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/22/2024] [Accepted: 02/07/2024] [Indexed: 02/28/2024]
Abstract
Achieving high yield and good quality in crops is essential for human food security and health. However, there is usually disharmony between yield and quality. Seed storage protein (SSP) and starch, the predominant components in cereal grains, determine yield and quality, and their coupled synthesis causes a yield-quality trade-off. Therefore, dissection of the underlying regulatory mechanism facilitates simultaneous improvement of yield and quality. Here, we summarize current findings about the synergistic molecular machinery underpinning SSP and starch synthesis in the leading staple cereal crops, including maize, rice and wheat. We further evaluate the functional conservation and differentiation of key regulators and specify feasible research approaches to identify additional regulators and expand insights. We also present major strategies to leverage resultant information for simultaneous improvement of yield and quality by molecular breeding. Finally, future perspectives on major challenges are proposed.
Collapse
Affiliation(s)
- Shuanghe Cao
- State Key Laboratory of Crop Gene Resources and Breeding/National Wheat Improvement Center, Institute of Crop Sciences, Beijing, 100081, China
| | - Bingyan Liu
- State Key Laboratory of Crop Gene Resources and Breeding/National Wheat Improvement Center, Institute of Crop Sciences, Beijing, 100081, China
| | - Daowen Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Awais Rasheed
- State Key Laboratory of Crop Gene Resources and Breeding/National Wheat Improvement Center, Institute of Crop Sciences, Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lina Xie
- State Key Laboratory of Crop Gene Resources and Breeding/National Wheat Improvement Center, Institute of Crop Sciences, Beijing, 100081, China
| | - Xianchun Xia
- State Key Laboratory of Crop Gene Resources and Breeding/National Wheat Improvement Center, Institute of Crop Sciences, Beijing, 100081, China
| | - Zhonghu He
- State Key Laboratory of Crop Gene Resources and Breeding/National Wheat Improvement Center, Institute of Crop Sciences, Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
12
|
Zhu A, Liu M, Tian Z, Liu W, Hu X, Ao M, Jia J, Shi T, Liu H, Li D, Mao H, Su H, Yan W, Li Q, Lan C, Fernie AR, Chen W. Chemical-tag-based semi-annotated metabolomics facilitates gene identification and specialized metabolic pathway elucidation in wheat. THE PLANT CELL 2024; 36:540-558. [PMID: 37956052 PMCID: PMC10896294 DOI: 10.1093/plcell/koad286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023]
Abstract
The importance of metabolite modification and species-specific metabolic pathways has long been recognized. However, linking the chemical structure of metabolites to gene function in order to explore the genetic and biochemical basis of metabolism has not yet been reported in wheat (Triticum aestivum). Here, we profiled metabolic fragment enrichment in wheat leaves and consequently applied chemical-tag-based semi-annotated metabolomics in a genome-wide association study in accessions of wheat. The studies revealed that all 1,483 quantified metabolites have at least one known functional group whose modification is tailored in an enzyme-catalyzed manner and eventually allows efficient candidate gene mining. A Triticeae crop-specific flavonoid pathway and its underlying metabolic gene cluster were elucidated in further functional studies. Additionally, upon overexpressing the major effect gene of the cluster TraesCS2B01G460000 (TaOMT24), the pathway was reconstructed in rice (Oryza sativa), which lacks this pathway. The reported workflow represents an efficient and unbiased approach for gene mining using forward genetics in hexaploid wheat. The resultant candidate gene list contains vast molecular resources for decoding the genetic architecture of complex traits and identifying valuable breeding targets and will ultimately aid in achieving wheat crop improvement.
