1
|
Lee JY, Gala DS, Kiourlappou M, Olivares-Abril J, Joha J, Titlow JS, Teodoro RO, Davis I. Murine glial protrusion transcripts predict localized Drosophila glial mRNAs involved in plasticity. J Cell Biol 2024; 223:e202306152. [PMID: 39037431 PMCID: PMC11262410 DOI: 10.1083/jcb.202306152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 06/14/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024] Open
Abstract
The polarization of cells often involves the transport of specific mRNAs and their localized translation in distal projections. Neurons and glia are both known to contain long cytoplasmic processes, while localized transcripts have only been studied extensively in neurons, not glia, especially in intact nervous systems. Here, we predict 1,740 localized Drosophila glial transcripts by extrapolating from our meta-analysis of seven existing studies characterizing the localized transcriptomes and translatomes of synaptically associated mammalian glia. We demonstrate that the localization of mRNAs in mammalian glial projections strongly predicts the localization of their high-confidence Drosophila homologs in larval motor neuron-associated glial projections and are highly statistically enriched for genes associated with neurological diseases. We further show that some of these localized glial transcripts are specifically required in glia for structural plasticity at the nearby neuromuscular junction synapses. We conclude that peripheral glial mRNA localization is a common and conserved phenomenon and propose that it is likely to be functionally important in disease.
Collapse
Affiliation(s)
- Jeffrey Y. Lee
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Dalia S. Gala
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | | | - Jana Joha
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Rita O. Teodoro
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Ilan Davis
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Rajan A, Fame RM. Brain development and bioenergetic changes. Neurobiol Dis 2024; 199:106550. [PMID: 38849103 PMCID: PMC11495523 DOI: 10.1016/j.nbd.2024.106550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024] Open
Abstract
Bioenergetics describe the biochemical processes responsible for energy supply in organisms. When these changes become dysregulated in brain development, multiple neurodevelopmental diseases can occur, implicating bioenergetics as key regulators of neural development. Historically, the discovery of disease processes affecting individual stages of brain development has revealed critical roles that bioenergetics play in generating the nervous system. Bioenergetic-dependent neurodevelopmental disorders include neural tube closure defects, microcephaly, intellectual disability, autism spectrum disorders, epilepsy, mTORopathies, and oncogenic processes. Developmental timing and cell-type specificity of these changes determine the long-term effects of bioenergetic disease mechanisms on brain form and function. Here, we discuss key metabolic regulators of neural progenitor specification, neuronal differentiation (neurogenesis), and gliogenesis. In general, transitions between glycolysis and oxidative phosphorylation are regulated in early brain development and in oncogenesis, and reactive oxygen species (ROS) and mitochondrial maturity play key roles later in differentiation. We also discuss how bioenergetics interface with the developmental regulation of other key neural elements, including the cerebrospinal fluid brain environment. While questions remain about the interplay between bioenergetics and brain development, this review integrates the current state of known key intersections between these processes in health and disease.
Collapse
Affiliation(s)
- Arjun Rajan
- Developmental Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Ryann M Fame
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
3
|
Di Bella DJ, Domínguez-Iturza N, Brown JR, Arlotta P. Making Ramón y Cajal proud: Development of cell identity and diversity in the cerebral cortex. Neuron 2024; 112:2091-2111. [PMID: 38754415 PMCID: PMC11771131 DOI: 10.1016/j.neuron.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/28/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024]
Abstract
Since the beautiful images of Santiago Ramón y Cajal provided a first glimpse into the immense diversity and complexity of cell types found in the cerebral cortex, neuroscience has been challenged and inspired to understand how these diverse cells are generated and how they interact with each other to orchestrate the development of this remarkable tissue. Some fundamental questions drive the field's quest to understand cortical development: what are the mechanistic principles that govern the emergence of neuronal diversity? How do extrinsic and intrinsic signals integrate with physical forces and activity to shape cell identity? How do the diverse populations of neurons and glia influence each other during development to guarantee proper integration and function? The advent of powerful new technologies to profile and perturb cortical development at unprecedented resolution and across a variety of modalities has offered a new opportunity to integrate past knowledge with brand new data. Here, we review some of this progress using cortical excitatory projection neurons as a system to draw out general principles of cell diversification and the role of cell-cell interactions during cortical development.
