1
|
Kashyap D, Koirala S, Saini V, Bagde PH, Samanta S, Kar P, Jha HC. Prediction of Rab5B inhibitors through integrative in silico techniques. Mol Divers 2024; 28:2547-2562. [PMID: 37505376 DOI: 10.1007/s11030-023-10693-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023]
Abstract
Rab5B is a small monomeric G protein that regulates early endocytosis and controls signaling pathways related to cell growth, survival, and apoptosis. Dysregulation of Rab5B protein expression has been linked to the development of several cancers such as leukemia, lymphoma, kidney, prostate, ovarian, breast cancer, etc. Our research shows the first attempt to identify inhibitors that can target Rab5B GTPase. In this study, we performed molecular docking using Autodock Vina 1.5.6 and identified eight molecules with docking scores ranging from -9.8 to -10.6 kcal/mol. Thereafter, we examined the pharmacological characteristics of these compounds, and selected compounds were further analyzed for their conformational dynamics and thermodynamic stability using molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA)-based free energy calculations. Notably, our findings revealed that strychnine had the highest binding affinity to Rab5B followed by anonaine, helioxanthin, and taiwanin E, with a ΔGbind value of -21.43, -17.11, -15.11, and -14.09 kcal/mol respectively. The binding free energy calculations showed that Van der Waals interactions are the primary contributor to the binding between Rab5B and the inhibitor. The interaction between the inhibitor and Rab5B was shown to be controlled by certain hot spot residues, including Phe45, Tyr48, Ala64, and Ala30. Overall, we believe that these findings could facilitate the exploration and development of potential hits against Rab5B, subject to optimization and further research.
Collapse
Affiliation(s)
- Dharmendra Kashyap
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, 453552, India
| | - Suman Koirala
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, 453552, India
| | - Vaishali Saini
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, 453552, India
| | - Pranit Hemant Bagde
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, 453552, India
| | - Sunanda Samanta
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, 453552, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, 453552, India.
- Lab No. POD 1B 502, Computational Biophysics Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India.
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, 453552, India.
- Lab No. POD 1B 602, Infection Bio-Engineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India.
| |
Collapse
|
2
|
Oke MT, D’Costa VM. Functional Divergence of the Paralog Salmonella Effector Proteins SopD and SopD2 and Their Contributions to Infection. Int J Mol Sci 2024; 25:4191. [PMID: 38673776 PMCID: PMC11050076 DOI: 10.3390/ijms25084191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Salmonella enterica is a leading cause of bacterial food-borne illness in humans and is responsible for millions of cases annually. A critical strategy for the survival of this pathogen is the translocation of bacterial virulence factors termed effectors into host cells, which primarily function via protein-protein interactions with host proteins. The Salmonella genome encodes several paralogous effectors believed to have arisen from duplication events throughout the course of evolution. These paralogs can share structural similarities and enzymatic activities but have also demonstrated divergence in host cell targets or interaction partners and contributions to the intracellular lifecycle of Salmonella. The paralog effectors SopD and SopD2 share 63% amino acid sequence similarity and extensive structural homology yet have demonstrated divergence in secretion kinetics, intracellular localization, host targets, and roles in infection. SopD and SopD2 target host Rab GTPases, which represent critical regulators of intracellular trafficking that mediate diverse cellular functions. While SopD and SopD2 both manipulate Rab function, these paralogs display differences in Rab specificity, and the effectors have also evolved multiple mechanisms of action for GTPase manipulation. Here, we highlight this intriguing pair of paralog effectors in the context of host-pathogen interactions and discuss how this research has presented valuable insights into effector evolution.
Collapse
Affiliation(s)
- Mosopefoluwa T. Oke
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Vanessa M. D’Costa
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
3
|
Kundu S, Jaiswal M, Babu Mullapudi V, Guo J, Kamat M, Basso KB, Guo Z. Investigation of Glycosylphosphatidylinositol (GPI)-Plasma Membrane Interaction in Live Cells and the Influence of GPI Glycan Structure on the Interaction. Chemistry 2024; 30:e202303047. [PMID: 37966101 PMCID: PMC10922586 DOI: 10.1002/chem.202303047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/16/2023]
Abstract
Glycosylphosphatidylinositols (GPIs) need to interact with other components in the cell membrane to transduce transmembrane signals. A bifunctional GPI probe was employed for photoaffinity-based proximity labelling and identification of GPI-interacting proteins in the cell membrane. This probe contained the entire core structure of GPIs and was functionalized with photoreactive diazirine and clickable alkyne to facilitate its crosslinking with proteins and attachment of an affinity tag. It was disclosed that this probe was more selective than our previously reported probe containing only a part structure of the GPI core for cell membrane incorporation and an improved probe for studying GPI-cell membrane interaction. Eighty-eight unique membrane proteins, many of which are related to GPIs/GPI-anchored proteins, were identified utilizing this probe. The proteomics dataset is a valuable resource for further analyses and data mining to find new GPI-related proteins and signalling pathways. A comparison of these results with those of our previous probe provided direct evidence for the profound impact of GPI glycan structure on its interaction with the cell membrane.
Collapse
Affiliation(s)
- Sayan Kundu
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Mohit Jaiswal
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | | | - Jiatong Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Manasi Kamat
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Kari B Basso
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
- UF Health Cancer Centre, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
4
|
Nandi I, Ramachandran RP, Shalev DE, Schneidman-Duhovny D, Shtuhin-Rahav R, Melamed-Book N, Zlotkin-Rivkin E, Rouvinski A, Rosenshine I, Aroeti B. EspH utilizes phosphoinositide and Rab binding domains to interact with plasma membrane infection sites and Rab GTPases. Gut Microbes 2024; 16:2400575. [PMID: 39312647 PMCID: PMC11421376 DOI: 10.1080/19490976.2024.2400575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
Enteropathogenic E. coli (EPEC) is a Gram-negative bacterial pathogen that causes persistent diarrhea. Upon attachment to the apical plasma membrane of the intestinal epithelium, the pathogen translocates virulence proteins called effectors into the infected cells. These effectors hijack numerous host processes for the pathogen's benefit. Therefore, studying the mechanisms underlying their action is crucial for a better understanding of the disease. We show that translocated EspH interacts with multiple host Rab GTPases. AlphaFold predictions and site-directed mutagenesis identified glutamic acid and lysine at positions 37 and 41 as Rab interacting residues in EspH. Mutating these sites abolished the ability of EspH to inhibit Akt and mTORC1 signaling, lysosomal exocytosis, and bacterial invasion. Knocking out the endogenous Rab8a gene expression highlighted the involvement of Rab8a in Akt/mTORC1 signaling and lysosomal exocytosis. A phosphoinositide binding domain with a critical tyrosine was identified in EspH. Mutating the tyrosine abolished the localization of EspH at infection sites and its capacity to interact with the Rabs. Our data suggest novel EspH-dependent mechanisms that elicit immune signaling and membrane trafficking during EPEC infection.
Collapse
Affiliation(s)
- Ipsita Nandi
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus - Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus - Givat Ram, Jerusalem, Israel
| | - Rachana Pattani Ramachandran
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus - Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus - Givat Ram, Jerusalem, Israel
| | - Deborah E Shalev
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, The Edmond J. Safra Campus - Givat Ram, Jerusalem, Israel
- The Department of Pharmaceutical Engineering, Azrieli College of Engineering, Jerusalem, Israel
| | - Dina Schneidman-Duhovny
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Raisa Shtuhin-Rahav
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus - Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus - Givat Ram, Jerusalem, Israel
| | - Naomi Melamed-Book
- Bioimaging Unit, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Efrat Zlotkin-Rivkin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus - Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus - Givat Ram, Jerusalem, Israel
| | - Alexander Rouvinski
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University-Hadassah Medical School, of Jerusalem, Jerusalem, Israel
| | - Ilan Rosenshine
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University-Hadassah Medical School, of Jerusalem, Jerusalem, Israel
| | - Benjamin Aroeti
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus - Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus - Givat Ram, Jerusalem, Israel
| |
Collapse
|
5
|
Bravo S, Moya J, Leiva F, Guzman O, Vidal R. Transcriptome analyses reveal key roles of alternative splicing regulation in atlantic salmon during the infectious process of Piscirickettsiosis disease. Heliyon 2023; 9:e22377. [PMID: 38058636 PMCID: PMC10696053 DOI: 10.1016/j.heliyon.2023.e22377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/26/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023] Open
Abstract
In the Chilean salmon farming industry, infection by Piscirickettsia salmonis is the primary cause of the main bacterial disease known as Piscirickettsiosis, which has an overwhelming economic impact. Although it has been demonstrated that Piscirickettsiosis modifies the expression of numerous salmonids genes, it is yet unknown how alternative splicing (AS) contributes to salmonids bacterial infection. AS, has the potential to create heterogeneity at the protein and RNA levels and has been associated as a relevant molecular mechanism in the immune response of eukaryotes to several diseases. In this study, we used RNA data to survey P. salmonis-induced modifications in the AS of Atlantic salmon and found that P. salmonis infection promoted a substantial number (158,668) of AS events. Differentially spliced genes (DSG) sensitive to Piscirickettsiosis were predominantly enriched in genes involved in RNA processing, splicing and spliceosome processes (e.g., hnRNPm, hnRPc, SRSF7, SRSF45), whereas among the DSG of resistant and susceptible to Piscirickettsiosis, several metabolic and immune processes were found, most notably associated to the regulation of GTPase, lysosome and telomere organization-maintenance. Furthermore, we found that DSG were mostly not differentially expressed (5-7 %) and were implicated in distinct biological pathways. Therefore, our results underpin AS achieving a significant regulatory performance in the response of salmonids to Piscirickettsiosis.
Collapse
Affiliation(s)
- Scarleth Bravo
- Laboratory of Genomics, Molecular Ecology and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Javier Moya
- Benchmark Animal Health Chile, Santa Rosa 560 of.26, Puerto Varas, Chile
| | - Francisco Leiva
- Laboratory of Genomics, Molecular Ecology and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Osiel Guzman
- IDEVAC SpA, Francisco Bilbao 1129 of. 306, Osorno, Chile
| | - Rodrigo Vidal
- Laboratory of Genomics, Molecular Ecology and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
6
|
Meng K, Zhu P, Shi L, Li S. Determination of the Salmonella intracellular lifestyle by the diversified interaction of Type III secretion system effectors and host GTPases. WIREs Mech Dis 2023; 15:e1587. [PMID: 36250298 DOI: 10.1002/wsbm.1587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/03/2022] [Accepted: 09/03/2022] [Indexed: 11/06/2022]
Abstract
Intracellular bacteria have developed sophisticated strategies to subvert the host endomembrane system to establish a stable replication niche. Small GTPases are critical players in regulating each step of membrane trafficking events, such as vesicle biogenesis, cargo transport, tethering, and fusion events. Salmonella is a widely studied facultative intracellular bacteria. Salmonella delivers several virulence proteins, termed effectors, to regulate GTPase dynamics and subvert host trafficking for their benefit. In this review, we summarize an updated and systematic understanding of the interactions between bacterial effectors and host GTPases in determining the intracellular lifestyle of Salmonella. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Kun Meng
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Ping Zhu
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Liuliu Shi
- School of Basic Medical Science, Hubei University of Medicine, Shiyan, Hubei, China
| | - Shan Li
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
7
|
Deletion in KARLN intron 5 and predictive relationship with bovine tuberculosis and brucellosis infection phenotype. Vet Res Commun 2022; 47:779-789. [DOI: 10.1007/s11259-022-10039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/10/2022] [Indexed: 12/14/2022]
|
8
|
Khalifeh D, Neveu E, Fasshauer D. Megaviruses contain various genes encoding for eukaryotic vesicle trafficking factors. Traffic 2022; 23:414-425. [PMID: 35701729 PMCID: PMC9546365 DOI: 10.1111/tra.12860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/02/2022] [Accepted: 06/02/2022] [Indexed: 11/30/2022]
Abstract
Many intracellular pathogens, such as bacteria and large viruses, enter eukaryotic cells via phagocytosis, then replicate and proliferate inside the host. To avoid degradation in the phagosomes, they have developed strategies to modify vesicle trafficking. Although several strategies of bacteria have been characterized, it is not clear whether viruses also interfere with the vesicle trafficking of the host. Recently, we came across SNARE proteins encoded in the genomes of several bacteria of the order Legionellales. These pathogenic bacteria may use SNAREs to interfere with vesicle trafficking, since SNARE proteins are the core machinery for vesicle fusion during transport. They assemble into membrane-bridging SNARE complexes that bring membranes together. We now have also discovered SNARE proteins in the genomes of diverse giant viruses. Our biochemical experiments showed that these proteins are able to form SNARE complexes. We also found other key trafficking factors that work together with SNAREs such as NSF, SM, and Rab proteins encoded in the genomes of giant viruses, suggesting that viruses can make use of a large genetic repertoire of trafficking factors. Most giant viruses possess different collections, suggesting that these factors entered the viral genome multiple times. In the future, the molecular role of these factors during viral infection need to be studied.