Collapse
Affiliation(s)
- Anting Zhu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Mengmeng Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zhitao Tian
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Wei Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xin Hu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Min Ao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jingqi Jia
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Taotao Shi
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Dongqin Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Hailiang Mao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Handong Su
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Caixia Lan
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Department of Root Biology and Symbiosis, Potsdam-Golm 14476, Germany
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
13
|
Iqbal A, Bocian J, Przyborowski M, Orczyk W, Nadolska-Orczyk A. Are TaNAC Transcription Factors Involved in Promoting Wheat Yield by cis-Regulation of TaCKX Gene Family? Int J Mol Sci 2024; 25:2027. [PMID: 38396706 PMCID: PMC10889182 DOI: 10.3390/ijms25042027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
NAC transcription factors (TFs) are one of the largest TF families in plants, and TaNACs have been known to participate in the regulation of the transcription of many yield-regulating genes in bread wheat. The TaCKX gene family members (GFMs) have already been shown to regulate yield-related traits, including grain mass and number, leaf senescence, and root growth. The genes encode cytokinin (CK) degrading enzymes (CKXs) and are specifically expressed in different parts of developing wheat plants. The aim of the study was to identify and characterize TaNACs involved in the cis-regulation of TaCKX GFMs. After analysis of the initial transcription factor data in 1.5 Kb cis-regulatory sequences of a total of 35 homologues of TaCKX GFMs, we selected five of them, namely TaCKX1-3A, TaCKX22.1-3B, TaCKX5-3D, TaCKX9-1B, and TaCKX10, and identified five TaNAC genes: TaNACJ-1, TaNAC13a, TaNAC94, TaNACBr-1, and TaNAC6D, which are potentially involved in the cis-regulation of selected TaCKX genes, respectively. Protein feature analysis revealed that all of the selected TaNACs have a conserved NAC domain and showed a stable tertiary structure model. The expression profile of the selected TaNACs was studied in 5 day-old seedling roots, 5-6 cm inflorescences, 0, 4, 7, and 14 days-after-pollination (DAP) spikes, and the accompanying flag leaves. The expression pattern showed that all of the selected TaNACs were preferentially expressed in seedling roots, 7 and 14 DAP spikes, and flag leaves compared to 5-6 cm inflorescence and 0 and 4 DAP spikes and flag leaves in Kontesa and Ostka spring wheat cultivars (cvs.). In conclusion, the results of this study highlight the potential role of the selected TaNACs in the regulation of grain productivity, leaf senescence, root growth, and response to various stresses.
Collapse
Affiliation(s)
- Adnan Iqbal
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzikow, 05-870 Blonie, Poland
| | | | | | | | - Anna Nadolska-Orczyk
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzikow, 05-870 Blonie, Poland
| |
Collapse
|
14
|
Plessis A, Ravel C, Risacher T, Duchateau N, Dardevet M, Merlino M, Torney F, Martre P. Storage protein activator controls grain protein accumulation in bread wheat in a nitrogen dependent manner. Sci Rep 2023; 13:22736. [PMID: 38123623 PMCID: PMC10733432 DOI: 10.1038/s41598-023-49139-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
The expression of cereal grain storage protein (GSP) genes is controlled by a complex network of transcription factors (TFs). Storage protein activator (SPA) is a major TF acting in this network but its specific function in wheat (Triticum aestivum L.) remains to be determined. Here we generated an RNAi line in which expression of the three SPA homoeologs was reduced. In this line and its null segregant we analyzed GSP accumulation and expression of GSP and regulatory TF genes under two regimes of nitrogen availability. We show that down regulation of SPA decreases grain protein concentration at maturity under low but not high nitrogen supply. Under low nitrogen supply, the decrease in SPA expression also caused a reduction in the total quantity of GSP per grain and in the ratio of GSP to albumin-globulins, without significantly affecting GSP composition. The slight reduction in GSP gene expression measured in the SPA RNAi line under low nitrogen supply did not entirely account for the more significant decrease in GSP accumulation, suggesting that SPA regulates additional levels of GSP synthesis. Our results demonstrate a clear role of SPA in the regulation of grain nitrogen metabolism when nitrogen is a limiting resource.
Collapse
Affiliation(s)
- Anne Plessis
- Université Clermont Auvergne, INRAE, UMR1095 GDEC, 63000, Clermont Ferrand, France
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Catherine Ravel
- Université Clermont Auvergne, INRAE, UMR1095 GDEC, 63000, Clermont Ferrand, France.