Collapse
Affiliation(s)
- Daniela J Di Bella
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Nuria Domínguez-Iturza
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Juliana R Brown
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Paola Arlotta
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
4
|
Avila-Gutierrez K, Slaoui L, Alvear-Perez R, Kozlowski E, Oudart M, Augustin E, Claveau C, Mailly P, Monnet H, Mignon V, Saubaméa B, Boulay AC, Cohen-Salmon M. Dynamic local mRNA localization and translation occurs during the postnatal molecular maturation of perivascular astrocytic processes. Glia 2024; 72:777-793. [PMID: 38189217 DOI: 10.1002/glia.24503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/09/2024]
Abstract
Astrocytes are highly ramified and send out perivascular processes (PvAPs) that entirely sheathe the brain's blood vessels. PvAPs are equipped with an enriched molecular repertoire that sustains astrocytic regulatory functions at the vascular interface. In the mouse, PvAP development starts after birth and is essentially complete by postnatal day (P) 15. Progressive molecular maturation also occurs over this period, with the acquisition of proteins enriched in PvAPs. The mechanisms controlling the development and molecular maturation of PvAPs have not been extensively characterized. We reported previously that mRNAs are distributed unequally in mature PvAPs and are locally translated. Since dynamic mRNA localization and local translation influence the cell's polarity, we hypothesized that they might sustain the postnatal maturation of PvAPs. Here, we used a combination of molecular biology and imaging approaches to demonstrate that the development of PvAPs is accompanied by the transport of mRNA and polysomal mRNA into PvAPs, the development of a rough endoplasmic reticulum (RER) network and Golgi cisternae, and local translation. By focusing on genes and proteins that are selectively or specifically expressed in astrocytes, we characterized the developmental profile of mRNAs, polysomal mRNAs and proteins in PvAPs from P5 to P60. We found that some polysomal mRNAs polarized progressively towards the PvAPs. Lastly, we found that expression and localization of mRNAs in developing PvAPs is perturbed in a mouse model of megalencephalic leukoencephalopathy with subcortical cysts. Our results indicate that dynamic mRNA localization and local translation influence the postnatal maturation of PvAPs.
Collapse
Affiliation(s)
- Katia Avila-Gutierrez
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Leila Slaoui
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Rodrigo Alvear-Perez
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Esther Kozlowski
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Marc Oudart
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Emma Augustin
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Camille Claveau
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Philippe Mailly
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Héloïse Monnet
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Virginie Mignon
- INSERM, CNRS, P-MIM, Plateforme d'Imagerie Cellulaire et Moléculaire (PICMO), Université Paris Cité, Paris, France
| | - Bruno Saubaméa
- INSERM, CNRS, P-MIM, Plateforme d'Imagerie Cellulaire et Moléculaire (PICMO), Université Paris Cité, Paris, France
- Inserm, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Paris, France
| | - Anne-Cécile Boulay
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Martine Cohen-Salmon
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
5
|
Ferreira AAG, Desplan C. An Atlas of the Developing Drosophila Visual System Glia and Subcellular mRNA Localization of Transcripts in Single Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.06.552169. [PMID: 37609218 PMCID: PMC10441313 DOI: 10.1101/2023.08.06.552169] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Glial cells are essential for proper nervous system development and function. To understand glial development and function, we comprehensively annotated glial cells in a single-cell mRNA-sequencing (scRNAseq) atlas of the developing Drosophila visual system. This allowed us to study their developmental trajectories, from larval to adult stages, and to understand how specific types of glia diversify during development. For example, neuropil glia that are initially transcriptionally similar in larvae, split into ensheathing and astrocyte-like glia during pupal stages. Other glial types, such as chiasm glia change gradually during development without splitting into two cell types. The analysis of scRNA-seq allowed us to discover that the transcriptome of glial cell bodies can be distinguished from that of their broken processes. The processes contain distinct enriched mRNAs that were validated in vivo. Therefore, we have identified most glial types in the developing optic lobe and devised a computational approach to identify mRNA species that are localized to cell bodies or cellular processes.