Collapse
Affiliation(s)
- Dany Khalifeh
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Emilie Neveu
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Dirk Fasshauer
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Coxiella burnetii Plasmid Effector B Promotes LC3-II Accumulation and Contributes To Bacterial Virulence in a SCID Mouse Model. Infect Immun 2022; 90:e0001622. [PMID: 35587202 DOI: 10.1128/iai.00016-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Coxiella burnetii, the causative agent of zoonotic Q fever, is characterized by replicating inside the lysosome-derived Coxiella-containing vacuole (CCV) in host cells. Some effector proteins secreted by C. burnetii have been reported to be involved in the manipulation of autophagy to facilitate the development of CCVs and bacterial replication. Here, we found that the Coxiella plasmid effector B (CpeB) localizes on vacuole membrane targeted by LC3 and LAMP1 and promotes LC3-II accumulation. Meanwhile, the C. burnetii strain lacking the QpH1 plasmid induced less LC3-II accumulation, which was accompanied by smaller CCVs and lower bacterial loads in THP-1 cells. Expression of CpeB in the strain lacking QpH1 led to restoration in LC3-II accumulation but had no effect on the smaller CCV phenotype. In the severe combined immune deficiency (SCID) mouse model, infections with the strain expressing CpeB led to significantly higher bacterial burdens in the spleen and liver than its parent strain devoid of QpH1. We also found that CpeB targets Rab11a to promote LC3-II accumulation. Intratracheally inoculated C. burnetii resulted in lower bacterial burdens and milder lung lesions in Rab11a conditional knockout (Rab11a-/- CKO) mice. Collectively, these results suggest that CpeB promotes C. burnetii virulence by inducing LC3-II accumulation via a pathway involving Rab11a.
Collapse
|
10
|
Li X, Zuo Z, Wang Y, Hegemann JH, He C. Polymorphic Membrane Protein 17G of Chlamydia psittaci Mediated the Binding and Invasion of Bacteria to Host Cells by Interacting and Activating EGFR of the Host. Front Immunol 2022; 12:818487. [PMID: 35173712 PMCID: PMC8841347 DOI: 10.3389/fimmu.2021.818487] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/24/2021] [Indexed: 01/06/2023] Open
Abstract
Chlamydia psittaci (C. psittaci) is an obligate intracellular, gram-negative bacterium, and mainly causes systemic disease in psittacine birds, domestic poultry, and wild fowl. The pathogen is threating to human beings due to closely contacted to employees in poultry industry. The polymorphic membrane proteins (Pmps) enriched in C. psittaci includes six subtypes (A, B/C, D, E/F, G/I and H). Compared to that of the 1 pmpG gene in Chlamydia trachomatis (C. trachomatis), the diverse pmpG gene-coding proteins of C. psittaci remain elusive. In the present study, polymorphic membrane protein 17G (Pmp17G) of C. psittaci mediated adhesion to different host cells. More importantly, expression of Pmp17G in C. trachomatis upregulated infections to host cells. Afterwards, crosstalk between Pmp17G and EGFR was screened and identified by MALDI-MS and Co-IP. Subsequently, EGFR overexpression in CHO-K1 cells and EGFR knockout in HeLa 229 cells were assessed to determine whether Pmp17G directly correlated with EGFR during Chlamydial adhesion. Finally, the EGFR phosphorylation was recognized by Grb2, triggering chlamydial invasion. Based on above evidence, Pmp17G possesses adhesive property that serves as an adhesin and activate intracellular bacterial internalization by recognizing EGFR during C. psittaci infection
Collapse
Affiliation(s)
- Xiaohui Li
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zonghui Zuo
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
- Department of Biology, Institute for Functional Microbial Genomics, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Yihui Wang
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Johannes H. Hegemann
- Department of Biology, Institute for Functional Microbial Genomics, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Cheng He
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- *Correspondence: Cheng He,
| |
Collapse
|
11
|
Sura T, Surabhi S, Maaß S, Hammerschmidt S, Siemens N, Becher D. The global proteome and ubiquitinome of bacterial and viral co-infected bronchial epithelial cells. J Proteomics 2022; 250:104387. [PMID: 34600154 DOI: 10.1016/j.jprot.2021.104387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/26/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022]
Abstract
Viral infections facilitate bacterial trafficking to the lower respiratory tract resulting in bacterial-viral co-infections. Bacterial dissemination to the lower respiratory tract is enhanced by influenza A virus induced epithelial cell damage and dysregulation of immune responses. Epithelial cells act as a line of defense and detect pathogens by a high variety of pattern recognition receptors. The post-translational modification ubiquitin is involved in almost every cellular process. Moreover, ubiquitination contributes to the regulation of host immune responses, influenza A virus uncoating and transport within host cells. We applied proteomics with a special focus on ubiquitination to assess the impact of single bacterial and viral as well as bacterial-viral co-infections on bronchial epithelial cells. We used Tandem Ubiquitin Binding Entities to enrich polyubiquitinated proteins and assess changes in the ubiquitinome. Infecting 16HBE cells with Streptococcus pyogenes led to an increased abundance of proteins related to mitochondrial translation and energy metabolism in proteome and ubiquitinome. In contrast, influenza A virus infection mainly altered the ubiquitinome. Co-infections had no additional impact on protein abundances or affected pathways. Changes in protein abundance and enriched pathways were assigned to imprints of both infecting pathogens. SIGNIFICANCE: Viral and bacterial co-infections of the lower respiratory tract are a burden for health systems worldwide. Therefore, it is necessary to elucidate the complex interplay between the host and the infecting pathogens. Thus, we analyzed the proteome and the ubiquitinome of co-infected bronchial epithelial cells to elaborate a potential synergism of the two infecting organisms. The results presented in this work can be used as a starting point for further analyses.
Collapse
Affiliation(s)
- Thomas Sura
- University of Greifswald, Center for Functional Genomics of Microbes, Institute of Microbiology, Department of Microbial Proteomics, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Surabhi Surabhi
- University of Greifswald, Center for Functional Genomics of Microbes, Interfaculty Institute for Genetics and Functional Genomics, Department of Molecular Genetics and Infection Biology, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Sandra Maaß
- University of Greifswald, Center for Functional Genomics of Microbes, Institute of Microbiology, Department of Microbial Proteomics, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Sven Hammerschmidt
- University of Greifswald, Center for Functional Genomics of Microbes, Interfaculty Institute for Genetics and Functional Genomics, Department of Molecular Genetics and Infection Biology, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Nikolai Siemens
- University of Greifswald, Center for Functional Genomics of Microbes, Interfaculty Institute for Genetics and Functional Genomics, Department of Molecular Genetics and Infection Biology, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Dörte Becher
- University of Greifswald, Center for Functional Genomics of Microbes, Institute of Microbiology, Department of Microbial Proteomics, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany.
| |
Collapse
|
12
|
Anil A, Apte S, Joseph J, Parthasarathy A, Madhavan S, Banerjee A. Pyruvate Oxidase as a Key Determinant of Pneumococcal Viability during Transcytosis across Brain Endothelium. J Bacteriol 2021; 203:e0043921. [PMID: 34606370 PMCID: PMC8604078 DOI: 10.1128/jb.00439-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/23/2021] [Indexed: 01/23/2023] Open
Abstract
Streptococcus pneumoniae invades a myriad of host tissues following efficient breaching of cellular barriers. However, strategies adopted by pneumococcus for evasion of host intracellular defenses governing successful transcytosis across host cellular barriers remain elusive. In this study, using brain endothelium as a model host barrier, we observed that pneumococcus containing endocytic vacuoles (PCVs), formed following S. pneumoniae internalization into brain microvascular endothelial cells (BMECs), undergo early maturation and acidification, with a major subset acquiring lysosome-like characteristics. Exploration of measures that would preserve pneumococcal viability in the lethal acidic pH of these lysosome-like vacuoles revealed a critical role of the two-component system response regulator, CiaR, which was previously implicated in induction of acid tolerance response. Pyruvate oxidase (SpxB), a key sugar-metabolizing enzyme that catalyzes oxidative decarboxylation of pyruvate to acetyl phosphate, was found to contribute to acid stress tolerance, presumably via acetyl phosphate-mediated phosphorylation and activation of CiaR, independent of its cognate kinase CiaH. Hydrogen peroxide, the by-product of an SpxB-catalyzed reaction, was also found to improve pneumococcal intracellular survival by oxidative inactivation of lysosomal cysteine cathepsins, thus compromising the degradative capacity of the host lysosomes. As expected, a ΔspxB mutant was found to be significantly attenuated in its ability to survive inside the BMEC endocytic vacuoles, reflecting its reduced transcytosis ability. Collectively, our studies establish SpxB as an important virulence determinant facilitating pneumococcal survival inside host cells, ensuring successful trafficking across host cellular barriers. IMPORTANCE Host cellular barriers have innate immune defenses to restrict microbial passage into sterile compartments. Here, by focusing on the blood-brain barrier endothelium, we investigated mechanisms that enable Streptococcus pneumoniae to traverse through host barriers. Pyruvate oxidase, a pneumococcal sugar-metabolizing enzyme, was found to play a crucial role in this via generation of acetyl phosphate and hydrogen peroxide. A two-pronged approach consisting of acetyl phosphate-mediated activation of acid tolerance response and hydrogen peroxide-mediated inactivation of lysosomal enzymes enabled pneumococci to maintain viability inside the degradative vacuoles of the brain endothelium for successful transcytosis across the barrier. Thus, pyruvate oxidase is a key virulence determinant and can potentially serve as a viable candidate for therapeutic interventions for better management of invasive pneumococcal diseases.
Collapse
Affiliation(s)
- Anjali Anil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| | - Shruti Apte
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| | - Jincy Joseph
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| | - Akhila Parthasarathy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| | - Shilpa Madhavan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| | - Anirban Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| |
Collapse
|
13
|
Categorizing sequences of concern by function to better assess mechanisms of microbial pathogenesis. Infect Immun 2021; 90:e0033421. [PMID: 34780277 PMCID: PMC9119117 DOI: 10.1128/iai.00334-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To identify sequences with a role in microbial pathogenesis, we assessed the adequacy of their annotation by existing controlled vocabularies and sequence databases. Our goal was to regularize descriptions of microbial pathogenesis for improved integration with bioinformatic applications. Here, we review the challenges of annotating sequences for pathogenic activity. We relate the categorization of more than 2,750 sequences of pathogenic microbes through a controlled vocabulary called Functions of Sequences of Concern (FunSoCs). These allow for an ease of description by both humans and machines. We provide a subset of 220 fully annotated sequences in the supplemental material as examples. The use of this compact (∼30 terms), controlled vocabulary has potential benefits for research in microbial genomics, public health, biosecurity, biosurveillance, and the characterization of new and emerging pathogens.