| | | | - Nathalie Duchateau
- Université Clermont Auvergne, INRAE, UMR1095 GDEC, 63000, Clermont Ferrand, France
| | - Mireille Dardevet
- Université Clermont Auvergne, INRAE, UMR1095 GDEC, 63000, Clermont Ferrand, France
| | - Marielle Merlino
- Université Clermont Auvergne, INRAE, UMR1095 GDEC, 63000, Clermont Ferrand, France
| | - François Torney
- Centre de Recherche, Limagrain Europe, 63 720, Chappes, France
| | - Pierre Martre
- Université Clermont Auvergne, INRAE, UMR1095 GDEC, 63000, Clermont Ferrand, France
- LEPSE, Université de Montpellier, INRAE, Institut SupAgro Montpellier, 34000, Montpellier, France
| |
Collapse
|
15
|
Han K, Zhao Y, Sun Y, Li Y. NACs, generalist in plant life. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2433-2457. [PMID: 37623750 PMCID: PMC10651149 DOI: 10.1111/pbi.14161] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
Plant-specific NAC proteins constitute a major transcription factor family that is well-known for its roles in plant growth, development, and responses to abiotic and biotic stresses. In recent years, there has been significant progress in understanding the functions of NAC proteins. NAC proteins have a highly conserved DNA-binding domain; however, their functions are diverse. Previous understanding of the structure of NAC transcription factors can be used as the basis for their functional diversity. NAC transcription factors consist of a target-binding domain at the N-terminus and a highly versatile C-terminal domain that interacts with other proteins. A growing body of research on NAC transcription factors helps us comprehend the intricate signalling network and transcriptional reprogramming facilitated by NAC-mediated complexes. However, most studies of NAC proteins have been limited to a single function. Here, we discuss the upstream regulators, regulatory components and targets of NAC in the context of their prospective roles in plant improvement strategies via biotechnology intervention, highlighting the importance of the NAC transcription factor family in plants and the need for further research.
Collapse
Affiliation(s)
- Kunjin Han
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Ye Zhao
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yuhan Sun
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yun Li
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| |
Collapse
|
16
|
Qu G, Wang K, Mu J, Zhuo J, Wang X, Li S, Ye X, Li Y, Yan Y, Li X. Identifying cis-Acting Elements Associated with the High Activity and Endosperm Specificity of the Promoters of Genes Encoding Low-Molecular-Weight Glutenin Subunits in Common Wheat ( Triticum aestivum). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37919930 DOI: 10.1021/acs.jafc.3c04209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Low-molecular-weight glutenin subunits (LMW-GSs) associated with bread-baking quality and flour nutrient quality accumulate in endosperms of common wheat and related species. However, the mechanism underlying the expression regulation of genes encoding LMW-GSs has not been fully elucidated. In this study, we identified LMW-D2 and LMW-D7, which are highly and weakly expressed, respectively, via the analysis of RNA-sequencing data of Chinese Spring wheat and wheat transgenic lines transformed with 5' deletion promoter fragments and GUS fusion constructs. The 605-bp fragment upstream of the LMW-D2 start codon could drive high levels of GUS expression in the endosperm. The truncated endosperm box located at the -300 site resulted in the loss of LMW-D2 promoter activity, and a single-nucleotide polymorphism on the GCN4 motif was closely related to the expression of LMW-GSs. TCT and TGACG motifs, as well as the others located on the 5' distal end, might also be involved in the transcription regulation of LMW-GSs. In transgenic lines, fusion proteins of LMW-GS and GUS were deposited into protein bodies. Our findings provide new insights into the mechanism underlying the transcription regulation of LMW-GSs and will contribute to the development of wheat endosperm as a bioreactor for the production of nutraceuticals, antibodies, vaccines, and medicinal proteins.
Collapse
Affiliation(s)
- Ge Qu
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing 100048, China
| | - Ke Wang
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junyi Mu
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing 100048, China
| | - Jiahui Zhuo
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing 100048, China
| | - Xinyu Wang
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing 100048, China
| | - Shasha Li
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing 100048, China
| | - Xingguo Ye
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yaxuan Li
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing 100048, China
| | - Yueming Yan
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing 100048, China
| | - Xiaohui Li
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing 100048, China
| |
Collapse
|
17
|
Wang L, Liu L, Zhao J, Li C, Wu H, Zhao H, Wu Q. Granule-bound starch synthase in plants: Towards an understanding of their evolution, regulatory mechanisms, applications, and perspectives. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111843. [PMID: 37648115 DOI: 10.1016/j.plantsci.2023.111843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
Amylose content (AC) is a significant quality trait in starchy crops, affecting their processing and application by the food and non-food industries. Therefore, fine-tuning AC in these crops has become a focus for breeders. Granule-bound starch synthase (GBSS) is the core enzyme that directly determines the AC levels. Several excellent reviews have summarized key progress in various aspects of GBSS research in recent years, but they mostly focus on cereals. Herein, we provide an in-depth review of GBSS research in monocots and dicots, focusing on the molecular characteristics, evolutionary relationships, expression patterns, molecular regulation mechanisms, and applications. We also discuss future challenges and directions for controlling AC in starchy crops, and found simultaneously increasing both the PTST and GBSS gene expression levels may be an effective strategy to increase amylose content.