Collapse
Affiliation(s)
| | - Claude Desplan
- Department of Biology, New York University, New York, NY, USA
| |
Collapse
|
6
|
Ament SA, Poulopoulos A. The brain's dark transcriptome: Sequencing RNA in distal compartments of neurons and glia. Curr Opin Neurobiol 2023; 81:102725. [PMID: 37196598 PMCID: PMC10524153 DOI: 10.1016/j.conb.2023.102725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/22/2023] [Accepted: 04/02/2023] [Indexed: 05/19/2023]
Abstract
Transcriptomic approaches are powerful strategies to map the molecular diversity of cells in the brain. Single-cell genomic atlases have now been compiled for entire mammalian brains. However, complementary techniques are only just beginning to map the subcellular transcriptomes from distal cellular compartments. We review single-cell datasets alongside subtranscriptome data from the mammalian brain to explore the development of cellular and subcellular diversity. We discuss how single-cell RNA-seq misses transcripts localized away from cell bodies, which form the 'dark transcriptome' of the brain: a collection of subtranscriptomes in dendrites, axons, growth cones, synapses, and endfeet with important roles in brain development and function. Recent advances in subcellular transcriptome sequencing are beginning to reveal these elusive pools of RNA. We outline the success stories to date in uncovering the constituent subtranscriptomes of neurons and glia, as well as present the emerging toolkit that is accelerating the pace of subtranscriptome discovery.
Collapse
Affiliation(s)
- Seth A Ament
- Department of Psychiatry, UM-MIND, and Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alexandros Poulopoulos
- Department of Pharmacology and UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
7
|
Sun M, You H, Hu X, Luo Y, Zhang Z, Song Y, An J, Lu H. Microglia-Astrocyte Interaction in Neural Development and Neural Pathogenesis. Cells 2023; 12:1942. [PMID: 37566021 PMCID: PMC10417796 DOI: 10.3390/cells12151942] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
The interaction between microglia and astrocytes exhibits a relatively balanced state in order to maintain homeostasis in the healthy central nervous system (CNS). Disease stimuli alter microglia-astrocyte interaction patterns and elicit cell-type-specific responses, resulting in their contribution to various pathological processes. Here, we review the similarities and differences in the activation modes between microglia and astrocytes in various scenarios, encompassing different stages of neural development and a wide range of neural disorders. The aim is to provide a comprehensive understanding of their roles in neural development and regeneration and guiding new strategies for restoring CNS homeostasis.
Collapse
Affiliation(s)
- Meiqi Sun
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (M.S.); (H.Y.); (X.H.); (Y.L.); (Z.Z.); (Y.S.)
| | - Hongli You
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (M.S.); (H.Y.); (X.H.); (Y.L.); (Z.Z.); (Y.S.)
| | - Xiaoxuan Hu
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (M.S.); (H.Y.); (X.H.); (Y.L.); (Z.Z.); (Y.S.)
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Yujia Luo
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (M.S.); (H.Y.); (X.H.); (Y.L.); (Z.Z.); (Y.S.)
| | - Zixuan Zhang
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (M.S.); (H.Y.); (X.H.); (Y.L.); (Z.Z.); (Y.S.)
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Yiqun Song
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (M.S.); (H.Y.); (X.H.); (Y.L.); (Z.Z.); (Y.S.)
| | - Jing An
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (M.S.); (H.Y.); (X.H.); (Y.L.); (Z.Z.); (Y.S.)
| | - Haixia Lu
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (M.S.); (H.Y.); (X.H.); (Y.L.); (Z.Z.); (Y.S.)