Collapse
|
14
|
Aromolaran O, Beder T, Adedeji E, Ajamma Y, Oyelade J, Adebiyi E, Koenig R. Predicting host dependency factors of pathogens in Drosophila melanogaster using machine learning. Comput Struct Biotechnol J 2021; 19:4581-4592. [PMID: 34471501 PMCID: PMC8385402 DOI: 10.1016/j.csbj.2021.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 11/25/2022] Open
Abstract
Pathogens causing infections, and particularly when invading the host cells, require the host cell machinery for efficient regeneration and proliferation during infection. For their life cycle, host proteins are needed and these Host Dependency Factors (HDF) may serve as therapeutic targets. Several attempts have approached screening for HDF producing large lists of potential HDF with, however, only marginal overlap. To get consistency into the data of these experimental studies, we developed a machine learning pipeline. As a case study, we used publicly available lists of experimentally derived HDF from twelve different screening studies based on gene perturbation in Drosophila melanogaster cells or in vivo upon bacterial or protozoan infection. A total of 50,334 gene features were generated from diverse categories including their functional annotations, topology attributes in protein interaction networks, nucleotide and protein sequence features, homology properties and subcellular localization. Cross-validation revealed an excellent prediction performance. All feature categories contributed to the model. Predicted and experimentally derived HDF showed a good consistency when investigating their common cellular processes and function. Cellular processes and molecular function of these genes were highly enriched in membrane trafficking, particularly in the trans-Golgi network, cell cycle and the Rab GTPase binding family. Using our machine learning approach, we show that HDF in organisms can be predicted with high accuracy evidencing their common investigated characteristics. We elucidated cellular processes which are utilized by invading pathogens during infection. Finally, we provide a list of 208 novel HDF proposed for future experimental studies.
Collapse
Affiliation(s)
- Olufemi Aromolaran
- Department of Computer & Information Sciences, Covenant University, Ota, Ogun State, Nigeria
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
| | - Thomas Beder
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Eunice Adedeji
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
- Department of Biochemistry, Covenant University, Ota, Ogun State, Nigeria
| | - Yvonne Ajamma
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
| | - Jelili Oyelade
- Department of Computer & Information Sciences, Covenant University, Ota, Ogun State, Nigeria
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
| | - Ezekiel Adebiyi
- Department of Computer & Information Sciences, Covenant University, Ota, Ogun State, Nigeria
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
| | - Rainer Koenig
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
15
|
Solabre Valois L, Shi V(H, Bishop P, Zhu B, Nakamura Y, Wilkinson KA, Henley JM. Neurotrophic effects of Botulinum neurotoxin type A in hippocampal neurons involve activation of Rac1 by the non-catalytic heavy chain (HC C/A). IBRO Neurosci Rep 2021; 10:196-207. [PMID: 34041508 PMCID: PMC8143998 DOI: 10.1016/j.ibneur.2021.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/22/2021] [Indexed: 12/19/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are extremely potent naturally occurring poisons that act by silencing neurotransmission. Intriguingly, in addition to preventing presynaptic vesicle fusion, BoNT serotype A (BoNT/A) can also promote axonal regeneration in preclinical models. Here we report that the non-toxic C-terminal region of the receptor-binding domain of heavy chain BoNT/A (HCC/A) activates the small GTPase Rac1 and ERK pathway to potentiate axonal outgrowth, dendritic protrusion formation and synaptic vesicle release in hippocampal neurons. These data are consistent with HCC/A exerting neurotrophic properties, at least in part, independent of any BoNT catalytic activity or toxic effect.
Collapse
Affiliation(s)
- Luis Solabre Valois
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Vanilla (Hua) Shi
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Paul Bishop
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Bangfu Zhu
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Yasuko Nakamura
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Kevin A. Wilkinson
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | | |
Collapse
|
16
|
De Niz M, Caldelari R, Kaiser G, Zuber B, Heo WD, Heussler VT, Agop-Nersesian C. Hijacking of the host cell Golgi by Plasmodium berghei liver stage parasites. J Cell Sci 2021; 134:jcs252213. [PMID: 34013963 PMCID: PMC8186485 DOI: 10.1242/jcs.252213] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 04/12/2021] [Indexed: 12/28/2022] Open
Abstract
The intracellular lifestyle represents a challenge for the rapidly proliferating liver stage Plasmodium parasite. In order to scavenge host resources, Plasmodium has evolved the ability to target and manipulate host cell organelles. Using dynamic fluorescence-based imaging, we here show an interplay between the pre-erythrocytic stages of Plasmodium berghei and the host cell Golgi during liver stage development. Liver stage schizonts fragment the host cell Golgi into miniaturized stacks, which increases surface interactions with the parasitophorous vacuolar membrane of the parasite. Expression of specific dominant-negative Arf1 and Rab GTPases, which interfere with the host cell Golgi-linked vesicular machinery, results in developmental delay and diminished survival of liver stage parasites. Moreover, functional Rab11a is critical for the ability of the parasites to induce Golgi fragmentation. Altogether, we demonstrate that the structural integrity of the host cell Golgi and Golgi-associated vesicular traffic is important for optimal pre-erythrocytic development of P. berghei. The parasite hijacks the Golgi structure of the hepatocyte to optimize its own intracellular development. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Mariana De Niz
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | - Reto Caldelari
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | - Gesine Kaiser
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | - Benoit Zuber
- Institute for Anatomy, University of Bern, CH-3012 Bern, Switzerland
| | - Won Do Heo
- Dept. of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Volker T. Heussler
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | | |
Collapse
|
17
|
Chiang CY, Zhong Y, Ward MD, Lane DJ, Kenny T, Rosario-Acevedo R, Eaton BP, Treviño SR, Chance TB, Hu M, Worsham PL, Waag DM, Moore RT, Cazares LH, Cote CK, Zhou Y, Panchal RG. Proteomic Analysis of Non-human Primate Peripheral Blood Mononuclear Cells During Burkholderia mallei Infection Reveals a Role of Ezrin in Glanders Pathogenesis. Front Microbiol 2021; 12:625211. [PMID: 33967974 PMCID: PMC8101288 DOI: 10.3389/fmicb.2021.625211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/16/2021] [Indexed: 11/22/2022] Open
Abstract
Burkholderia mallei, the causative agent of glanders, is a gram-negative intracellular bacterium. Depending on different routes of infection, the disease is manifested by pneumonia, septicemia, and chronic infections of the skin. B. mallei poses a serious biological threat due to its ability to infect via aerosol route, resistance to multiple antibiotics and to date there are no US Food and Drug Administration (FDA) approved vaccines available. Induction of innate immunity, inflammatory cytokines and chemokines following B. mallei infection, have been observed in in vitro and small rodent models; however, a global characterization of host responses has never been systematically investigated using a non-human primate (NHP) model. Here, using a liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach, we identified alterations in expression levels of host proteins in peripheral blood mononuclear cells (PBMCs) originating from naïve rhesus macaques (Macaca mulatta), African green monkeys (Chlorocebus sabaeus), and cynomolgus macaques (Macaca fascicularis) exposed to aerosolized B. mallei. Gene ontology (GO) analysis identified several statistically significant overrepresented biological annotations including complement and coagulation cascade, nucleoside metabolic process, vesicle-mediated transport, intracellular signal transduction and cytoskeletal protein binding. By integrating an LC-MS/MS derived proteomics dataset with a previously published B. mallei host-pathogen interaction dataset, a statistically significant predictive protein-protein interaction (PPI) network was constructed. Pharmacological perturbation of one component of the PPI network, specifically ezrin, reduced B. mallei mediated interleukin-1β (IL-1β). On the contrary, the expression of IL-1β receptor antagonist (IL-1Ra) was upregulated upon pretreatment with the ezrin inhibitor. Taken together, inflammasome activation as demonstrated by IL-1β production and the homeostasis of inflammatory response is critical during the pathogenesis of glanders. Furthermore, the topology of the network reflects the underlying molecular mechanism of B. mallei infections in the NHP model.
Collapse
Affiliation(s)
- Chih-Yuan Chiang
- Countermeasures Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Yang Zhong
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, United States
| | - Michael D. Ward
- Systems and Structural Biology Division, Protein Sciences Branch, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Douglas J. Lane
- Countermeasures Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Tara Kenny
- Countermeasures Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Raysa Rosario-Acevedo
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Brett P. Eaton
- Countermeasures Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Sylvia R. Treviño
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Taylor B. Chance
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Meghan Hu
- Countermeasures Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Patricia L. Worsham
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - David M. Waag
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Richard T. Moore
- Countermeasures Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Lisa H. Cazares
- Systems and Structural Biology Division, Protein Sciences Branch, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Christopher K. Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Yingyao Zhou
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, United States
| | - Rekha G. Panchal
- Countermeasures Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| |
Collapse
|
18
|
Solano-Collado V, Colamarino RA, Calderwood DA, Baldassarre M, Spanò S. A Small-Scale shRNA Screen in Primary Mouse Macrophages Identifies a Role for the Rab GTPase Rab1b in Controlling Salmonella Typhi Growth. Front Cell Infect Microbiol 2021; 11:660689. [PMID: 33898333 PMCID: PMC8059790 DOI: 10.3389/fcimb.2021.660689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/22/2021] [Indexed: 01/21/2023] Open
Abstract
Salmonella Typhi is a human-restricted bacterial pathogen that causes typhoid fever, a life-threatening systemic infection. A fundamental aspect of S. Typhi pathogenesis is its ability to survive in human macrophages but not in macrophages from other animals (i.e. mice). Despite the importance of macrophages in establishing systemic S. Typhi infection, the mechanisms that macrophages use to control the growth of S. Typhi and the role of these mechanisms in the bacterium's adaptation to the human host are mostly unknown. To facilitate unbiased identification of genes involved in controlling the growth of S. Typhi in macrophages, we report optimized experimental conditions required to perform loss-of function pooled shRNA screens in primary mouse bone-marrow derived macrophages. Following infection with a fluorescent-labeled S. Typhi, infected cells are sorted based on the intensity of fluorescence (i.e. number of intracellular fluorescent bacteria). shRNAs enriched in the fluorescent population are identified by next-generation sequencing. A proof-of-concept screen targeting the mouse Rab GTPases confirmed Rab32 as important to restrict S. Typhi in mouse macrophages. Interestingly and rather unexpectedly, this screen also revealed that Rab1b controls S. Typhi growth in mouse macrophages. This constitutes the first report of a Rab GTPase other than Rab32 involved in S. Typhi host-restriction. The methodology described here should allow genome-wide screening to identify mechanisms controlling the growth of S. Typhi and other intracellular pathogens in primary immune cells.
Collapse
Affiliation(s)
| | | | - David A. Calderwood
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, United States
| | | | - Stefania Spanò
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
19
|
Acinetobacter baumannii Targets Human Carcinoembryonic Antigen-Related Cell Adhesion Molecules (CEACAMs) for Invasion of Pneumocytes. mSystems 2020; 5:5/6/e00604-20. [PMID: 33361319 PMCID: PMC7762790 DOI: 10.1128/msystems.00604-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Multidrug-resistant Acinetobacter baumannii is regarded as a life-threatening pathogen mainly associated with nosocomial and community-acquired pneumonia. Here, we show that A. baumannii can bind the human carcinoembryonic antigen-related cell adhesion molecule (CEACAM) receptors CEACAM1, CEACAM5, and CEACAM6. This specific interaction enhances A. baumannii internalization in membrane-bound vacuoles, promptly decorated with Rab5, Rab7, and lipidated microtubule-associated protein light chain 3 (LC3). Dissecting intracellular signaling pathways revealed that infected pneumocytes trigger interleukin-8 (IL-8) secretion via the extracellular signal-regulated kinase (ERK)1/2 and nuclear factor-kappa B (NF-κB) signaling pathways for A. baumannii clearance. However, in CEACAM1-L-expressing cells, IL-8 secretion lasts only 24 h, possibly due to an A. baumannii-dependent effect on the CEACAM1-L intracellular domain. Conversely, the glycosylphosphatidylinositol-anchored CEACAM5 and CEACAM6 activate the c-Jun NH2-terminal kinase (JNK)1/2-Rubicon-NOX2 pathway, suggestive of LC3-associated phagocytosis. Overall, our data show for the first time novel mechanisms of adhesion to and invasion of pneumocytes by A. baumannii via CEACAM-dependent signaling pathways that eventually lead to bacterial killing. These findings suggest that CEACAM upregulation could put patients at increased risk of lower respiratory tract infection by A. baumannii IMPORTANCE This work shows for the first time that Acinetobacter baumannii binds to carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), CEACAM5, and CEACAM6. This binding significantly enhances A. baumannii internalization within alveolar host cell epithelia. Intracellular trafficking involves typical Rab5 and Rab7 vacuolar proteins as well as light chain 3 (LC3) and slowly progresses to bacterial killing by endosome acidification. CEACAM engagement by A. baumannii leads to distinct and specific downstream signaling pathways. The CEACAM1 pathway finely tunes interleukin-8 (IL-8) secretion, whereas CEACAM5 and CEACAM6 mediate LC3-associated phagocytosis. The present study provides new insights into A. baumannii-host interactions and could represent a promising therapeutic strategy to reduce pulmonary infections caused by this pathogen.