Collapse
Affiliation(s)
- Lei Wang
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Linling Liu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Jiali Zhao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Huala Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Haixia Zhao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China.
| |
Collapse
|
18
|
Xie L, Liu S, Zhang Y, Tian W, Xu D, Li J, Luo X, Li L, Bian Y, Li F, Hao Y, He Z, Xia X, Song X, Cao S. Efficient proteome-wide identification of transcription factors targeting Glu-1: A case study for functional validation of TaB3-2A1 in wheat. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1952-1965. [PMID: 37381172 PMCID: PMC10502752 DOI: 10.1111/pbi.14103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/13/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023]
Abstract
High-molecular-weight glutenin subunits (HMW-GS), a major component of seed storage proteins (SSP) in wheat, largely determine processing quality. HMW-GS encoded by GLU-1 loci are mainly controlled at the transcriptional level by interactions between cis-elements and transcription factors (TFs). We previously identified a conserved cis-regulatory module CCRM1-1 as the most essential cis-element for Glu-1 endosperm-specific high expression. However, the TFs targeting CCRM1-1 remained unknown. Here, we built the first DNA pull-down plus liquid chromatography-mass spectrometry platform in wheat and identified 31 TFs interacting with CCRM1-1. TaB3-2A1 as proof of concept was confirmed to bind to CCRM1-1 by yeast one hybrid and electrophoretic mobility shift assays. Transactivation experiments demonstrated that TaB3-2A1 repressed CCRM1-1-driven transcription activity. TaB3-2A1 overexpression significantly reduced HMW-GS and other SSP, but enhanced starch content. Transcriptome analyses confirmed that enhanced expression of TaB3-2A1 down-regulated SSP genes and up-regulated starch synthesis-related genes, such as TaAGPL3, TaAGPS2, TaGBSSI, TaSUS1 and TaSUS5, suggesting that it is an integrator modulating the balance of carbon and nitrogen metabolism. TaB3-2A1 also had significant effects on agronomic traits, including heading date, plant height and grain weight. We identified two major haplotypes of TaB3-2A1 and found that TaB3-2A1-Hap1 conferred lower seed protein content, but higher starch content, plant height and grain weight than TaB3-2A1-Hap2 and was subjected to positive selection in a panel of elite wheat cultivars. These findings provide a high-efficiency tool to detect TFs binding to targeted promoters, considerable gene resources for dissecting regulatory mechanisms underlying Glu-1 expression, and a useful gene for wheat improvement.
Collapse
Affiliation(s)
- Lina Xie
- Institute of Crop Sciences, National Wheat Improvement CentreChinese Academy of Agricultural Sciences (CAAS)BeijingChina
- College of AgronomyNorthwest A&F UniversityYanglingShaanxi ProvinceChina
| | - Siyang Liu
- Institute of Crop Sciences, National Wheat Improvement CentreChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Yong Zhang
- Institute of Crop Sciences, National Wheat Improvement CentreChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Wenfei Tian
- Institute of Crop Sciences, National Wheat Improvement CentreChinese Academy of Agricultural Sciences (CAAS)BeijingChina
- International Maize and Wheat Improvement Center (CIMMYT) China OfficeChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Dengan Xu
- Institute of Crop Sciences, National Wheat Improvement CentreChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Jihu Li
- Institute of Crop Sciences, National Wheat Improvement CentreChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Xumei Luo
- Institute of Crop Sciences, National Wheat Improvement CentreChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Lingli Li
- Institute of Crop Sciences, National Wheat Improvement CentreChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Yingjie Bian
- Institute of Crop Sciences, National Wheat Improvement CentreChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Faji Li
- Institute of Crop Sciences, National Wheat Improvement CentreChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Yuanfeng Hao
- Institute of Crop Sciences, National Wheat Improvement CentreChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement CentreChinese Academy of Agricultural Sciences (CAAS)BeijingChina
- International Maize and Wheat Improvement Center (CIMMYT) China OfficeChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement CentreChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Xiyue Song
- College of AgronomyNorthwest A&F UniversityYanglingShaanxi ProvinceChina
| | - Shuanghe Cao
- Institute of Crop Sciences, National Wheat Improvement CentreChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| |
Collapse
|
19
|
Liu Y, Chen J, Yin C, Wang Z, Wu H, Shen K, Zhang Z, Kang L, Xu S, Bi A, Zhao X, Xu D, He Z, Zhang X, Hao C, Wu J, Gong Y, Yu X, Sun Z, Ye B, Liu D, Zhang L, Shen L, Hao Y, Ma Y, Lu F, Guo Z. A high-resolution genotype-phenotype map identifies the TaSPL17 controlling grain number and size in wheat. Genome Biol 2023; 24:196. [PMID: 37641093 PMCID: PMC10463835 DOI: 10.1186/s13059-023-03044-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Large-scale genotype-phenotype association studies of crop germplasm are important for identifying alleles associated with favorable traits. The limited number of single-nucleotide polymorphisms (SNPs) in most wheat genome-wide association studies (GWASs) restricts their power to detect marker-trait associations. Additionally, only a few genes regulating grain number per spikelet have been reported due to sensitivity of this trait to variable environments. RESULTS We perform a large-scale GWAS using approximately 40 million filtered SNPs for 27 spike morphology traits. We detect 132,086 significant marker-trait associations and the associated SNP markers are located within 590 associated peaks. We detect additional and stronger peaks by dividing spike morphology into sub-traits relative to GWAS results of spike morphology traits. We propose that the genetic dissection of spike morphology is a powerful strategy to detect signals for grain yield traits in wheat. The GWAS results reveal that TaSPL17 positively controls grain size and number by regulating spikelet and floret meristem development, which in turn leads to enhanced grain yield per plant. The haplotypes at TaSPL17 indicate geographical differentiation, domestication effects, and breeding selection. CONCLUSION Our study provides valuable resources for genetic improvement of spike morphology and a fast-forward genetic solution for candidate gene detection and cloning in wheat.
