1
|
Fang X, Mo C, Zheng L, Gao F, Xue FS, Zheng X. Transfusion-Related Acute Lung Injury: from Mechanistic Insights to Therapeutic Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2413364. [PMID: 39836498 DOI: 10.1002/advs.202413364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/08/2024] [Indexed: 01/23/2025]
Abstract
Transfusion-related acute lung injury (TRALI) is a potentially lethal complication of blood transfusions, characterized by the rapid onset of pulmonary edema and hypoxemia within six hours post-transfusion. As one of the primary causes of transfusion-related mortality, TRALI carries a significant mortality rate of 6-12%. However, effective treatment strategies for TRALI are currently lacking, underscoring the urgent need for a comprehensive and in-depth understanding of its pathogenesis. This comprehensive review provides an updated and detailed analysis of the current landscape of TRALI, including its clinical presentation, pathogenetic hypotheses, animal models, cellular mechanisms, signaling pathways, and potential therapeutic targets. By highlighting the critical roles of these pathways and therapies, this review offers valuable insights to inform the development of preventative and therapeutic strategies and to guide future research efforts aimed at addressing this life-threatening condition.
Collapse
Affiliation(s)
- Xiaobin Fang
- Department of Anesthesiology/Critical Care Medicine, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Ling Zheng
- Department of Anesthesiology/Critical Care Medicine, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Fei Gao
- Department of Anesthesiology/Critical Care Medicine, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Fu-Shan Xue
- Department of Anesthesiology/Critical Care Medicine, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Xiaochun Zheng
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University & Fujian Emergency Medical Center, Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Key Laboratory of Critical Medicine, Fujian Provincial Co-constructed Laboratory of "Belt and Road,", Fuzhou, Fujian, China
| |
Collapse
|
2
|
Kapur R. Key features of the underlying pathophysiology of Transfusion-related acute lung injury. Expert Rev Hematol 2025; 18:57-64. [PMID: 39610313 DOI: 10.1080/17474086.2024.2436972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 11/28/2024] [Indexed: 11/30/2024]
Abstract
INTRODUCTION Transfusion-related acute lung injury (TRALI) remains a leading cause of blood transfusion associated mortality, particularly in the intensive care unit. TRALI is underrecognized, underreported and lacks specific biomarkers and clinical therapies. AREAS COVERED In this review, the focus will be on the key pathophysiological features of TRALI. This will include the latest insights into the critical importance of complement (in contrast to Fcγ-receptors; FcγRs) as a driver of TRALI, and the role of recipient immune cells such as neutrophils and macrophages, and also the contribution of the pulmonary endothelium. EXPERT OPINION Increased efforts are needed to stimulate active reporting of TRALI cases. More research into the immuno-cellular pathophysiology of TRALI is required, including the role of the pulmonary endothelium. Heterogeneity in the underlying clinical condition and the different transfusion triggers should be taken into consideration. This will aid in the search for novel biomarkers and therapeutic modalities. At the moment, the most promising potential therapeutic strategies appear to be administration of interleukin (IL)-10, inhibition of complement activation and blockade of Osteopontin (OPN). Follow-up investigations are, however, highly warranted which should pave the way for multicenter international clinical trials, in order to battle the mortality due to TRALI.
Collapse
Affiliation(s)
- Rick Kapur
- Sanquin Research, Department of Experimental Immunohematology, Amsterdam and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Yu Z, Mao Z, Xiuyun L, Tianhua J. Transfusion-related acute lung injury induced by human leucocyte antigen-II antibodies: Analysis of antibody typing and source. Vox Sang 2024; 119:1001-1005. [PMID: 38925642 DOI: 10.1111/vox.13703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND AND OBJECTIVES To explore transfusion-related acute lung injury (TRALI) induced by human leucocyte antigen (HLA)-II antibodies, and to analyse antibody typing and source. MATERIALS AND METHODS We retrospectively analysed the clinical symptoms and signs of two leukaemia patients with suspected TRALI from the same female donor. HLA phenotyping was performed on the two patients, the platelet donor, her husband and her two children. The HLA and human neutrophil antigen antibodies in the donor's plasma were identified. RESULTS The clinical manifestations of two leukaemia patients were those of TRALI, and we treated them with timely ventilator support. A high titre of HLA-II antibodies was in the plasma of the platelet donor. The antibodies were directed at HLA-DRB3*03:01, HLA-DRB1*09:01, HLA-DRB1*12:02, HLA-DRB3*01:01 and HLA-DRB1*12:01:01G, which were specific to the HLA antigens of the two patients. High-resolution HLA genotyping suggested that the donor's HLA-II antibodies were derived from immune stimulation by the husband's antigens during pregnancy. CONCLUSIONS This study described two cases of TRALI caused by HLA-II antibodies from the same female donor. Appropriate management of blood donors with a history of multiple pregnancies is crucial.