Collapse
|
20
|
Lim C, Berk JM, Blaise A, Bircher J, Koleske AJ, Hochstrasser M, Xiong Y. Crystal structure of a guanine nucleotide exchange factor encoded by the scrub typhus pathogen Orientia tsutsugamushi. Proc Natl Acad Sci U S A 2020; 117:30380-30390. [PMID: 33184172 PMCID: PMC7720168 DOI: 10.1073/pnas.2018163117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Rho family GTPases regulate an array of cellular processes and are often modulated by pathogens to promote infection. Here, we identify a cryptic guanine nucleotide exchange factor (GEF) domain in the OtDUB protein encoded by the pathogenic bacterium Orientia tsutsugamushi A proteomics-based OtDUB interaction screen identified numerous potential host interactors, including the Rho GTPases Rac1 and Cdc42. We discovered a domain in OtDUB with Rac1/Cdc42 GEF activity (OtDUBGEF), with higher activity toward Rac1 in vitro. While this GEF bears no obvious sequence similarity to known GEFs, crystal structures of OtDUBGEF alone (3.0 Å) and complexed with Rac1 (1.7 Å) reveal striking convergent evolution, with a unique topology, on a V-shaped bacterial GEF fold shared with other bacterial GEF domains. Structure-guided mutational analyses identified residues critical for activity and a mechanism for nucleotide displacement. Ectopic expression of OtDUB activates Rac1 preferentially in cells, and expression of the OtDUBGEF alone alters cell morphology. Cumulatively, this work reveals a bacterial GEF within the multifunctional OtDUB that co-opts host Rac1 signaling to induce changes in cytoskeletal structure.
Collapse
Affiliation(s)
- Christopher Lim
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520
| | - Jason M Berk
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520
| | - Alyssa Blaise
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520
| | - Josie Bircher
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520
| | - Anthony J Koleske
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520
| | - Mark Hochstrasser
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520
| | - Yong Xiong
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520
| |
Collapse
|
21
|
Braun C, Hegemann JH, Mölleken K. Insights Into a Chlamydia pneumoniae-Specific Gene Cluster of Membrane Binding Proteins. Front Cell Infect Microbiol 2020; 10:565808. [PMID: 33194804 PMCID: PMC7609445 DOI: 10.3389/fcimb.2020.565808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/23/2020] [Indexed: 11/18/2022] Open
Abstract
Chlamydia pneumoniae is an obligate intracellular pathogen that causes diseases of the upper and lower respiratory tract and is linked to a number of severe and chronic conditions. Here, we describe a large, C. pneumoniae-specific cluster of 13 genes (termed mbp1-13) that encode highly homologous chlamydial proteins sharing the capacity to bind to membranes. The gene cluster is localized on the chromosome between the highly diverse adhesin-encoding pmp genes pmp15 and pmp14. Comparison of human clinical isolates to the predicted ancestral koala isolate indicates that the cluster was acquired in the ancestor and was adapted / modified during evolution. SNPs and IN/DELs within the cluster are specific to isolates taken from different human tissues and show an ongoing adaptation. Most of the cluster proteins harbor one or two domains of unknown function (DUF575 and DUF562). During ectopic expression in human cells these DUF domains are crucial for the association of cluster proteins to the endo-membrane system. Especially DUF575 which harbors a predicted transmembrane domain is important for binding to the membrane, while presence of the DUF562 seems to be of regulatory function. For Mbp1, founding member of the cluster that exhibits a very limited sequence identity to the human Rab36 protein, we found a specific binding to vesicles carrying the early endosomal marker PtdIns(3)P and the endosomal Rab GTPases Rab11 and Rab14. This binding is dependent on a predicted transmembrane domain with an α-helical / β-strand secondary structure, as the mutant version Mbp1mut, which lacks the β-strand secondary structure, shows a reduced association to PtdIns(3)P-positive membranes carrying Rab11 and Rab14. Furthermore, we could not only show that Mbp1 associates with Rab36, but found this specific Rab protein to be recruited to the early C. pneumoniae inclusion. Detection of endogenous Mbp1 and Mbp4 reveal a colocalization to the chlamydial outer membrane protein Momp on EBs. The same colocalization pattern with Momp was observed when we ectopically expressed Mbp4 in C. trachomatis. Thus, we identified a C. pneumoniae-specific cluster of 13 membrane binding proteins (Mbps) localizing to the bacterial outer membrane system.
Collapse
Affiliation(s)
- Corinna Braun
- Institute of Functional Microbial Genomics, Heinrich-Heine-University, Düsseldorf, Germany
| | - Johannes H Hegemann
- Institute of Functional Microbial Genomics, Heinrich-Heine-University, Düsseldorf, Germany
| | - Katja Mölleken
- Institute of Functional Microbial Genomics, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
22
|
Struck MW, Pazour GJ, Lambright DG. X Caps the Phosphate for Phospho-Rab GTPase Recognition in Ciliogenesis and Parkinson's Disease. Structure 2020; 28:385-387. [PMID: 32268075 DOI: 10.1016/j.str.2020.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Some Rab GTPases, after activation by GDP to GTP exchange, are phosphorylated by the LRRK2 kinase implicated in Parkinson's disease. In the current issue of Structure, Waschbüsch et al. (2020) investigate the structural basis for recognition of active phospho-Rab GTPases by the RH2 domain of the effector protein RILPL2.
Collapse
Affiliation(s)
- Michael W Struck
- Program in Molecular Medicine and Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Gregory J Pazour
- Program in Molecular Medicine and Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - David G Lambright
- Program in Molecular Medicine and Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
23
|
Siadous FA, Cantet F, Van Schaik E, Burette M, Allombert J, Lakhani A, Bonaventure B, Goujon C, Samuel J, Bonazzi M, Martinez E. Coxiella effector protein CvpF subverts RAB26-dependent autophagy to promote vacuole biogenesis and virulence. Autophagy 2020; 17:706-722. [PMID: 32116095 PMCID: PMC8032239 DOI: 10.1080/15548627.2020.1728098] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Coxiella burnetii, the etiological agent of the zoonosis Q fever, replicates inside host cells within a large vacuole displaying autolysosomal characteristics. The development of this compartment is mediated by bacterial effectors, which interfere with a number of host membrane trafficking pathways. By screening a Coxiella transposon mutant library, we observed that transposon insertions in cbu0626 led to intracellular replication and vacuole biogenesis defects. Here, we demonstrate that CBU0626 is a novel member of the Coxiella vacuolar protein (Cvp) family of effector proteins, which is translocated by the Dot/Icm secretion system and localizes to vesicles with autolysosomal features as well as Coxiella-containing vacuoles (CCVs). We thus renamed this effector CvpF for Coxiella vacuolar protein F. CvpF specifically interacts with the host small GTPase RAB26, leading to the recruitment of the autophagosomal marker MAP1LC3B/LC3B (microtubule associated protein 1 light chain 3 beta) to CCVs. Importantly, cvpF::Tn mutants were highly attenuated compared to wild-type bacteria in the SCID mouse model of infection, highlighting the importance of CvpF for Coxiella virulence. These results suggest that CvpF manipulates endosomal trafficking and macroautophagy/autophagy induction for optimal C. burnetii vacuole biogenesis. Abbreviations: ACCM: acidified citrate cystein medium; AP: adaptor related protein complex; CCV: Coxiella-containing vacuole; Cvp: Coxiella vacuolar protein; GDI: guanosine nucleotide dissociation inhibitor; GDF: GDI dissociation factor; GEF: guanine exchange factor; LAMP1: lysosomal associated membrane protein 1; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MTORC1: mechanistic target of rapamycin kinase MTOR complex 1; PBS: phosphate-buffered saline; PMA: phorbol myristate acetate; SQSTM1/p62: sequestosome 1; WT: wild-type.
Collapse
Affiliation(s)
- Fernande Ayenoue Siadous
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004 CNRS, Université de Montpellier, Montpellier, France
| | - Franck Cantet
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004 CNRS, Université de Montpellier, Montpellier, France
| | - Erin Van Schaik
- Department of Microbial and Molecular Pathogenesis, Texas A&M Health Science Center College of Medicine, Bryan, TX, USA
| | - Mélanie Burette
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004 CNRS, Université de Montpellier, Montpellier, France
| | - Julie Allombert
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004 CNRS, Université de Montpellier, Montpellier, France
| | - Anissa Lakhani
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004 CNRS, Université de Montpellier, Montpellier, France
| | - Boris Bonaventure
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004 CNRS, Université de Montpellier, Montpellier, France
| | - Caroline Goujon
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004 CNRS, Université de Montpellier, Montpellier, France
| | - James Samuel
- Department of Microbial and Molecular Pathogenesis, Texas A&M Health Science Center College of Medicine, Bryan, TX, USA
| | - Matteo Bonazzi
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004 CNRS, Université de Montpellier, Montpellier, France
| | - Eric Martinez
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004 CNRS, Université de Montpellier, Montpellier, France
| |
Collapse
|
24
|
Group A Streptococcus Induces LAPosomes via SLO/β1 Integrin/NOX2/ROS Pathway in Endothelial Cells That Are Ineffective in Bacterial Killing and Suppress Xenophagy. mBio 2019; 10:mBio.02148-19. [PMID: 31575768 PMCID: PMC6775456 DOI: 10.1128/mbio.02148-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Our previous reports showed that the LC3-associated GAS-containing single membrane vacuoles are inefficient for bacterial clearance in endothelial cells, which may result in bacteremia. However, the characteristics and the induction mechanisms of these LC3-positive vacuoles are still largely unknown. Here we provide the first evidence that these LC3-positive GAS-containing single membrane compartments appear to be LAPosomes, which are induced by NOX2 and ROS. Through NOX2- and ROS-mediated signaling, GAS preferentially induces LAP and inhibits bacteriostatic xenophagy in endothelial cells. We also provide the first demonstration that β1 integrin acts as the receptor for LAP induction through GAS-produced SLO stimulation in endothelial cells. Our findings reveal the underlying mechanisms of LAP induction and autophagy evasion for GAS multiplication in endothelial cells. Group A streptococcus (GAS) is an important human pathogen which can cause fatal diseases after invasion into the bloodstream. Although antibiotics and immune surveillance are the main defenses against GAS infection, GAS utilizes internalization into cells as a major immune evasion strategy. Our previous findings revealed that light chain 3 (LC3)-associated single membrane GAS-containing vacuoles in endothelial cells are compromised for bacterial clearance due to insufficient acidification after fusion with lysosomes. However, the characteristics and the activation mechanisms of these LC3-positive compartments are still largely unknown. In the present study, we demonstrated that the LC3-positive GAS is surrounded by single membrane and colocalizes with NADPH oxidase 2 (NOX2) complex but without ULK1, which are characteristics of LC3-associated phagocytosis (LAP). Inhibition of NOX2 or reactive oxygen species (ROS) significantly reduces GAS multiplication and enhances autolysosome acidification in endothelial cells through converting LAP to conventional xenophagy, which is revealed by enhancement of ULK1 recruitment, attenuation of p70s6k phosphorylation, and formation of the isolation membrane. We also clarify that the inactivation of mTORC1, which is the initiation signal of autophagy, is inhibited by NOX2- and ROS-activated phosphatidylinositol 3-kinase (PI3K)/AKT and MEK/extracellular signal-regulated kinase (ERK) pathways. In addition, streptolysin O (SLO) of GAS is identified as a crucial inducer of ROS for β1 integrin-mediated LAP induction. After downregulation of β1 integrin, GAS multiplication is reduced, accompanied with LAP inhibition and xenophagy induction. These results demonstrate that GAS infection preferentially induces ineffective LAP to evade xenophagic killing in endothelial cells through the SLO/β1 integrin/NOX2/ROS pathway.