Collapse
Affiliation(s)
- Yangyang Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Changbin Yin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 10011, China
| | - Ziying Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - He Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kuocheng Shen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiliang Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 10011, China
| | - Lipeng Kang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 10011, China
| | - Song Xu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 10011, China
| | - Aoyue Bi
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 10011, China
| | - Xuebo Zhao
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 10011, China
| | - Daxing Xu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 10011, China
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, Beijing, 100081, China
| | - Xueyong Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Chenyang Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yan Gong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Xuchang Yu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiwen Sun
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Botao Ye
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Danni Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lili Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Liping Shen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yuanfeng Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
| | - Youzhi Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
| | - Fei Lu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 10011, China.
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Zifeng Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
20
|
Zhang J, Zhang X, Liu X, Pai Q, Wang Y, Wu X. Molecular Network for Regulation of Seed Size in Plants. Int J Mol Sci 2023; 24:10666. [PMID: 37445843 DOI: 10.3390/ijms241310666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
The size of seeds is particularly important for agricultural development, as it is a key trait that determines yield. It is controlled by the coordinated development of the integument, endosperm, and embryo. Large seeds are an important way of improving the ultimate "sink strength" of crops, providing more nutrients for early plant growth and showing certain tolerance to abiotic stresses. There are several pathways for regulating plant seed size, including the HAIKU (IKU) pathway, ubiquitin-proteasome pathway, G (Guanosine triphosphate) protein regulatory pathway, mitogen-activated protein kinase (MAPK) pathway, transcriptional regulators pathway, and phytohormone regulatory pathways including the auxin, brassinosteroid (BR), gibberellin (GA), jasmonic acid (JA), cytokinin (CK), Abscisic acid (ABA), and microRNA (miRNA) regulatory pathways. This article summarizes the seed size regulatory network and prospective ways of improving yield. We expect that it will provide a valuable reference to researchers in related fields.
Collapse
Affiliation(s)
- Jinghua Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Xuan Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Xueman Liu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Qiaofeng Pai
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Yahui Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaolin Wu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
21
|
Zhi J, Zeng J, Wang Y, Zhao H, Wang G, Guo J, Wang Y, Chen M, Yang G, He G, Chen X, Chang J, Li Y. A multi-omic resource of wheat seed tissues for nutrient deposition and improvement for human health. Sci Data 2023; 10:269. [PMID: 37164961 PMCID: PMC10172328 DOI: 10.1038/s41597-023-02133-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/03/2023] [Indexed: 05/12/2023] Open
Abstract
As a globally important staple crop, wheat seeds provide us with nutrients and proteins. The trend of healthy dietary has become popular recently, emphasizing the consumption of whole-grain wheat products and the dietary benefits. However, the dynamic changes in nutritional profiles of different wheat seed regions (i.e., the embryo, endosperm and outer layers) during developmental stages and the molecular regulation have not been well studied. Here, we provide this multi-omic resource of wheat seeds and describe the generation, technical assessment and preliminary analyses. This resource includes a time-series RNA-seq dataset of the embryo, endosperm and outer layers of wheat seeds and their corresponding metabolomic dataset, covering the middle and late stages of seed development. Our RNA-seq experiments profile the expression of 63,708 genes, while the metabolomic data includes the abundance of 984 metabolites. We believe that this was the first reported transcriptome and metabolome dataset of wheat seeds that helps understand the molecular regulation of the deposition of beneficial nutrients and hence improvements for nutritional and processing quality traits.