Collapse
Affiliation(s)
- Zou Yu
- Deyang People's Hospital, Deyang, Sichuan, China
| | - Zheng Mao
- Deyang People's Hospital, Deyang, Sichuan, China
| | - Liao Xiuyun
- Deyang Central Blood Station, Deyang, Sichuan, China
| | | |
Collapse
|
4
|
Hao X, Wang J, Li T, Wang Q. Transfusion-Related Acute Lung Injury Caused by HLA-II Antibodies: A Case Report. Lab Med 2023; 54:e117-e120. [PMID: 36458948 DOI: 10.1093/labmed/lmac145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023] Open
Abstract
OBJECTIVE The aim of this study was to retrospectively analyze the etiology of a case of suspected transfusion-related acute lung injury (TRALI) occurring after blood transfusion. METHODS The clinical symptoms, signs, imaging examinations, and laboratory test results of a patient with suspected TRALI after blood transfusion were retrospectively analyzed, and human leukocyte antigen (HLA) genotyping of the patient and HLA antibodies of the plasma donors were performed. RESULTS The clinical manifestations of the patient were consistent with those of TRALI after blood transfusion. This TRALI was treated by timely ventilator support. The patient results of high-resolution HLA genotyping were HLA-A* 01:01, 11:01; HLA-B* 15:02, 37:01; HLA-C* 06:02, 08:01; DRB1* 10:01, 12:02; DRB3* 03:01, 03:01; DQA1* 01:05, 06:01; DQB1* 03:01, 05:01; DPA1* 01:03, 02:01; and DPB1* 02:01, 09:01. Of the 6 plasma donors tested, 3 were found to have HLA-II antibodies, which were HLA-DPA1*01:03, HLA-DQB1*03:01, and HLA-DQB1*03:01 antibodies. CONCLUSION We described a case of TRALI caused by HLA-DQB1*03:01 antibody and DPA1*01:03 antibody.
Collapse
Affiliation(s)
- Xinxin Hao
- Department of Blood Transfusion, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Jue Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Peking Union Medical College, Institute of Blood Transfusion Chengdu, Sichuan, China
| | - Tiegang Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Qiushi Wang
- Department of Blood Transfusion, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| |
Collapse
|
5
|
Yu Y, Lian Z. Update on transfusion-related acute lung injury: an overview of its pathogenesis and management. Front Immunol 2023; 14:1175387. [PMID: 37251400 PMCID: PMC10213666 DOI: 10.3389/fimmu.2023.1175387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
Transfusion-related acute lung injury (TRALI) is a severe adverse event and a leading cause of transfusion-associated death. Its poor associated prognosis is due, in large part, to the current dearth of effective therapeutic strategies. Hence, an urgent need exists for effective management strategies for the prevention and treatment of associated lung edema. Recently, various preclinical and clinical studies have advanced the current knowledge regarding TRALI pathogenesis. In fact, the application of this knowledge to patient management has successfully decreased TRALI-associated morbidity. This article reviews the most relevant data and recent progress related to TRALI pathogenesis. Based on the existing two-hit theory, a novel three-step pathogenesis model composed of a priming step, pulmonary reaction, and effector phase is postulated to explain the process of TRALI. TRALI pathogenesis stage-specific management strategies based on clinical studies and preclinical models are summarized with an explication of their models of prevention and experimental drugs. The primary aim of this review is to provide useful insights regarding the underlying pathogenesis of TRALI to inform the development of preventive or therapeutic alternatives.