Collapse
|
25
|
Bearer EL, Wu C. Herpes Simplex Virus, Alzheimer's Disease and a Possible Role for Rab GTPases. Front Cell Dev Biol 2019; 7:134. [PMID: 31448273 PMCID: PMC6692634 DOI: 10.3389/fcell.2019.00134] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/04/2019] [Indexed: 12/17/2022] Open
Abstract
Herpes simplex virus (HSV) is a common pathogen, infecting 85% of adults in the United States. After reaching the nucleus of the long-lived neuron, HSV may enter latency to persist throughout the life span. Re-activation of latent herpesviruses is associated with progressive cognitive impairment and Alzheimer's disease (AD). As an enveloped DNA virus, HSV exploits cellular membrane systems for its life cycle, and thereby comes in contact with the Rab family of GTPases, master regulators of intracellular membrane dynamics. Knock-down and overexpression of specific Rabs reduce HSV production. Disheveled membrane compartments could lead to AD because membrane sorting and trafficking are crucial for synaptic vesicle formation, neuronal survival signaling and Abeta production. Amyloid precursor protein (APP), a transmembrane glycoprotein, is the parent of Abeta, the major component of senile plaques in AD. Up-regulation of APP expression due to HSV is significant since excess APP interferes with Rab5 endocytic trafficking in neurons. Here, we show that purified PC12-cell endosomes transport both anterograde and retrograde when injected into the squid giant axon at rates similar to isolated HSV. Intracellular HSV co-fractionates with these endosomes, contains APP, Rab5 and TrkA, and displays a second membrane. HSV infected PC12 cells up-regulate APP expression. Whether interference with Rabs has a specific effect on HSV or indirectly affects membrane compartment dynamics co-opted by virus needs further study. Ultimately Rabs, their effectors or their membrane-binding partners may serve as handles to reduce the impact of viral re-activation on cognitive function, or even as more general-purpose anti-microbial therapies.
Collapse
Affiliation(s)
- Elaine L. Bearer
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Chengbiao Wu
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
26
|
Stroupe C. This Is the End: Regulation of Rab7 Nucleotide Binding in Endolysosomal Trafficking and Autophagy. Front Cell Dev Biol 2018; 6:129. [PMID: 30333976 PMCID: PMC6176412 DOI: 10.3389/fcell.2018.00129] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/14/2018] [Indexed: 01/07/2023] Open
Abstract
Rab7 – or in yeast, Ypt7p – governs membrane trafficking in the late endocytic and autophagic pathways. Rab7 also regulates mitochondrion-lysosome contacts, the sites of mitochondrial fission. Like all Rab GTPases, Rab7 cycles between an “active” GTP-bound form that binds downstream effectors – e.g., the HOPS and retromer complexes and the dynactin-binding Rab-interacting lysosomal protein (RILP) – and an “inactive” GDP-bound form that cannot bind effectors. Accessory proteins regulate the nucleotide binding state of Rab7: guanine nucleotide exchange factors (GEFs) stimulate exchange of bound GDP for GTP, resulting in Rab7 activation, whereas GTPase activating proteins (GAPs) boost Rab7’s GTP hydrolysis activity, thereby inactivating Rab7. This review will discuss the GEF and GAPs that control Rab7 nucleotide binding, and thus regulate Rab7’s activity in endolysosomal trafficking and autophagy. It will also consider how bacterial pathogens manipulate Rab7 nucleotide binding to support intracellular invasion and immune evasion.
Collapse
Affiliation(s)
- Christopher Stroupe
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, United States
| |
Collapse
|
27
|
Allgood SC, Neunuebel MR. The recycling endosome and bacterial pathogens. Cell Microbiol 2018; 20:e12857. [PMID: 29748997 PMCID: PMC5993623 DOI: 10.1111/cmi.12857] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 04/05/2018] [Accepted: 04/27/2018] [Indexed: 12/29/2022]
Abstract
Bacterial pathogens have developed a wide range of strategies to survive within human cells. A number of pathogens multiply in a vacuolar compartment, whereas others can rupture the vacuole and replicate in the host cytosol. A common theme among many bacterial pathogens is the use of specialised secretion systems to deliver effector proteins into the host cell. These effectors can manipulate the host's membrane trafficking pathways to remodel the vacuole into a replication-permissive niche and prevent degradation. As master regulators of eukaryotic membrane traffic, Rab GTPases are principal targets of bacterial effectors. This review highlights the manipulation of Rab GTPases that regulate host recycling endocytosis by several bacterial pathogens, including Chlamydia pneumoniae, Chlamydia trachomatis, Shigella flexneri, Salmonella enterica serovar Typhimurium, Uropathogenic Escherichia coli, and Legionella pneumophila. Recycling endocytosis plays key roles in a variety of cellular aspects such as nutrient uptake, immunity, cell division, migration, and adhesion. Though much remains to be understood about the molecular basis and the biological relevance of bacterial pathogens exploiting Rab GTPases, current knowledge supports the notion that endocytic recycling Rab GTPases are differentially targeted to avoid degradation and support bacterial replication. Thus, future studies of the interactions between bacterial pathogens and host endocytic recycling pathways are poised to deepen our understanding of bacterial survival strategies.
Collapse
Affiliation(s)
| | - M. Ramona Neunuebel
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
28
|
Chua CEL, Tang BL. Rab 10-a traffic controller in multiple cellular pathways and locations. J Cell Physiol 2018; 233:6483-6494. [PMID: 29377137 DOI: 10.1002/jcp.26503] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/24/2018] [Indexed: 12/29/2022]
Abstract
Rab GTPases are key regulators of eukaryotic membrane traffic, and their functions and activities are limited to particular intracellular transport steps and their membrane localization is by and large restricted. Some Rabs do participate in more than one transport steps, but broadly speaking, there is a clear demarcation between exocytic and endocytic Rabs. One Rab protein, Rab10, however, appears to be anomalous in this regard and has a diverse array of functions and subcellular localizations. Rab10 has been implicated in a myriad of activities ranging from polarized exocytosis and endosomal sorting in polarized cells, insulin-dependent Glut4 transport in adipocytes, axonal growth in neurons, and endo-phagocytic processes in macrophages. It's reported subcellular localizations include the endoplasmic reticulum (ER), Golgi/TGN, the endosomes/phagosomes and the primary cilia. In this review, we summarize and discuss the multitude of known roles of Rab10 in cellular membrane transport and the molecular players and mechanisms associated with these roles.
Collapse
Affiliation(s)
- Christelle En Lin Chua
- Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore
| | - Bor L Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| |
Collapse
|
29
|
Pylypenko O, Hammich H, Yu IM, Houdusse A. Rab GTPases and their interacting protein partners: Structural insights into Rab functional diversity. Small GTPases 2018. [PMID: 28632484 DOI: 10.1080/215412481336191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Rab molecular switches are key players in defining membrane identity and regulating intracellular trafficking events in eukaryotic cells. In spite of their global structural similarity, Rab-family members acquired particular features that allow them to perform specific cellular functions. The overall fold and local sequence conservations enable them to utilize a common machinery for prenylation and recycling; while individual Rab structural differences determine interactions with specific partners such as GEFs, GAPs and effector proteins. These interactions orchestrate the spatiotemporal regulation of Rab localization and their turning ON and OFF, leading to tightly controlled Rab-specific functionalities such as membrane composition modifications, recruitment of molecular motors for intracellular trafficking, or recruitment of scaffold proteins that mediate interactions with downstream partners, as well as actin cytoskeleton regulation. In this review we summarize structural information on Rab GTPases and their complexes with protein partners in the context of partner binding specificity and functional outcomes of their interactions in the cell.
Collapse
Affiliation(s)
- Olena Pylypenko
- a Structural Motility, Institut Curie , PSL Research University, CNRS, UMR 144 , Paris , France
| | - Hussein Hammich
- a Structural Motility, Institut Curie , PSL Research University, CNRS, UMR 144 , Paris , France
- b Sorbonne Universités , UPMC Univ Paris 06, Sorbonne Universités, IFD , Paris , France
| | - I-Mei Yu
- a Structural Motility, Institut Curie , PSL Research University, CNRS, UMR 144 , Paris , France
| | - Anne Houdusse
- a Structural Motility, Institut Curie , PSL Research University, CNRS, UMR 144 , Paris , France
| |
Collapse
|
30
|
Yersinia pestis Targets the Host Endosome Recycling Pathway during the Biogenesis of the Yersinia-Containing Vacuole To Avoid Killing by Macrophages. mBio 2018; 9:mBio.01800-17. [PMID: 29463656 PMCID: PMC5821078 DOI: 10.1128/mbio.01800-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Yersinia pestis has evolved many strategies to evade the innate immune system. One of these strategies is the ability to survive within macrophages. Upon phagocytosis, Y. pestis prevents phagolysosome maturation and establishes a modified compartment termed the Yersinia-containing vacuole (YCV). Y. pestis actively inhibits the acidification of this compartment, and eventually, the YCV transitions from a tight-fitting vacuole into a spacious replicative vacuole. The mechanisms to generate the YCV have not been defined. However, we hypothesized that YCV biogenesis requires Y. pestis interactions with specific host factors to subvert normal vesicular trafficking. In order to identify these factors, we performed a genome-wide RNA interference (RNAi) screen to identify host factors required for Y. pestis survival in macrophages. This screen revealed that 71 host proteins are required for intracellular survival of Y. pestis. Of particular interest was the enrichment for genes involved in endosome recycling. Moreover, we demonstrated that Y. pestis actively recruits Rab4a and Rab11b to the YCV in a type three secretion system-independent manner, indicating remodeling of the YCV by Y. pestis to resemble a recycling endosome. While recruitment of Rab4a was necessary to inhibit YCV acidification and lysosomal fusion early during infection, Rab11b appeared to contribute to later stages of YCV biogenesis. We also discovered that Y. pestis disrupts global host endocytic recycling in macrophages, possibly through sequestration of Rab11b, and this process is required for bacterial replication. These data provide the first evidence that Y. pestis targets the host endocytic recycling pathway to avoid phagolysosomal maturation and generate the YCV. Yersinia pestis can infect and survive within macrophages. However, the mechanisms that the bacterium use to subvert killing by these phagocytes have not been defined. To provide a better understanding of these mechanisms, we used an RNAi approach to identify host factors required for intracellular Y. pestis survival. This approach revealed that the host endocytic recycling pathway is essential for Y. pestis to avoid clearance by the macrophage. We further demonstrate that Y. pestis remodels the phagosome to resemble a recycling endosome, allowing the bacterium to avoid the normal phagolysosomal maturation pathway. Moreover, we show that infection with Y. pestis disrupts normal recycling in the macrophage and that disruption is required for bacterial replication. These findings provide the first evidence that Y. pestis targets the host endocytic recycling pathway in order to evade killing by macrophages.
