1
|
Nomura Y, Okada M, Tameshige T, Takenaka S, Shimizu KK, Nasuda S, Nagano AJ. Subgenome-informed statistical modeling of transcriptomes in 25 common wheat accessions reveals cis- and trans-regulation architectures. PLANT & CELL PHYSIOLOGY 2025; 66:347-357. [PMID: 39829360 DOI: 10.1093/pcp/pcaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Common wheat is an allohexaploid, where it is difficult to obtain homoeolog-distinguished transcriptome data. Lasy-Seq, a type of 3' RNA-seq, is technology efficient at obtaining homoeolog-distinguished transcriptomes. Here, we applied Lasy-Seq to obtain transcriptome data from the seedlings, second leaves, and root tips of 25 common wheat lines mainly from East Asia. Roots and seedlings were similar to each other in transcriptome profiles, but they were different from the leaves. We then asked how three homoeologous genes from different subgenomes (i.e. triads) show different levels of expression. Specifically, we examined the effects of subgenomes, lines, and their interaction on the expression levels of each homoeolog triad, separately in each tissue. Of the 19 805 homoeolog triads, 51-55% showed significant effect of subgenome, suggesting cis-regulation, whereas 24-30% showed significant effect line, suggesting trans-regulation. We also found that 7.7-9.0% triads showed significant effects of the interaction. Hierarchical clustering and co-trans regulation network analysis of homoeolog triads revealed that the patterns of expression polymorphisms among the lines were shared in different genes. Our results also implied that expression variation between lines is caused by changes in a smaller number of common trans-factors. We performed gene ontology (GO)-term enrichment analysis using newly annotated and substantially improved GO annotations, which revealed that GO terms related to each tissue-type function were enriched in genes expressed in the leaves and roots. Our information provides fundamental knowledge for the future breeding of plants possessing complex gene regulatory networks such as common wheat.
Collapse
Affiliation(s)
- Yasuyuki Nomura
- Research Institute for Food and Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga, 520-2194 Japan
| | - Moeko Okada
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813 Japan
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata, 950-2181 Japan
| | - Toshiaki Tameshige
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813 Japan
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Nakaragi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522 Japan
| | - Shotaro Takenaka
- Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga, 520-2194 Japan
| | - Kentaro K Shimizu
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813 Japan
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Shuhei Nasuda
- Graduate school of Agriculture, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga, 520-2194 Japan
- Institute for Advanced Biosciences, Keio University, 246-2, Tsuruoka, Yamagata, 997-0052 Japan
| |
Collapse
|
2
|
Chen H, Chen J, Zhai R, Lavelle D, Jia Y, Tang Q, Zhu T, Wang M, Geng Z, Zhu J, Feng H, An J, Liu J, Li W, Deng S, Wang W, Zhang W, Zhang X, Luo G, Wang X, Sahu SK, Liu H, Michelmore R, Yang W, Wei T, Kuang H. Dissecting the genetic architecture of key agronomic traits in lettuce using a MAGIC population. Genome Biol 2025; 26:67. [PMID: 40122830 PMCID: PMC11930014 DOI: 10.1186/s13059-025-03541-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/11/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Lettuce is a globally important leafy vegetable that exhibits diverse horticultural types and strong population structure, which complicates genetic analyses. To address this challenge, we develop the first multi-parent, advanced generation inter-cross (MAGIC) population for lettuce using 16 diverse founder lines. RESULTS Whole-genome sequencing of the 16 founder lines and 381 inbred progeny reveal minimal population structure, enabling informative genome-wide association studies (GWAS). GWAS of the lettuce MAGIC population identifies numerous loci associated with key agricultural traits, including 51 for flowering time, 11 for leaf color, and 5 for leaf shape. Notably, loss-of-function mutations in the LsphyB and LsphyC genes, encoding phytochromes B and C, dramatically delay flowering in lettuce, which is in striking contrast to many other plant species. This unexpected finding highlights the unique genetic architecture controlling flowering time in lettuce. The wild-type LsTCP4 gene plays critical roles in leaf flatness and its expression level is negatively correlated with leaf curvature. Additionally, a novel zinc finger protein (ZFP) gene is required for the development of lobed leaves; a point mutation leads to its loss of function and consequently converted lobed leaves to non-lobed leaves, as exhibited by most lettuce cultivars. CONCLUSIONS The MAGIC population's lack of structure and high mapping resolution enables the efficient dissection of complex traits. The identified loci and candidate genes provide significant genetic resources for improving agronomic performance and leaf quality in lettuce.