Collapse
Affiliation(s)
| | - Zhengqiu Lian
- Department of Blood Transfusion, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
6
|
Yuan X, Jiang P, Qiao C, Su N, Sun P, Lin F, Li C. PLATELET SUPPRESSION BY TIROFIBAN AMELIORATES PULMONARY COAGULATION AND FIBRINOLYSIS ABNORMALITIES IN THE LUNGS OF MOUSE ANTIBODY-MEDIATED TRANSFUSION-RELATED ACUTE LUNG INJURY. Shock 2023; 59:603-611. [PMID: 36640155 DOI: 10.1097/shk.0000000000002080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
ABSTRACT This study aimed to explore the ameliorating effects of the platelet surface glycoprotein IIb/IIIa receptor antagonist tirofiban on coagulation and fibrinolytic abnormalities in a mouse model of antibody-mediated transfusion-associated acute lung injury (ALI). This is important because ALI is a major cause of death attributable to the occurrence of adverse transfusion reactions. No information on a definite diagnosis or pathological mechanism exists, and targeted treatment options are not available. In this study, wild-type male Balb/c mice aged 8 to 10 weeks were randomly divided into the TRALI model, blank control, tirofiban intervention, and isotype control groups. After different treatment exposures, the mice were observed for 2 h before being killed, and lung tissue samples were collected. To explore the intervention effect of tirofiban, the degree of lung injury was quantified by estimating the lung wet/dry ratio, rectal temperature, survival rate, total protein, and myeloperoxidase and via hematoxylin-eosin staining. Furthermore, the coagulation, anticoagulation, and fibrinolysis assays were measured by automatic coagulation instrument and enzyme-linked immunosorbent assay kits, and the fluorescence densities of platelets and fibrin were quantified using immunofluorescence to analyze the effects of tirofiban on the platelet and fibrin interactions of TRALI. Compared with the TRALI model group, the lung injury indices in the tirofiban intervention group decreased significantly, and survival rates also improved. Furthermore, the level of coagulation and fibrinolytic abnormalities were obviously lower than those in the TRALI model group. In conclusion, our findings suggest that tirofiban might interfere with TRALI by inhibiting platelet activation and improving coagulation and fibrinolytic abnormalities.
Collapse
Affiliation(s)
- Xin Yuan
- Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College, Chengdu, Sichuan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
7
|
Chen DW, Kang T, Xu XZ, Xia WJ, Ye X, Wu YB, Xu YR, Liu J, Ren H, Deng J, Chen YK, Ding HQ, Aslam M, Zelek WM, Morgan BP, Kapur R, Santoso S, Fu YS. Mechanism and intervention of murine transfusion-related acute lung injury caused by anti-CD36 antibodies. JCI Insight 2023; 8:165142. [PMID: 36809299 PMCID: PMC10070104 DOI: 10.1172/jci.insight.165142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/15/2023] [Indexed: 02/23/2023] Open
Abstract
Anti-CD36 Abs have been suggested to induce transfusion-related acute lung injury (TRALI) upon blood transfusion, particularly in Asian populations. However, little is known about the pathological mechanism of anti-CD36 Ab-mediated TRALI, and potential therapies have not yet been identified. Here, we developed a murine model of anti-CD36 Ab-mediated TRALI to address these questions. Administration of mouse mAb against CD36 (mAb GZ1) or human anti-CD36 IgG, but not GZ1 F(ab')2 fragments, induced severe TRALI in Cd36+/+ male mice. Predepletion of recipient monocytes or complement, but not neutrophils or platelets, prevented the development of murine TRALI. Moreover, plasma C5a levels after TRALI induction by anti-CD36 Abs increased more than 3-fold, implying a critical role of complement C5 activation in the mechanism of Fc-dependent anti-CD36-mediated TRALI. Administration of GZ1 F(ab')2, antioxidant (N-acetyl cysteine, NAC), or C5 blocker (mAb BB5.1) before TRALI induction completely protected mice from anti-CD36-mediated TRALI. Although no significant amelioration in TRALI was observed when mice were injected with GZ1 F(ab')2 after TRALI induction, significant improvement was achieved when mice were treated postinduction with NAC or anti-C5. Importantly, anti-C5 treatment completely rescued mice from TRALI, suggesting the potential role of existing anti-C5 drugs in the treatment of patients with TRALI caused by anti-CD36.