| |
Collapse
|
8
|
Gould R, Brady S. Identifying mRNAs Residing in Myelinating Oligodendrocyte Processes as a Basis for Understanding Internode Autonomy. Life (Basel) 2023; 13:945. [PMID: 37109474 PMCID: PMC10142070 DOI: 10.3390/life13040945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
In elaborating and maintaining myelin sheaths on multiple axons/segments, oligodendrocytes distribute translation of some proteins, including myelin basic protein (MBP), to sites of myelin sheath assembly, or MSAS. As mRNAs located at these sites are selectively trapped in myelin vesicles during tissue homogenization, we performed a screen to identify some of these mRNAs. To confirm locations, we used real-time quantitative polymerase chain reaction (RT-qPCR), to measure mRNA levels in myelin (M) and 'non-myelin' pellet (P) fractions, and found that five (LPAR1, TRP53INP2, TRAK2, TPPP, and SH3GL3) of thirteen mRNAs were highly enriched in myelin (M/P), suggesting residences in MSAS. Because expression by other cell-types will increase p-values, some MSAS mRNAs might be missed. To identify non-oligodendrocyte expression, we turned to several on-line resources. Although neurons express TRP53INP2, TRAK2 and TPPP mRNAs, these expressions did not invalidate recognitions as MSAS mRNAs. However, neuronal expression likely prevented recognition of KIF1A and MAPK8IP1 mRNAs as MSAS residents and ependymal cell expression likely prevented APOD mRNA assignment to MSAS. Complementary in situ hybridization (ISH) is recommended to confirm residences of mRNAs in MSAS. As both proteins and lipids are synthesized in MSAS, understanding myelination should not only include efforts to identify proteins synthesized in MSAS, but also the lipids.
Collapse
Affiliation(s)
- Robert Gould
- Whitman Research Center, Marine Biology Laboratory, Woods Hole, MA 02543, USA
| | - Scott Brady
- Departments of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA;
| |
Collapse
|
9
|
Pilaz LJ, Liu J, Joshi K, Tsunekawa Y, Musso CM, D'Arcy BR, Suzuki IK, Alsina FC, Kc P, Sethi S, Vanderhaeghen P, Polleux F, Silver DL. Subcellular mRNA localization and local translation of Arhgap11a in radial glial progenitors regulates cortical development. Neuron 2023; 111:839-856.e5. [PMID: 36924763 PMCID: PMC10132781 DOI: 10.1016/j.neuron.2023.02.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/26/2022] [Accepted: 02/10/2023] [Indexed: 03/17/2023]
Abstract
mRNA localization and local translation enable exquisite spatial and temporal control of gene expression, particularly in polarized, elongated cells. These features are especially prominent in radial glial cells (RGCs), which are neural and glial precursors of the developing cerebral cortex and scaffolds for migrating neurons. Yet the mechanisms by which subcellular RGC compartments accomplish their diverse functions are poorly understood. Here, we demonstrate that mRNA localization and local translation of the RhoGAP ARHGAP11A in the basal endfeet of RGCs control their morphology and mediate neuronal positioning. Arhgap11a transcript and protein exhibit conserved localization to RGC basal structures in mice and humans, conferred by the 5' UTR. Proper RGC morphology relies upon active Arhgap11a mRNA transport and localization to the basal endfeet, where ARHGAP11A is locally synthesized. This translation is essential for positioning interneurons at the basement membrane. Thus, local translation spatially and acutely activates Rho signaling in RGCs to compartmentalize neural progenitor functions.
Collapse
Affiliation(s)
- Louis-Jan Pilaz
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA; Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA
| | - Jing Liu
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kaumudi Joshi
- Department of Neuroscience, Columbia University Medical Center, New York, NY 10032, USA
| | - Yuji Tsunekawa
- Laboratory for Cell Asymmetry, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Camila M Musso
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Brooke R D'Arcy
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ikuo K Suzuki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Fernando C Alsina
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Pratiksha Kc
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA; Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA
| | - Sahil Sethi
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Pierre Vanderhaeghen
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences & Leuven Brain Institute, 3000 Leuven, Belgium; Université Libre de Bruxelles (U.L.B.), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium
| | - Franck Polleux
- Department of Neuroscience, Columbia University Medical Center, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY 10027, USA; Kavli Institute for Brain Sciences, Columbia University Medical Center, New York, NY 10027, USA
| | - Debra L Silver
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Departments of Cell Biology and Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Institute for Brain Sciences and Duke Regeneration Center, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
10
|
Gala DS, Titlow JS, Teodoro RO, Davis I. Far from home: the role of glial mRNA localization in synaptic plasticity. RNA (NEW YORK, N.Y.) 2023; 29:153-169. [PMID: 36442969 PMCID: PMC9891262 DOI: 10.1261/rna.079422.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neurons and glia are highly polarized cells, whose distal cytoplasmic functional subdomains require specific proteins. Neurons have axonal and dendritic cytoplasmic extensions containing synapses whose plasticity is regulated efficiently by mRNA transport and localized translation. The principles behind these mechanisms are equally attractive for explaining rapid local regulation of distal glial cytoplasmic projections, independent of their cell nucleus. However, in contrast to neurons, mRNA localization has received little experimental attention in glia. Nevertheless, there are many functionally diverse glial subtypes containing extensive networks of long cytoplasmic projections with likely localized regulation that influence neurons and their synapses. Moreover, glia have many other neuron-like properties, including electrical activity, secretion of gliotransmitters and calcium signaling, influencing, for example, synaptic transmission, plasticity and axon pruning. Here, we review previous studies concerning glial transcripts with important roles in influencing synaptic plasticity, focusing on a few cases involving localized translation. We discuss a variety of important questions about mRNA transport and localized translation in glia that remain to be addressed, using cutting-edge tools already available for neurons.