Collapse
|
31
|
Sprenger M, Kasper L, Hensel M, Hube B. Metabolic adaptation of intracellular bacteria and fungi to macrophages. Int J Med Microbiol 2017; 308:215-227. [PMID: 29150190 DOI: 10.1016/j.ijmm.2017.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/21/2017] [Accepted: 11/05/2017] [Indexed: 02/07/2023] Open
Abstract
The mature phagosome of macrophages is a hostile environment for the vast majority of phagocytosed microbes. In addition to active destruction of the engulfed microbes by antimicrobial compounds, restriction of essential nutrients in the phagosomal compartment contributes to microbial growth inhibition and killing. However, some pathogenic microorganisms have not only developed various strategies to efficiently withstand or counteract antimicrobial activities, but also to acquire nutrients within macrophages for intracellular replication. Successful intracellular pathogens are able to utilize host-derived amino acids, carbohydrates and lipids as well as trace metals and vitamins during intracellular growth. This requires sophisticated strategies such as phagosome modification or escape, efficient nutrient transporters and metabolic adaptation. In this review, we discuss the metabolic adaptation of facultative intracellular bacteria and fungi to the intracellular lifestyle inside macrophages.
Collapse
Affiliation(s)
- Marcel Sprenger
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Michael Hensel
- Division of Microbiology, University Osnabrück, Osnabrück, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany; Friedrich Schiller University, Jena, Germany; Center for Sepsis Control and Care, University Hospital, Jena, Germany.
| |
Collapse
|
32
|
Allgood SC, Romero Dueñas BP, Noll RR, Pike C, Lein S, Neunuebel MR. Legionella Effector AnkX Disrupts Host Cell Endocytic Recycling in a Phosphocholination-Dependent Manner. Front Cell Infect Microbiol 2017; 7:397. [PMID: 28944216 PMCID: PMC5596087 DOI: 10.3389/fcimb.2017.00397] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/23/2017] [Indexed: 11/14/2022] Open
Abstract
The facultative intracellular bacterium Legionella pneumophila proliferates within amoebae and human alveolar macrophages, and it is the causative agent of Legionnaires' disease, a life-threatening pneumonia. Within host cells, L. pneumophila establishes a replicative haven by delivering numerous effector proteins into the host cytosol, many of which target membrane trafficking by manipulating the function of Rab GTPases. The Legionella effector AnkX is a phosphocholine transferase that covalently modifies host Rab1 and Rab35. However, a detailed understanding of the biological consequence of Rab GTPase phosphocholination remains elusive. Here, we broaden the understanding of AnkX function by presenting three lines of evidence that it interferes with host endocytic recycling. First, using immunogold transmission electron microscopy, we determined that GFP-tagged AnkX ectopically produced in mammalian cells localizes at the plasma membrane and tubular membrane compartments, sites consistent with targeting the endocytic recycling pathway. Furthermore, the C-terminal region of AnkX was responsible for association with the plasma membrane, and we determined that this region was also able to bind the phosphoinositide lipids PI(3)P and PI(4)P in vitro. Second, we observed that mCherry-AnkX co-localized with Rab35, a regulator of recycling endocytosis and with major histocompatibility class I protein (MHC-I), a key immunoregulatory protein whose recycling from and back to the plasma membrane is Rab35-dependent. Third, we report that during infection of macrophages, AnkX is responsible for the disruption of endocytic recycling of transferrin, and AnkX's phosphocholination activity is critical for this function. These results support the hypothesis that AnkX targets endocytic recycling during host cell infection. Finally, we have demonstrated that the phosphocholination activity of AnkX is also critical for inhibiting fusion of the Legionella-containing vacuole (LCV) with lysosomes.
Collapse
Affiliation(s)
- Samual C Allgood
- Department of Biological Sciences, University of DelawareNewark, DE, United States
| | | | - Rebecca R Noll
- Department of Biological Sciences, University of DelawareNewark, DE, United States
| | - Colleen Pike
- Department of Biological Sciences, University of DelawareNewark, DE, United States
| | - Sean Lein
- Department of Biological Sciences, University of DelawareNewark, DE, United States
| | - M Ramona Neunuebel
- Department of Biological Sciences, University of DelawareNewark, DE, United States
| |
Collapse
|
33
|
Castonguay J, Orth JHC, Müller T, Sleman F, Grimm C, Wahl-Schott C, Biel M, Mallmann RT, Bildl W, Schulte U, Klugbauer N. The two-pore channel TPC1 is required for efficient protein processing through early and recycling endosomes. Sci Rep 2017; 7:10038. [PMID: 28855648 PMCID: PMC5577145 DOI: 10.1038/s41598-017-10607-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/11/2017] [Indexed: 02/06/2023] Open
Abstract
Two-pore channels (TPCs) are localized in endo-lysosomal compartments and assumed to play an important role for vesicular fusion and endosomal trafficking. Recently, it has been shown that both TPC1 and 2 were required for host cell entry and pathogenicity of Ebola viruses. Here, we investigate the cellular function of TPC1 using protein toxins as model substrates for distinct endosomal processing routes. Toxin uptake and activation through early endosomes but not processing through other compartments were reduced in TPC1 knockout cells. Detailed co-localization studies with subcellular markers confirmed predominant localization of TPC1 to early and recycling endosomes. Proteomic analysis of native TPC1 channels finally identified direct interaction with a distinct set of syntaxins involved in fusion of intracellular vesicles. Together, our results demonstrate a general role of TPC1 for uptake and processing of proteins in early and recycling endosomes, likely by providing high local Ca2+ concentrations required for SNARE-mediated vesicle fusion.
Collapse
Affiliation(s)
- Jan Castonguay
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University, Albertstrasse 25, 79104, Freiburg, Germany
| | - Joachim H C Orth
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University, Albertstrasse 25, 79104, Freiburg, Germany
| | - Thomas Müller
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University, Albertstrasse 25, 79104, Freiburg, Germany
| | - Faten Sleman
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University, Albertstrasse 25, 79104, Freiburg, Germany
| | - Christian Grimm
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-University, Munich, Germany
| | - Christian Wahl-Schott
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-University, Munich, Germany
| | - Martin Biel
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-University, Munich, Germany
| | - Robert Theodor Mallmann
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University, Albertstrasse 25, 79104, Freiburg, Germany
| | - Wolfgang Bildl
- Institute of Physiology II, Faculty of Medicine, Albert-Ludwigs-University, Hermann-Herder-Strasse 7, 79104, Freiburg, Germany
| | - Uwe Schulte
- Institute of Physiology II, Faculty of Medicine, Albert-Ludwigs-University, Hermann-Herder-Strasse 7, 79104, Freiburg, Germany.,Logopharm GmbH, Schlossstrasse 14, 79232, March-Buchheim, Germany.,Center for Biological Signaling Studies (BIOSS), Schänzlestrasse 18, 79104, Freiburg, Germany
| | - Norbert Klugbauer
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University, Albertstrasse 25, 79104, Freiburg, Germany.
| |
Collapse
|
34
|
Acquisition of Rab11 and Rab11-Fip2-A novel strategy for Chlamydia pneumoniae early survival. PLoS Pathog 2017; 13:e1006556. [PMID: 28787457 PMCID: PMC5560749 DOI: 10.1371/journal.ppat.1006556] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/17/2017] [Accepted: 07/27/2017] [Indexed: 11/30/2022] Open
Abstract
The initial steps in chlamydial infection involve adhesion and internalization into host cells and, most importantly, modification of the nascent inclusion to establish the intracellular niche. Here, we show that Chlamydia pneumoniae enters host cells via EGFR-dependent endocytosis into an early endosome with a phosphatidylinositol 3-phosphate (PI3P) membrane identity. Immediately after entry, the early chlamydial inclusion acquires early endosomal Rab GTPases including Rab4, Rab5, Rab7, as well as the two recycling-specific Rabs Rab11 and Rab14. While Rab5, Rab11 and Rab14 are retained in the vesicular membrane, Rab4 and Rab7 soon disappear. Loss of Rab7 enables the C. pneumoniae inclusion to escape delivery to, and degradation in lysosomes. Loss of Rab4 and retention of Rab11/ Rab14 designates the inclusion as a slowly recycling endosome—that is protected from degradation. Furthermore, we show that the Rab11/ Rab14 adaptor protein Rab11-Fip2 (Fip2) is recruited to the nascent inclusion upon internalization and retained in the membrane throughout infection. siRNA knockdown of Fip2 demonstrated that the protein is essential for internalization and infection, and expression of various deletion variants revealed that Fip2 regulates the intracellular positioning of the inclusion. Additionally, we show that binding to Rab11 and Fip2 recruits the unconventional actin motor protein myosin Vb to the early inclusion and that together they regulate the relocation of the nascent inclusion from the cell periphery to the perinuclear region, its final destination. Here, we characterize for the first time inclusion identity and inclusion-associated proteins to delineate how C. pneumoniae establishes the intracellular niche essential for its survival. Here, we show for the first time how Chlamydia pneumoniae an obligate intracellular pathogen establishes its intracellular niche. After EGFR-dependent endocytosis into host cells, the nascent chlamydial inclusion acquires early endosomal membrane identity and the Rab GTPases Rab4, Rab5 and Rab7, as well as the recycling-specific Rab11 and Rab14. We show that Rab5, Rab11 and Rab14 are retained in the vesicular membrane, while Rab4 and Rab7 subsequently disappear. Thus, C. pneumoniae escapes lysosomal degradation by hiding in a recycling endosome vesicle. Furthermore, we show that the Rab11/Rab14 adaptor protein Rab11-Fip2 (Fip2), together with the unconventional actin motor protein myosin Vb, is recruited to the nascent inclusion. Both are essential for internalization and infection, as they regulate the intracellular positioning of the inclusion, which is essential for intracellular transport from the cell periphery to the perinuclear region. Here, we characterize for the first time inclusion identity and inclusion-associated proteins to understand how C. pneumoniae establishes the intracellular niche, which is essential for its survival.
Collapse
|
35
|
Ku B, You JA, Oh KJ, Yun HY, Lee HS, Shin HC, Jung J, Shin YB, Kim SJ. Crystal structures of two forms of the Acanthamoeba polyphaga mimivirus Rab GTPase. Arch Virol 2017; 162:3407-3416. [PMID: 28779233 DOI: 10.1007/s00705-017-3510-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/30/2017] [Indexed: 01/09/2023]
Abstract
Acanthamoeba polyphaga mimivirus (APMV) is a member of the family of giant viruses, harboring a 1,200 kbp genome within its 700 nm-diameter viral particle. The R214 gene of the APMV genome was recently shown to encode a homologue of the Rab GTPases, molecular switch proteins known to play a pivotal role in the regulation of membrane trafficking that were considered to exist only in eukaryotes. Herein, we report the first crystal structures of GDP- and GTP-bound forms of APMV Rab GTPase, both of which were determined at high resolution. An in-depth structural comparison of APMV Rab with each other and with mammalian Rab homologues led to an atomic-level elucidation of the inactive-active conformational change upon GDP/GTP exchange. APMV Rab GTPase exhibited considerable structural similarity to human Rab5, as previously predicted based on its amino acid sequence. However, it also contains unique structural features differentiating it from mammalian homologues, such as the functional substitution of a phenylalanine residue for the stabilization of the nucleotide's guanine base.
Collapse
Affiliation(s)
- Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
- Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, 34113, Republic of Korea.
| | - Jin A You
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, 34113, Republic of Korea
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Hye-Yeoung Yun
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, 34113, Republic of Korea
| | - Hye Seon Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Department of Biology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Ho-Chul Shin
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Juyeon Jung
- Hazard Monitoring BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Yong-Beom Shin
- Hazard Monitoring BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Seung Jun Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
- Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
36
|
Pylypenko O, Hammich H, Yu IM, Houdusse A. Rab GTPases and their interacting protein partners: Structural insights into Rab functional diversity. Small GTPases 2017. [PMID: 28632484 PMCID: PMC5902227 DOI: 10.1080/21541248.2017.1336191] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rab molecular switches are key players in defining membrane identity and regulating intracellular trafficking events in eukaryotic cells. In spite of their global structural similarity, Rab-family members acquired particular features that allow them to perform specific cellular functions. The overall fold and local sequence conservations enable them to utilize a common machinery for prenylation and recycling; while individual Rab structural differences determine interactions with specific partners such as GEFs, GAPs and effector proteins. These interactions orchestrate the spatiotemporal regulation of Rab localization and their turning ON and OFF, leading to tightly controlled Rab-specific functionalities such as membrane composition modifications, recruitment of molecular motors for intracellular trafficking, or recruitment of scaffold proteins that mediate interactions with downstream partners, as well as actin cytoskeleton regulation. In this review we summarize structural information on Rab GTPases and their complexes with protein partners in the context of partner binding specificity and functional outcomes of their interactions in the cell.