Collapse
Affiliation(s)
- Jingjing Zhi
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Jian Zeng
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China
| | - Yaqiong Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Hongyan Zhao
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Guoli Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Jing Guo
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China
| | - Yuesheng Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Mingjie Chen
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Xiaoyuan Chen
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China.
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, 430074, China.
| | - Yin Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, 430074, China.
| |
Collapse
|
22
|
Wang X, Liu Y, Hao C, Li T, Majeed U, Liu H, Li H, Hou J, Zhang X. Wheat NAC-A18 regulates grain starch and storage proteins synthesis and affects grain weight. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:123. [PMID: 37147554 DOI: 10.1007/s00122-023-04365-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/14/2023] [Indexed: 05/07/2023]
Abstract
KEY MESSAGE Wheat NAC-A18 regulates both starch and storage protein synthesis in the grain, and a haplotype with positive effects on grain weight showed increased frequency during wheat breeding in China. Starch and seed storage protein (SSP) directly affect the processing quality of wheat grain. The synthesis of starch and SSP are also regulated at the transcriptional level. However, only a few starch and SSP regulators have been identified in wheat. In this study, we discovered a NAC transcription factor, designated as NAC-A18, which acts as a regulator of both starch and SSP synthesis. NAC-A18, is predominately expressed in wheat developing grains, encodes a transcription factor localized in the nucleus, with both activation and repression domains. Ectopic expression of wheat NAC-A18 in rice significantly decreased starch accumulation and increased SSP accumulation and grain size and weight. Dual-luciferase reporter assays indicated that NAC-A18 could reduce the expression of TaGBSSI-A1 and TaGBSSI-A2, and enhance the expression of TaLMW-D6 and TaLMW-D1. A yeast one hybrid assay demonstrated that NAC-A18 bound directly to the cis-element "ACGCAA" in the promoters of TaLMW-D6 and TaLMW-D1. Further analysis indicated that two haplotypes were formed at NAC-A18, and that NAC-A18_h1 was a favorable haplotype correlated with higher thousand grain weight. Based on limited population data, NAC-A18_h1 underwent positive selection during Chinese wheat breeding. Our study demonstrates that wheat NAC-A18 regulates starch and SSP accumulation and grain size. A molecular marker was developed for the favorable allele for breeding applications.
Collapse
Affiliation(s)
- Xiaolu Wang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yunchuan Liu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chenyang Hao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tian Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Uzma Majeed
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongxia Liu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huifang Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jian Hou
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xueyong Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
23
|
Zhao Y, Zhao J, Hu M, Sun L, Liu Q, Zhang Y, Li Q, Wang P, Ma W, Li H, Gao H, Zhang Y. Transcriptome and Proteome Analysis Revealed the Influence of High-Molecular-Weight Glutenin Subunits (HMW-GSs) Deficiency on Expression of Storage Substances and the Potential Regulatory Mechanism of HMW-GSs. Foods 2023; 12:foods12020361. [PMID: 36673453 PMCID: PMC9857648 DOI: 10.3390/foods12020361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
The processing quality of wheat is affected by seed storage substances, such as protein and starch. High-molecular-weight glutenin subunits (HMW-GSs) are the major components of wheat seed storage proteins (SSPs); they are also key determinators of wheat end-use quality. However, the effects of HMW-GSs absence on the expression of other storage substances and the regulation mechanism of HMW-GSs are still limited. Previously, a wheat transgenic line LH-11 with complete deletions of HMW-GSs was obtained through introducing an exogenous gene Glu-1Ebx to the wild-type cultivar Bobwhite by transgenic approach. In this study, comparative seed transcriptomics and proteomics of transgenic and non-transgenic lines at different seed developmental stages were carried out to explore the changes in genes and proteins and the underlying regulatory mechanism. Results revealed that a number of genes, including genes related to SSPs, carbohydrates metabolism, amino acids metabolism, transcription, translation, and protein process were differentially enriched. Seed storage proteins displayed differential expression patterns between the transgenic and non-transgenic line, a major rise in the expression levels of gliadins were observed at 21 and 28 days post anthesis (DPA) in the transgenic line. Changes in expressions of low-molecular-weight glutenins (LMW-GSs), avenin-like proteins (ALPs), lipid transfer proteins (LTPs), and protease inhibitors (PIs) were also observed. In addition, genes related to carbohydrate metabolism were differentially expressed, which probably leads to a difference in starch component and deposition. A list of gene categories participating in the accumulation of SSPs was proposed according to the transcriptome and proteome data. Six genes from the MYB and eight genes from the NAC transcription families are likely important regulators of HMW-GSs accumulation. This study will provide data support for understanding the regulatory network of wheat storage substances. The screened candidate genes can lay a foundation for further research on the regulation mechanism of HMW-GSs.