Collapse
Affiliation(s)
- Hongyun Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops; Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- BGI Research, Wuhan, 430074, China
- State Key Laboratory of Genome and Multi-Omics Technologies, BGI Research, Shenzhen, 518083, China
| | - Jiongjiong Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops; Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruifang Zhai
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dean Lavelle
- Genome Center and Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Yue Jia
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops; Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiwei Tang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops; Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ting Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops; Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Menglu Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops; Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zedong Geng
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianzhong Zhu
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hui Feng
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junru An
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops; Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiansheng Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops; Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weibo Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops; Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | | | | | - Weiyi Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops; Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoyan Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops; Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangbao Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops; Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops; Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sunil Kumar Sahu
- BGI Research, Wuhan, 430074, China
- State Key Laboratory of Genome and Multi-Omics Technologies, BGI Research, Shenzhen, 518083, China
| | - Huan Liu
- State Key Laboratory of Genome and Multi-Omics Technologies, BGI Research, Shenzhen, 518083, China
| | - Richard Michelmore
- Genome Center and Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Wanneng Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Tong Wei
- BGI Research, Wuhan, 430074, China.
- State Key Laboratory of Genome and Multi-Omics Technologies, BGI Research, Shenzhen, 518083, China.
- Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China.
- Guangdong Provincial Key Laboratory of Core Collection of Crop Genetic Resources Research and Application, BGI Research, Shenzhen, 518083, China.
| | - Hanhui Kuang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops; Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
3
|
Kiss T, Horváth ÁD, Cseh A, Berki Z, Balla K, Karsai I. Molecular genetic regulation of the vegetative-generative transition in wheat from an environmental perspective. ANNALS OF BOTANY 2025; 135:605-628. [PMID: 39364537 PMCID: PMC11904908 DOI: 10.1093/aob/mcae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
The key to the wide geographical distribution of wheat is its high adaptability. One of the most commonly used methods for studying adaptation is investigation of the transition between the vegetative-generative phase and the subsequent intensive stem elongation process. These processes are determined largely by changes in ambient temperature, the diurnal and annual periodicity of daylength, and the composition of the light spectrum. Many genes are involved in the perception of external environmental signals, forming a complex network of interconnections that are then integrated by a few integrator genes. This hierarchical cascade system ensures the precise occurrence of the developmental stages that enable maximum productivity. This review presents the interrelationship of molecular-genetic pathways (Earliness per se, circadian/photoperiod length, vernalization - cold requirement, phytohormonal - gibberellic acid, light perception, ambient temperature perception and ageing - miRNA) responsible for environmental adaptation in wheat. Detailed molecular genetic mapping of wheat adaptability will allow breeders to incorporate new alleles that will create varieties best adapted to local environmental conditions.