Collapse
Affiliation(s)
- Olena Pylypenko
- a Structural Motility, Institut Curie , PSL Research University, CNRS, UMR 144 , Paris , France
| | - Hussein Hammich
- a Structural Motility, Institut Curie , PSL Research University, CNRS, UMR 144 , Paris , France.,b Sorbonne Universités , UPMC Univ Paris 06, Sorbonne Universités, IFD , Paris , France
| | - I-Mei Yu
- a Structural Motility, Institut Curie , PSL Research University, CNRS, UMR 144 , Paris , France
| | - Anne Houdusse
- a Structural Motility, Institut Curie , PSL Research University, CNRS, UMR 144 , Paris , France
| |
Collapse
|
37
|
Pashaei-Asl R, Khodadadi K, Pashaei-Asl F, Haqshenas G, Ahmadian N, Pashaiasl M, Hajihosseini Baghdadabadi R. Legionella Pneumophila and Dendrimers-Mediated Antisense Therapy. Adv Pharm Bull 2017; 7:179-187. [PMID: 28761819 PMCID: PMC5527231 DOI: 10.15171/apb.2017.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/29/2017] [Accepted: 04/30/2017] [Indexed: 12/13/2022] Open
Abstract
Finding novel and effective antibiotics for treatment of Legionella disease is a challenging field. Treatment with antibiotics usually cures Legionella infection; however, if the resultant disease is not timely recognized and treated properly, it leads to poor prognosis and high case fatality rate. Legionella pneumophila DrrA protein (Defects in Rab1 recruitment protein A)/also known as SidM affects host cell vesicular trafficking through modification of the activity of cellular small guanosine triphosphatase )GTPase( Rab (Ras-related in brain) function which facilitates intracellular bacterial replication within a supporter vacuole. Also, Legionella pneumophila LepA and LepB (Legionella effector protein A and B) proteins suppress host-cell Rab1 protein's function resulting in the cell lysis and release of bacteria that subsequently infect neighbour cells. Legionella readily develops resistant to antibiotics and, therefore, new drugs with different modes of action and therapeutic strategic approaches are urgently required among antimicrobial drug therapies;gene therapy is a novel approach for Legionnaires disease treatment. On the contrary to the conventional treatment approaches that target bacterial proteins, new treatment interventions target DNA (Deoxyribonucleic acid), RNA (Ribonucleic acid) species, and different protein families or macromolecular complexes of these components. The above approaches can overcome the problems in therapy of Legionella infections caused by antibiotics resistance pathogens. Targeting Legionella genes involved in manipulating cellular vesicular trafficking using a dendrimer-mediated antisense therapy is a promising approach to inhibit bacterial replication within the target cells.
Collapse
Affiliation(s)
- Roghiyeh Pashaei-Asl
- Department of Biology, Payame Noor University, Tehran, Iran.,Department of Anatomy, Medical School, Iran University of Medical Science, Tehran, Iran.,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Khodadad Khodadadi
- Genetic Theme, Murdoch Children's Research Institute, Royal Children's Hospital, The University of Melbourne, Melbourne, Australia
| | - Fatima Pashaei-Asl
- Molecular Biology Laboratory, Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Haqshenas
- Microbiology Department, Biomedical Discovery Institute, Monash University, Melbourne, Australia
| | - Nasser Ahmadian
- Transplantation Center, Department of Curative Affairs, Ministry of Health and Medical Education, Tehran, Iran
| | - Maryam Pashaiasl
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
38
|
Teo WX, Yang Z, Kerr MC, Luo L, Guo Z, Alexandrov K, Stow JL, Teasdale RD. Salmonella effector SopD2 interferes with Rab34 function. Cell Biol Int 2017; 41:433-446. [PMID: 28185347 DOI: 10.1002/cbin.10739] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/31/2017] [Indexed: 11/10/2022]
Abstract
Many intracellular pathogens have evolved highly specialized mechanisms to isolate themselves from the host cell's innate immune response while still obtaining the necessary nutrients to survive. Salmonella utilizes type 3 secretion systems (T3SSs) to deliver bacterial proteins called effectors, across the encompassing Salmonella Containing vacuole (SCV) membrane, to subvert the host's membrane trafficking pathways and alter other cellular processes. The Salmonella Pathogenicity Island (SPI)-2 effector SopD2 has recently been demonstrated to modulate multiple members of the Rab GTPase family such as Rab7, Rab8, Rab10, and Rab32 (D'Costa et al., , Cell Reports, 12:1508-18; Spano et al., , Cell Host & Microbe, 19:216-26). Here, we demonstrate the additional capacity of SopD2 to bind Rab34 and modulate its function. Our data indicate that depletion of Rab34 delays maturation of the SCV, and consequently, inhibits intracellular Salmonella enterica serotype typhimurium (S. typhimurium) growth. Interestingly, intracellular growth of the S. typhimurium lacking SopD2 was severely impaired in Rab34-depleted cells, suggesting a compounding virulence effect. Overall this study reveals an additional member of the Rab GTPase family, Rab34, that is modulated by SopD2 and provides insight into its role in Salmonella biology.
Collapse
Affiliation(s)
- Wei Xuan Teo
- Institute for Molecular Biosciences, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Zhe Yang
- Institute for Molecular Biosciences, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Markus Charles Kerr
- Institute for Molecular Biosciences, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Lin Luo
- Institute for Molecular Biosciences, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Zhong Guo
- Institute for Molecular Biosciences, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Kirill Alexandrov
- Institute for Molecular Biosciences, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Jenny Lea Stow
- Institute for Molecular Biosciences, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Rohan David Teasdale
- Institute for Molecular Biosciences, University of Queensland, St. Lucia, QLD, 4072, Australia
| |
Collapse
|
39
|
Abstract
Rab proteins are the major regulators of vesicular trafficking in eukaryotic cells. Their activity can be tightly controlled within cells: Regulated by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs), they switch between an active GTP-bound state and an inactive GDP-bound state, interacting with downstream effector proteins only in the active state. Additionally, they can bind to membranes via C-terminal prenylated cysteine residues and they can be solubilized and shuttled between membranes by chaperone-like molecules called GDP dissociation inhibitors (GDIs). In this review we give an overview of Rab proteins with a focus on the current understanding of their regulation by GEFs, GAPs and GDI.
Collapse
Affiliation(s)
- Matthias P Müller
- a Department of Structural Biochemistry , Max Planck Institute of Molecular Physiology , Dortmund , Germany
| | - Roger S Goody
- a Department of Structural Biochemistry , Max Planck Institute of Molecular Physiology , Dortmund , Germany
| |
Collapse
|
40
|
Haridas V, Ranjbar S, Vorobjev IA, Goldfeld AE, Barteneva NS. Imaging flow cytometry analysis of intracellular pathogens. Methods 2017; 112:91-104. [PMID: 27642004 PMCID: PMC5857943 DOI: 10.1016/j.ymeth.2016.09.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/15/2016] [Accepted: 09/15/2016] [Indexed: 01/09/2023] Open
Abstract
Imaging flow cytometry has been applied to address questions in infection biology, in particular, infections induced by intracellular pathogens. This methodology, which utilizes specialized analytic software makes it possible to analyze hundreds of quantified features for hundreds of thousands of individual cellular or subcellular events in a single experiment. Imaging flow cytometry analysis of host cell-pathogen interaction can thus quantitatively addresses a variety of biological questions related to intracellular infection, including cell counting, internalization score, and subcellular patterns of co-localization. Here, we provide an overview of recent achievements in the use of fluorescently labeled prokaryotic or eukaryotic pathogens in human cellular infections in analysis of host-pathogen interactions. Specifically, we give examples of Imagestream-based analysis of cell lines infected with Toxoplasma gondii or Mycobacterium tuberculosis. Furthermore, we illustrate the capabilities of imaging flow cytometry using a combination of standard IDEAS™ software and the more recently developed Feature Finder algorithm, which is capable of identifying statistically significant differences between researcher-defined image galleries. We argue that the combination of imaging flow cytometry with these software platforms provides a powerful new approach to understanding host control of intracellular pathogens.
Collapse
Affiliation(s)
- Viraga Haridas
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, United States; Department of Pediatrics, Harvard Medical School, United States
| | - Shahin Ranjbar
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, United States; Department of Pediatrics, Harvard Medical School, United States
| | - Ivan A Vorobjev
- School of Science and Technology, Nazarbayev University, Kazakhstan; A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Russia; Department of Cell Biology and Histology, M.V. Lomonosov Moscow State University, Russia
| | - Anne E Goldfeld
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, United States; Department of Pediatrics, Harvard Medical School, United States.
| | - Natasha S Barteneva
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, United States; Department of Pediatrics, Harvard Medical School, United States; School of Science and Technology, Nazarbayev University, Kazakhstan.
| |
Collapse
|
41
|
Abstract
The pathophysiology of Crohn's disease (CD), a chronic inflammatory bowel disease, remains imperfectly elucidated. Consequently, the therapeutic armamentarium remains limited and has not changed the natural history of CD hitherto. Accordingly, physicians need to identify new therapeutic targets to be able to alter the intestinal damage. The most recent hypothesis considered CD as resulting from an abnormal interaction between microbiota and host immune system influenced by genetics and environmental factors. Several experimental and genetic evidence point out intestinal macrophages in CD etiology. An increase of macrophages number and the presence of granulomas are especially observed in the intestinal mucosa of patients with CD. These macrophages could be defective and particularly in responses to infectious agents like CD-associated Escherichia coli. This review focuses on, what is currently known regarding the role of macrophages, macrophages/E. coli interaction, and the impact of CD therapies on macrophages in CD. We also speculate that macrophages modulation could lead to important translational implications in CD with the end goal of promoting gut health.
Collapse
|
42
|
Danhof HA, Vylkova S, Vesely EM, Ford AE, Gonzalez-Garay M, Lorenz MC. Robust Extracellular pH Modulation by Candida albicans during Growth in Carboxylic Acids. mBio 2016; 7:e01646-16. [PMID: 27935835 PMCID: PMC5111404 DOI: 10.1128/mbio.01646-16] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/24/2016] [Indexed: 12/25/2022] Open
Abstract
The opportunistic fungal pathogen Candida albicans thrives within diverse niches in the mammalian host. Among the adaptations that underlie this fitness is an ability to utilize a wide array of nutrients, especially sources of carbon that are disfavored by many other fungi; this contributes to its ability to survive interactions with the phagocytes that serve as key barriers against disseminated infections. We have reported that C. albicans generates ammonia as a byproduct of amino acid catabolism to neutralize the acidic phagolysosome and promote hyphal morphogenesis in a manner dependent on the Stp2 transcription factor. Here, we report that this species rapidly neutralizes acidic environments when utilizing carboxylic acids like pyruvate, α-ketoglutarate (αKG), or lactate as the primary carbon source. Unlike in cells growing in amino acid-rich medium, this does not result in ammonia release, does not induce hyphal differentiation, and is genetically distinct. While transcript profiling revealed significant similarities in gene expression in cells grown on either carboxylic or amino acids, genetic screens for mutants that fail to neutralize αKG medium identified a nonoverlapping set of genes, including CWT1, encoding a transcription factor responsive to cell wall and nitrosative stresses. Strains lacking CWT1 exhibit retarded αKG-mediated neutralization in vitro, exist in a more acidic phagolysosome, and are more susceptible to macrophage killing, while double cwt1Δ stp2Δ mutants are more impaired than either single mutant. Together, our observations indicate that C. albicans has evolved multiple ways to modulate the pH of host-relevant environments to promote its fitness as a pathogen. IMPORTANCE The fungal pathogen Candida albicans is a ubiquitous and usually benign constituent of the human microbial ecosystem. In individuals with weakened immune systems, this organism can cause potentially life-threatening infections and is one of the most common causes of hospital-acquired infections. Understanding the interactions between C. albicans and immune phagocytic cells, such as macrophages and neutrophils, will define the mechanisms of pathogenesis in this species. One such adaptation is an ability to make use of nonstandard nutrients that we predict are plentiful in certain niches within the host, including within these phagocytic cells. We show here that the metabolism of certain organic acids enables C. albicans to neutralize acidic environments, such as those within macrophages. This phenomenon is distinct in several significant ways from previous reports of similar processes, indicating that C. albicans has evolved multiple mechanisms to combat the harmful acidity of phagocytic cells.