Collapse
Affiliation(s)
- Yun Zhao
- Laboratory of Crop Genetics and Breeding of Hebei, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Jie Zhao
- Laboratory of Crop Genetics and Breeding of Hebei, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Mengyun Hu
- Laboratory of Crop Genetics and Breeding of Hebei, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Lijing Sun
- Laboratory of Crop Genetics and Breeding of Hebei, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Qian Liu
- Laboratory of Crop Genetics and Breeding of Hebei, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Yelun Zhang
- Laboratory of Crop Genetics and Breeding of Hebei, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Qianying Li
- Laboratory of Crop Genetics and Breeding of Hebei, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Peinan Wang
- Laboratory of Crop Genetics and Breeding of Hebei, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Wujun Ma
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- Food Futures Institute, College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
| | - Hui Li
- Laboratory of Crop Genetics and Breeding of Hebei, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Huimin Gao
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
- Correspondence: (H.G.); (Y.Z.)
| | - Yingjun Zhang
- Laboratory of Crop Genetics and Breeding of Hebei, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
- Correspondence: (H.G.); (Y.Z.)
| |
Collapse
|
24
|
Iqbal A, Bocian J, Hameed A, Orczyk W, Nadolska-Orczyk A. Cis-Regulation by NACs: A Promising Frontier in Wheat Crop Improvement. Int J Mol Sci 2022; 23:15431. [PMID: 36499751 PMCID: PMC9736367 DOI: 10.3390/ijms232315431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Crop traits are controlled by multiple genes; however, the complex spatio-temporal transcriptional behavior of genes cannot be fully understood without comprehending the role of transcription factors (TFs) and the underlying mechanisms of the binding interactions of their cis-regulatory elements. NAC belongs to one of the largest families of plant-specific TFs and has been associated with the regulation of many traits. This review provides insight into the cis-regulation of genes by wheat NACs (TaNACs) for the improvement in yield-related traits, including phytohormonal homeostasis, leaf senescence, seed traits improvement, root modulation, and biotic and abiotic stresses in wheat and other cereals. We also discussed the current potential, knowledge gaps, and prospects of TaNACs.
Collapse
Affiliation(s)
| | | | | | | | - Anna Nadolska-Orczyk
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzikow, 05-870 Blonie, Poland
| |
Collapse
|
25
|
Gong F, Zhang T, Wang Z, Qi T, Lu Y, Liu Y, Zhao S, Liu R, Yi R, He J, Tu B, Zhang T, Zhang L, Hao M, Zheng Y, Liu D, Huang L, Wu B. Genome-Wide Survey and Functional Verification of the NAC Transcription Factor Family in Wild Emmer Wheat. Int J Mol Sci 2022; 23:ijms231911598. [PMID: 36232900 PMCID: PMC9569692 DOI: 10.3390/ijms231911598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 12/04/2022] Open
Abstract
The NAC transcription factor (TF) family is one of the largest TF families in plants, which has been widely reported in rice, maize and common wheat. However, the significance of the NAC TF family in wild emmer wheat (Triticum turgidum ssp. dicoccoides) is not yet well understood. In this study, a genome-wide investigation of NAC genes was conducted in the wild emmer genome and 249 NAC family members (TdNACs) were identified. The results showed that all of these genes contained NAM/NAC-conserved domains and most of them were predicted to be located on the nucleus. Phylogenetic analysis showed that these 249 TdNACs can be classified into seven clades, which are likely to be involved in the regulation of grain protein content, starch synthesis and response to biotic and abiotic stresses. Expression pattern analysis revealed that TdNACs were highly expressed in different wheat tissues such as grain, root, leaves and shoots. We found that TdNAC8470 was phylogenetically close to NAC genes that regulate either grain protein or starch accumulation. Overexpression of TdNAC8470 in rice showed increased grain starch concentration but decreased grain Fe, Zn and Mn contents compared with wild-type plants. Protein interaction analysis indicated that TdNAC8470 might interact with granule-bound starch synthase 1 (TdGBSS1) to regulate grain starch accumulation. Our work provides a comprehensive understanding of the NAC TFs family in wild emmer wheat and establishes the way for future functional analysis and genetic improvement of increasing grain starch content in wheat.