Collapse
Affiliation(s)
- Dalia S Gala
- Department of Biochemistry, The University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Joshua S Titlow
- Department of Biochemistry, The University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Rita O Teodoro
- iNOVA4Health, NOVA Medical School-Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa 1169-056, Portugal
| | - Ilan Davis
- Department of Biochemistry, The University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
11
|
D’Arcy BR, Lennox AL, Manso Musso C, Bracher A, Escobar-Tomlienovich C, Perez-Sanchez S, Silver DL. Non-muscle myosins control radial glial basal endfeet to mediate interneuron organization. PLoS Biol 2023; 21:e3001926. [PMID: 36854011 PMCID: PMC9974137 DOI: 10.1371/journal.pbio.3001926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/17/2023] [Indexed: 03/02/2023] Open
Abstract
Radial glial cells (RGCs) are essential for the generation and organization of neurons in the cerebral cortex. RGCs have an elongated bipolar morphology with basal and apical endfeet that reside in distinct niches. Yet, how this subcellular compartmentalization of RGCs controls cortical development is largely unknown. Here, we employ in vivo proximity labeling, in the mouse, using unfused BirA to generate the first subcellular proteome of RGCs and uncover new principles governing local control of cortical development. We discover a cohort of proteins that are significantly enriched in RGC basal endfeet, with MYH9 and MYH10 among the most abundant. Myh9 and Myh10 transcripts also localize to endfeet with distinct temporal dynamics. Although they each encode isoforms of non-muscle myosin II heavy chain, Myh9 and Myh10 have drastically different requirements for RGC integrity. Myh9 loss from RGCs decreases branching complexity and causes endfoot protrusion through the basement membrane. In contrast, Myh10 controls endfoot adhesion, as mutants have unattached apical and basal endfeet. Finally, we show that Myh9- and Myh10-mediated regulation of RGC complexity and endfoot position non-cell autonomously controls interneuron number and organization in the marginal zone. Our study demonstrates the utility of in vivo proximity labeling for dissecting local control of complex systems and reveals new mechanisms for dictating RGC integrity and cortical architecture.
Collapse
Affiliation(s)
- Brooke R. D’Arcy
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Ashley L. Lennox
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Camila Manso Musso
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Annalise Bracher
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Carla Escobar-Tomlienovich
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Stephany Perez-Sanchez
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Debra L. Silver
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke Institute for Brain Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke Regeneration Center, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
12
|
Titus MB, Chang AW, Olesnicky EC. Exploring the Diverse Functional and Regulatory Consequences of Alternative Splicing in Development and Disease. Front Genet 2021; 12:775395. [PMID: 34899861 PMCID: PMC8652244 DOI: 10.3389/fgene.2021.775395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/05/2021] [Indexed: 12/17/2022] Open
Abstract
Alternative splicing is a fundamental mechanism of eukaryotic RNA regulation that increases the transcriptomic and proteomic complexity within an organism. Moreover, alternative splicing provides a framework for generating unique yet complex tissue- and cell type-specific gene expression profiles, despite using a limited number of genes. Recent efforts to understand the negative consequences of aberrant splicing have increased our understanding of developmental and neurodegenerative diseases such as spinal muscular atrophy, frontotemporal dementia and Parkinsonism linked to chromosome 17, myotonic dystrophy, and amyotrophic lateral sclerosis. Moreover, these studies have led to the development of innovative therapeutic treatments for diseases caused by aberrant splicing, also known as spliceopathies. Despite this, a paucity of information exists on the physiological roles and specific functions of distinct transcript spliceforms for a given gene. Here, we will highlight work that has specifically explored the distinct functions of protein-coding spliceforms during development. Moreover, we will discuss the use of alternative splicing of noncoding exons to regulate the stability and localization of RNA transcripts.