Collapse
Affiliation(s)
- Tibor Kiss
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
- Food and Wine Research Institute, Eszterházy Károly Catholic University, H-3300 Eger, Hungary
| | - Ádám D Horváth
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
| | - András Cseh
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
| | - Zita Berki
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
| | - Krisztina Balla
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
| | - Ildikó Karsai
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
| |
Collapse
|
4
|
Fourquet L, Barber T, Campos-Mantello C, Howell P, Orman-Ligeza B, Percival-Alwyn L, Rose GA, Sheehan H, Wright TIC, Longin F, Würschum T, Novoselovic D, Greenland AJ, Mackay IJ, Cockram J, Bentley AR. An eight-founder wheat MAGIC population allows fine-mapping of flowering time loci and provides novel insights into the genetic control of flowering time. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:277. [PMID: 39576319 PMCID: PMC11584503 DOI: 10.1007/s00122-024-04787-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
Flowering time synchronizes reproductive development with favorable environmental conditions to optimize yield. Improved understanding of the genetic control of flowering will help optimize varietal adaptation to future agricultural systems under climate change. Here, we investigate the genetic basis of flowering time in winter wheat (Triticum aestivum L.) using an eight-founder multi-parent advanced generation intercross (MAGIC) population. Flowering time data was collected from field trials across six growing seasons in the United Kingdom, followed by genetic analysis using a combination of linear modelling, simple interval mapping and composite interval mapping, using either single markers or founder haplotype probabilities. We detected 57 quantitative trait loci (QTL) across three growth stages linked to flowering time, of which 17 QTL were identified only when the major photoperiod response locus Ppd-D1 was included as a covariate. Of the 57 loci, ten were identified using all genetic mapping approaches and classified as 'major' QTL, including homoeologous loci on chromosomes 1B and 1D, and 4A and 4B. Additional Earliness per se flowering time QTL were identified, along with growth stage- and year-specific effects. Furthermore, six of the main-effect QTL were found to interact epistatically with Ppd-D1. Finally, we exploited residual heterozygosity in the MAGIC recombinant inbred lines to Mendelize the Earliness per se QTL QFt.niab-5A.03, which was confirmed to modulate flowering time by at least four days. This work provides detailed understanding of the genetic control of phenological variation within varieties relevant to the north-western European wheat genepool, aiding informed manipulation of flowering time in wheat breeding.
Collapse
Affiliation(s)
| | - Tobias Barber
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | | | - Phil Howell
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | | | | | - Gemma A Rose
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | | | | | - Friedrich Longin
- State Plant Breeding Institute, University of Hohenheim, Hohenheim, Germany
| | - Tobias Würschum
- State Plant Breeding Institute, University of Hohenheim, Hohenheim, Germany
| | | | | | - Ian J Mackay
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
- Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - James Cockram
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK.
| | | |
Collapse
|
5
|
Guo X, Zhang Z, Li J, Zhang S, Sun W, Xiao X, Sun Z, Xue X, Wang Z, Zhang Y. Phenotypic and transcriptome profiling of spikes reveals the regulation of light regimens on spike growth and fertile floret number in wheat. PLANT, CELL & ENVIRONMENT 2024; 47:1575-1591. [PMID: 38269615 DOI: 10.1111/pce.14832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/25/2023] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
The spike growth phase is critical for the establishment of fertile floret (grain) numbers in wheat (Triticum aestivum L.). Then, how to shorten the spike growth phase and increase grain number synergistically? Here, we showed high-resolution analyses of floret primordia (FP) number, morphology and spike transcriptomes during the spike growth phase under three light regimens. The development of all FP in a spike could be divided into four distinct stages: differentiation (Stage I), differentiation and morphology development concurrently (Stage II), morphology development (Stage III), and polarization (Stage IV). Compared to the short photoperiod, the long photoperiod shortened spike growth and stimulated early flowering by shortening Stage III; however, this reduced assimilate accumulation, resulting in fertile floret loss. Interestingly, long photoperiod supplemented with red light shortened the time required to complete Stages I-II, then raised assimilates supply in the spike and promoted anther development before polarization initiation, thereby increasing fertile FP number during Stage III, and finally maintained fertile FP development during Stage IV until they became fertile florets via a predicted dynamic gene network. Our findings proposed a light regimen, critical stages and candidate regulators that achieved a shorter spike growth phase and a higher fertile floret number in wheat.
Collapse
Affiliation(s)
- Xiaolei Guo
- Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- National Research Center of Intelligent Equipment for Agriculture, Beijing, China
- Department of Agronomy, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhen Zhang
- Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Junyan Li
- Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- National Research Center of Intelligent Equipment for Agriculture, Beijing, China
| | - Siqi Zhang
- Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- National Research Center of Intelligent Equipment for Agriculture, Beijing, China
| | - Wan Sun
- Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xuechen Xiao
- Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zhencai Sun
- Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xuzhang Xue
- National Research Center of Intelligent Equipment for Agriculture, Beijing, China
| | - Zhimin Wang
- Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yinghua Zhang
- Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|