Collapse
Affiliation(s)
- Da-Wei Chen
- Institute of Blood Transfusion, Guangzhou Blood Centre, Guangzhou, Guangdong, China
- Institute for Clinical Immunology and Transfusion Medicine, Justus Liebig University, Giessen, Germany
| | - Tian Kang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiu-Zhang Xu
- Institute of Blood Transfusion, Guangzhou Blood Centre, Guangzhou, Guangdong, China
| | - Wen-Jie Xia
- Institute of Blood Transfusion, Guangzhou Blood Centre, Guangzhou, Guangdong, China
| | - Xin Ye
- Institute of Blood Transfusion, Guangzhou Blood Centre, Guangzhou, Guangdong, China
| | - Yong-Bin Wu
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yao-Ri Xu
- Institute of Blood Transfusion, Guangzhou Blood Centre, Guangzhou, Guangdong, China
| | - Jing Liu
- Institute of Blood Transfusion, Guangzhou Blood Centre, Guangzhou, Guangdong, China
| | - Hui Ren
- Institute of Blood Transfusion, Guangzhou Blood Centre, Guangzhou, Guangdong, China
| | - Jing Deng
- Institute of Blood Transfusion, Guangzhou Blood Centre, Guangzhou, Guangdong, China
| | - Yang-Kai Chen
- Institute of Blood Transfusion, Guangzhou Blood Centre, Guangzhou, Guangdong, China
| | - Hao-Qiang Ding
- Institute of Blood Transfusion, Guangzhou Blood Centre, Guangzhou, Guangdong, China
| | - Muhammad Aslam
- Department of Cardiology and Angiology, Justus Liebig University, Giessen, Germany
| | - Wioleta M Zelek
- Dementia Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - B Paul Morgan
- Dementia Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Rick Kapur
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Sentot Santoso
- Institute of Blood Transfusion, Guangzhou Blood Centre, Guangzhou, Guangdong, China
- Institute for Clinical Immunology and Transfusion Medicine, Justus Liebig University, Giessen, Germany
| | - Yong-Shui Fu
- Institute of Blood Transfusion, Guangzhou Blood Centre, Guangzhou, Guangdong, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Morsing SKH, Zeeuw van der Laan E, van Stalborch AD, van Buul JD, Kapur R, Vlaar AP. A pulmonary endothelial amplification loop aggravates ex-vivo transfusion-related acute lung injury via increased toll-like receptor 4 and intra-cellular adhesion molecule-1 expression. Transfusion 2022; 62:1961-1966. [PMID: 36004763 PMCID: PMC9804532 DOI: 10.1111/trf.17076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Transfusion-Related Acute Lung Injury (TRALI) is a life-threatening complication of blood transfusions characterized by pulmonary endothelial cell damage and edema, with a high incidence in critically ill patients. The pathophysiology of TRALI is unresolved, but can generally be hypothesized to follow a 2-hit model in which the first hit is elicited by the underlying clinical condition of the patient (e.g., inflammation, which can be reflected by LPS in experimental models), and the second hit is delivered by the blood transfusion product (e.g., HLA class I antibodies). Here, we report a synergistic role for LPS and HLA class I antibody binding to pulmonary endothelium resulting in enhanced inflammatory responses. MATERIALS AND METHODS Pulmonary endothelial cells were treated with PBS or low-dose LPS, exclusively or in combination with anti-HLA class I. Endothelial surface expression of HLA class I, TLR4, and inflammatory marker ICAM-1 were measured, and trans-endothelial migration (TEM) of neutrophils was investigated. RESULTS LPS treatment of pulmonary endothelium enhanced HLA class I antibody binding, and combined LPS and HLA class I antibody binding enhanced TLR4 (LPS receptor) and ICAM-1 expression on the endothelial cell surface. Low-dose LPS and HLA antibody together also increased neutrophil TEM under physiological flow by on average 5-fold. CONCLUSION We conclude that LPS and anti-HLA class I antibody have the ability to activate the pulmonary endothelium into a spiral of increasing inflammation, opening the opportunity to potentially block TLR4 to prevent or reduce the severity of TRALI in vivo.