Collapse
Affiliation(s)
- M Brandon Titus
- University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | - Adeline W Chang
- University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | - Eugenia C Olesnicky
- University of Colorado Colorado Springs, Colorado Springs, CO, United States
| |
Collapse
|
13
|
Agrawal M, Welshhans K. Local Translation Across Neural Development: A Focus on Radial Glial Cells, Axons, and Synaptogenesis. Front Mol Neurosci 2021; 14:717170. [PMID: 34434089 PMCID: PMC8380849 DOI: 10.3389/fnmol.2021.717170] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
In the past two decades, significant progress has been made in our understanding of mRNA localization and translation at distal sites in axons and dendrites. The existing literature shows that local translation is regulated in a temporally and spatially restricted manner and is critical throughout embryonic and post-embryonic life. Here, recent key findings about mRNA localization and local translation across the various stages of neural development, including neurogenesis, axon development, and synaptogenesis, are reviewed. In the early stages of development, mRNAs are localized and locally translated in the endfeet of radial glial cells, but much is still unexplored about their functional significance. Recent in vitro and in vivo studies have provided new information about the specific mechanisms regulating local translation during axon development, including growth cone guidance and axon branching. Later in development, localization and translation of mRNAs help mediate the major structural and functional changes that occur in the axon during synaptogenesis. Clinically, changes in local translation across all stages of neural development have important implications for understanding the etiology of several neurological disorders. Herein, local translation and mechanisms regulating this process across developmental stages are compared and discussed in the context of function and dysfunction.
Collapse
Affiliation(s)
- Manasi Agrawal
- School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Kristy Welshhans
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
14
|
Park Y, Page N, Salamon I, Li D, Rasin MR. Making sense of mRNA landscapes: Translation control in neurodevelopment. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1674. [PMID: 34137510 DOI: 10.1002/wrna.1674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/27/2022]
Abstract
Like all other parts of the central nervous system, the mammalian neocortex undergoes temporally ordered set of developmental events, including proliferation, differentiation, migration, cellular identity, synaptogenesis, connectivity formation, and plasticity changes. These neurodevelopmental mechanisms have been characterized by studies focused on transcriptional control. Recent findings, however, have shown that the spatiotemporal regulation of post-transcriptional steps like alternative splicing, mRNA traffic/localization, mRNA stability/decay, and finally repression/derepression of protein synthesis (mRNA translation) have become just as central to the neurodevelopment as transcriptional control. A number of dynamic players act post-transcriptionally in the neocortex to regulate these steps, as RNA binding proteins (RBPs), ribosomal proteins (RPs), long non-coding RNAs, and/or microRNA. Remarkably, mutations in these post-transcriptional regulators have been associated with neurodevelopmental, neurodegenerative, inherited, or often co-morbid disorders, such as microcephaly, autism, epilepsy, intellectual disability, white matter diseases, Rett-syndrome like phenotype, spinocerebellar ataxia, and amyotrophic lateral sclerosis. Here, we focus on the current state, advanced methodologies and pitfalls of this exciting and upcoming field of RNA metabolism with vast potential in understanding fundamental neurodevelopmental processes and pathologies. This article is categorized under: Translation > Translation Regulation RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Yongkyu Park
- RWJ Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Nicholas Page
- RWJ Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Iva Salamon
- RWJ Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | | | - Mladen-Roko Rasin
- RWJ Medical School, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|