Collapse
Affiliation(s)
- Fangyi Gong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Tian Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhe Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Tiangang Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yusen Lu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuhang Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuhong Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Ruiqing Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Rui Yi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jingshu He
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Bin Tu
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Tao Zhang
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lianquan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
| | - Ming Hao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Dengcai Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (L.H.); (B.W.)
| | - Bihua Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (L.H.); (B.W.)
| |
Collapse
|
26
|
Wheat genomic study for genetic improvement of traits in China. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1718-1775. [PMID: 36018491 DOI: 10.1007/s11427-022-2178-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/10/2022] [Indexed: 01/17/2023]
Abstract
Bread wheat (Triticum aestivum L.) is a major crop that feeds 40% of the world's population. Over the past several decades, advances in genomics have led to tremendous achievements in understanding the origin and domestication of wheat, and the genetic basis of agronomically important traits, which promote the breeding of elite varieties. In this review, we focus on progress that has been made in genomic research and genetic improvement of traits such as grain yield, end-use traits, flowering regulation, nutrient use efficiency, and biotic and abiotic stress responses, and various breeding strategies that contributed mainly by Chinese scientists. Functional genomic research in wheat is entering a new era with the availability of multiple reference wheat genome assemblies and the development of cutting-edge technologies such as precise genome editing tools, high-throughput phenotyping platforms, sequencing-based cloning strategies, high-efficiency genetic transformation systems, and speed-breeding facilities. These insights will further extend our understanding of the molecular mechanisms and regulatory networks underlying agronomic traits and facilitate the breeding process, ultimately contributing to more sustainable agriculture in China and throughout the world.
Collapse
|
27
|
Mining of Potential Gene Resources for Breeding Nutritionally Improved Maize. PLANTS 2022; 11:plants11050627. [PMID: 35270097 PMCID: PMC8912576 DOI: 10.3390/plants11050627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022]
Abstract
Maize is one of the leading food crops and its kernel is rich in starch, lipids, protein and other energy substances. In addition, maize kernels also contain many trace elements that are potentially beneficial to human health, such as vitamins, minerals and other secondary metabolites. However, gene resources that could be applied for nutrient improvement are limited in maize. In this review, we summarized 107 genes that are associated with nutrient content from different plant species and identified 246 orthologs from the maize genome. In addition, we constructed physical maps and performed a detailed expression pattern analysis for the 246 maize potential gene resources. Combining expression profiles and their potential roles in maize nutrient improvement, genetic engineering by editing or ectopic expression of these genes in maize are expected to improve resistant starch, oil, essential amino acids, vitamins, iron, zinc and anthocyanin levels of maize grains. Thus, this review provides valuable gene resources for maize nutrient improvement.
Collapse
|
28
|
Peng Y, Zhao Y, Yu Z, Zeng J, Xu D, Dong J, Ma W. Wheat Quality Formation and Its Regulatory Mechanism. FRONTIERS IN PLANT SCIENCE 2022; 13:834654. [PMID: 35432421 PMCID: PMC9006054 DOI: 10.3389/fpls.2022.834654] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/09/2022] [Indexed: 05/07/2023]
Abstract
Elucidation of the composition, functional characteristics, and formation mechanism of wheat quality is critical for the sustainable development of wheat industry. It is well documented that wheat processing quality is largely determined by its seed storage proteins including glutenins and gliadins, which confer wheat dough with unique rheological properties, making it possible to produce a series of foods for human consumption. The proportion of different gluten components has become an important target for wheat quality improvement. In many cases, the processing quality of wheat is closely associated with the nutritional value and healthy effect of the end-products. The components of wheat seed storage proteins can greatly influence wheat quality and some can even cause intestinal inflammatory diseases or allergy in humans. Genetic and environmental factors have great impacts on seed storage protein synthesis and accumulation, and fertilization and irrigation strategies also greatly affect the seed storage protein content and composition, which together determine the final end-use quality of wheat. This review summarizes the recent progress in research on the composition, function, biosynthesis, and regulatory mechanism of wheat storage proteins and their impacts on wheat end-product quality.
Collapse
Affiliation(s)
- Yanchun Peng
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yun Zhao
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Zitong Yu
- Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Jianbin Zeng
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Dengan Xu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Jing Dong
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wujun Ma
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- *Correspondence: Wujun Ma,
| |
Collapse
|