Collapse
Affiliation(s)
- Heather A Danhof
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
- The Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Slavena Vylkova
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Elisa M Vesely
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
- The Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Amy E Ford
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
- The Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Manuel Gonzalez-Garay
- The Brown Foundation Institute for Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Michael C Lorenz
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
- The Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
43
|
Abstract
Small GTPases of the Rab protein family control intracellular vesicular trafficking to allow their communication and maintenance. It is a common strategy for intracellular bacteria to exploit these pathways to shape their respective niches for survival. The subversion of Rabs for the generation of an intracellular environment favoring the pathogen has been described almost exclusively for intracellular bacteria that reside within bacterial containing vacuoles (BCVs). However, less is known about Rab subversion for bacteria that rupture the BCV to reach the host cytoplasm. Here, we provide recent examples of Rab targeting by both groups of intracellular bacteria with a special focus on Shigella, the causative agent of bacillary dysentery. Shigella recruits Rab11, the hallmark of the perinuclear recycling compartment to in situ formed macropinosomes at the entry foci via the bacterial effector IpgD. This leads to efficient BCV rupture and cytosolic escape. We discuss the concept of diverted recycling through host Rab GTPases that emerges as a novel pathogen strategy.
Collapse
Affiliation(s)
- Noelia López-Montero
- a Institut Pasteur, Research unit "Dynamics of host-pathogen interactions," Paris , France
| | - Jost Enninga
- a Institut Pasteur, Research unit "Dynamics of host-pathogen interactions," Paris , France
| |
Collapse
|
44
|
Verma K, Nozaki T, Datta S. Role of EhRab7A in phagocytosis of type 1 fimbriated E. coli by Entamoeba histolytica. Mol Microbiol 2016; 102:1043-1061. [PMID: 27663892 DOI: 10.1111/mmi.13533] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2016] [Indexed: 01/16/2023]
Abstract
Entamoeba histolytica, the causative agent of amoebic colitis and liver abscess in human, ingests the intestinal bacteria and variety of host cells. Phagocytosis of bacteria by the amebic trophozoite has been reported to be important for the virulence of the parasite. Here, we set out to characterize different stages of phagocytosis of type 1 E. coli and investigated the role of a set of amoebic Rab GTPases in the process. The localizations of the Rab GTPases during different stages of the phagocytosis were investigated using laser scanning confocal microscopy and their functional relevance were determined using fluorescence activated cell sorter based assay as well as colony forming unit assay. Our results demonstrate that EhRab7A is localized on the phagosomes and involved in both early and late stages of type 1 E. coli phagocytosis. We further showed that the E. coli or RBC containing phagosomes are distinct from the large endocytic vacuoles in the parasite which are exclusively used to transport human holotransferrin and low density lipoprotein. Remarkably, type 1 E. coli uptake was found to be insensitive to cytochalasin D treatment, suggesting that the initial stage of E. coli phagocytosis is independent of the formation of actin filaments.
Collapse
Affiliation(s)
- Kuldeep Verma
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal Bypass Road, Bhauri, Bhopal, 462 066, Madhya Pradesh, India
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Sunando Datta
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal Bypass Road, Bhauri, Bhopal, 462 066, Madhya Pradesh, India
| |
Collapse
|
45
|
|
46
|
Tang BL. Rab32/38 and the xenophagic restriction of intracellular bacteria replication. Microbes Infect 2016; 18:595-603. [PMID: 27256464 DOI: 10.1016/j.micinf.2016.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/20/2016] [Accepted: 05/20/2016] [Indexed: 12/18/2022]
Abstract
Rab GTPases' subversion by intracellular pathogens during infection has been extensively documented. Recent findings have implicated a key intracellular bacterial restriction/containment function for Rab32/38 in Salmonella species in macrophages and Listeria monocytogenes in dendritic cells. Rab32/38 aids the phagolysosome maturation, and mediates a parallel xenophagy mechanism by engaging prohibitins.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry and NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore.
| |
Collapse
|
47
|
Mu R, Cutting AS, Del Rosario Y, Villarino N, Stewart L, Weston TA, Patras KA, Doran KS. Identification of CiaR Regulated Genes That Promote Group B Streptococcal Virulence and Interaction with Brain Endothelial Cells. PLoS One 2016; 11:e0153891. [PMID: 27100296 PMCID: PMC4839699 DOI: 10.1371/journal.pone.0153891] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/05/2016] [Indexed: 11/18/2022] Open
Abstract
Group B Streptococcus (GBS) is a major causative agent of neonatal meningitis due to its ability to efficiently cross the blood-brain barrier (BBB) and enter the central nervous system (CNS). It has been demonstrated that GBS can invade human brain microvascular endothelial cells (hBMEC), a primary component of the BBB; however, the mechanism of intracellular survival and trafficking is unclear. We previously identified a two component regulatory system, CiaR/H, which promotes GBS intracellular survival in hBMEC. Here we show that a GBS strain deficient in the response regulator, CiaR, localized more frequently with Rab5, Rab7 and LAMP1 positive vesicles. Further, lysosomes isolated from hBMEC contained fewer viable bacteria following initial infection with the ΔciaR mutant compared to the WT strain. To characterize the contribution of CiaR-regulated genes, we constructed isogenic mutant strains lacking the two most down-regulated genes in the CiaR-deficient mutant, SAN_2180 and SAN_0039. These genes contributed to bacterial uptake and intracellular survival. Furthermore, competition experiments in mice showed that WT GBS had a significant survival advantage over the Δ2180 and Δ0039 mutants in the bloodstream and brain.
Collapse
Affiliation(s)
- Rong Mu
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California, 92182, United States of America
| | - Andrew S. Cutting
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California, 92182, United States of America
| | - Yvette Del Rosario
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California, 92182, United States of America
| | - Nicholas Villarino
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California, 92182, United States of America
| | - Lara Stewart
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California, 92182, United States of America
| | - Thomas A. Weston
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California, 92182, United States of America
| | - Kathryn A. Patras
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California, 92182, United States of America
| | - Kelly S. Doran
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California, 92182, United States of America
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, 92093, United States of America
- * E-mail:
| |
Collapse
|
48
|
Yang XZ, Li XX, Zhang YJ, Rodriguez-Rodriguez L, Xiang MQ, Wang HY, Zheng XFS. Rab1 in cell signaling, cancer and other diseases. Oncogene 2016; 35:5699-5704. [PMID: 27041585 PMCID: PMC5396462 DOI: 10.1038/onc.2016.81] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/23/2016] [Accepted: 02/26/2016] [Indexed: 12/17/2022]
Abstract
The endoplasmic reticulum (ER) and Golgi membrane system have major roles in cell signaling and regulation of the biosynthesis/transport of proteins and lipids in response to environmental cues such as amino acid and cholesterol levels. Rab1 is the founding member of the Rab small GTPase family, which is known to mediate dynamic membrane trafficking between ER and Golgi. Growing evidence indicate that Rab1 proteins have important functions beyond their classical vesicular transport functions, including nutrient sensing and signaling, cell migration and presentation of cell-surface receptors. Moreover, deregulation of RAB1 expression has been linked to a myriad of human diseases such as cancer, cardiomyopathy and Parkinson's disease. Further investigating these new physiological and pathological functions of Rab1 should provide new opportunities for better understanding of the disease processes and may lead to more effective therapeutic interventions.
Collapse
Affiliation(s)
- X-Z Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - X-X Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Y-J Zhang
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.,Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - L Rodriguez-Rodriguez
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.,Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - M-Q Xiang
- Center for Advanced Biotechnology and Medicine, and Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - H-Y Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.,Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - X F S Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.,Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
49
|
Rab GTPases and the Autophagy Pathway: Bacterial Targets for a Suitable Biogenesis and Trafficking of Their Own Vacuoles. Cells 2016; 5:cells5010011. [PMID: 27005665 PMCID: PMC4810096 DOI: 10.3390/cells5010011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 12/18/2022] Open
Abstract
Autophagy is an intracellular process that comprises degradation of damaged organelles, protein aggregates and intracellular pathogens, having an important role in controlling the fate of invading microorganisms. Intracellular pathogens are internalized by professional and non-professional phagocytes, localizing in compartments called phagosomes. To degrade the internalized microorganism, the microbial phagosome matures by fusion events with early and late endosomal compartments and lysosomes, a process that is regulated by Rab GTPases. Interestingly, in order to survive and replicate in the phagosome, some pathogens employ different strategies to manipulate vesicular traffic, inhibiting phagolysosomal biogenesis (e.g., Staphylococcus aureus and Mycobacterium tuberculosis) or surviving in acidic compartments and forming replicative vacuoles (e.g., Coxiellaburnetti and Legionella pneumophila). The bacteria described in this review often use secretion systems to control the host’s response and thus disseminate. To date, eight types of secretion systems (Type I to Type VIII) are known. Some of these systems are used by bacteria to translocate pathogenic proteins into the host cell and regulate replicative vacuole formation, apoptosis, cytokine responses, and autophagy. Herein, we have focused on how bacteria manipulate small Rab GTPases to control many of these processes. The growing knowledge in this field may facilitate the development of new treatments or contribute to the prevention of these types of bacterial infections.
Collapse
|
50
|
Helms JB, Kaloyanova DV, Strating JRP, van Hellemond JJ, van der Schaar HM, Tielens AGM, van Kuppeveld FJM, Brouwers JF. Targeting of the hydrophobic metabolome by pathogens. Traffic 2016; 16:439-60. [PMID: 25754025 PMCID: PMC7169838 DOI: 10.1111/tra.12280] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 01/09/2015] [Accepted: 01/09/2015] [Indexed: 12/12/2022]
Abstract
The hydrophobic molecules of the metabolome – also named the lipidome – constitute a major part of the entire metabolome. Novel technologies show the existence of a staggering number of individual lipid species, the biological functions of which are, with the exception of only a few lipid species, unknown. Much can be learned from pathogens that have evolved to take advantage of the complexity of the lipidome to escape the immune system of the host organism and to allow their survival and replication. Different types of pathogens target different lipids as shown in interaction maps, allowing visualization of differences between different types of pathogens. Bacterial and viral pathogens target predominantly structural and signaling lipids to alter the cellular phenotype of the host cell. Fungal and parasitic pathogens have complex lipidomes themselves and target predominantly the release of polyunsaturated fatty acids from the host cell lipidome, resulting in the generation of eicosanoids by either the host cell or the pathogen. Thus, whereas viruses and bacteria induce predominantly alterations in lipid metabolites at the host cell level, eukaryotic pathogens focus on interference with lipid metabolites affecting systemic inflammatory reactions that are part of the immune system. A better understanding of the interplay between host–pathogen interactions will not only help elucidate the fundamental role of lipid species in cellular physiology, but will also aid in the generation of novel therapeutic drugs.
Collapse
Affiliation(s)
- J Bernd Helms
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine & Institute of Biomembranes, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|