Collapse
Affiliation(s)
- Sofia K. H. Morsing
- Molecular Cell Biology Lab, Department of Molecular Hematology, Sanquin Research and Landsteiner LaboratoryAcademic Medical CenterAmsterdamthe Netherlands
| | - Eveline Zeeuw van der Laan
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner LaboratoryAmsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
| | - Annemarieke D. van Stalborch
- Molecular Cell Biology Lab, Department of Molecular Hematology, Sanquin Research and Landsteiner LaboratoryAcademic Medical CenterAmsterdamthe Netherlands
| | - Jaap D. van Buul
- Molecular Cell Biology Lab, Department of Molecular Hematology, Sanquin Research and Landsteiner LaboratoryAcademic Medical CenterAmsterdamthe Netherlands,Leeuwenhoek Centre for Advanced Microscopy, Section Molecular Cytology at Swammerdam Institute for Life Sciences at University of AmsterdamAmsterdamthe Netherlands
| | - Rick Kapur
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner LaboratoryAmsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
| | - Alexander P. Vlaar
- Department of Intensive CareAmsterdam UMC, Location AMCAmsterdamthe Netherlands
| |
Collapse
|
9
|
Tung JP, Chiaretti S, Dean MM, Sultana AJ, Reade MC, Fung YL. Transfusion-related acute lung injury (TRALI): Potential pathways of development, strategies for prevention and treatment, and future research directions. Blood Rev 2022; 53:100926. [DOI: 10.1016/j.blre.2021.100926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/01/2021] [Accepted: 12/30/2021] [Indexed: 02/08/2023]
|
10
|
Abstract
PURPOSE OF REVIEW The aim of this study was to discuss recent advances regarding the pathogenesis of transfusion-related acute lung injury (TRALI), which highlight the pathogenic role of macrophages. RECENT FINDINGS TRALI remains a leading cause of transfusion-related fatalities, despite the success of the mitigation strategy, and therapeutic approaches are unavailable. Neutrophils (PMNs) are recognized pathogenic cells in TRALI. Macrophages have previously also been suggested to be pathogenic in mice via binding of C5a to their C5a-receptor, producing reactive oxygen species (ROS), which damages the pulmonary endothelium. Recent work has further highlighted the role of macrophages in the TRALI-pathogenesis. It has been shown that the protein osteopontin (OPN) released by macrophages is critical for pulmonary PMN recruitment in mice suffering from TRALI and that targeting OPN prevents the occurrence of TRALI. Another recent study demonstrated the importance of M1-polarized alveolar macrophages in murine TRALI induction by showing that α1-antitrypsin (AAT) overexpression prevented TRALI in mice through decreasing the polarization of alveolar macrophages towards the M1 phenotype. SUMMARY Apart from PMNs, macrophages also appear to be important in the pathogenesis of TRALI. Targeting the pathogenic functions of macrophages may be a promising therapeutic strategy to explore in TRALI.
Collapse
|
11
|
Kuldanek SA, Kelher M, Silliman CC. Risk factors, management and prevention of transfusion-related acute lung injury: a comprehensive update. Expert Rev Hematol 2019; 12:773-785. [PMID: 31282773 PMCID: PMC6715498 DOI: 10.1080/17474086.2019.1640599] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 07/03/2019] [Indexed: 12/13/2022]
Abstract
Introduction: Despite mitigation strategies that include the exclusion of females from plasma donation or the exclusion of females with a history of pregnancy or known anti-leukocyte antibody, transfusion-related acute lung injury (TRALI) remains a leading cause of transfusion-related morbidity and mortality. Areas covered: The definition of TRALI is discussed and re-aligned with the new Berlin Diagnostic Criteria for the acute respiratory distress syndrome (ARDS). The risk factors associated with TRALI are summarized as are the mitigation strategies to further reduce TRALI. The emerging basic research studies that may translate to clinical therapeutics for the prevention or treatment of TRALI are discussed. Expert opinion: At risk patients, including the genetic factors that may predispose patients to TRALI are summarized and discussed. The re-definition of TRALI employing the Berlin Criteria for ARDS will allow for increased recognition and improved research into pathophysiology and mitigation to reduce this fatal complication of hemotherapy.
Collapse
Affiliation(s)
- Susan A. Kuldanek
- The Division of Transfusion Medicine, School of Medicine University of Colorado Denver, Aurora, CO, USA
- Department of Pathology, School of Medicine University of Colorado Denver, Aurora, CO, USA
- Department of Pediatrics, School of Medicine University of Colorado Denver, Aurora, CO, USA
| | - Marguerite Kelher
- Department of Surgery, School of Medicine University of Colorado Denver, Aurora, CO, USA
| | - Christopher C. Silliman
- Department of Pediatrics, School of Medicine University of Colorado Denver, Aurora, CO, USA
- Department of Surgery, School of Medicine University of Colorado Denver, Aurora, CO, USA
- Vitalant Research Institute, Vitalant Mountain Division, Denver, CO, USA
| |
Collapse
|
12
|
Transfusion-associated circulatory overload and transfusion-related acute lung injury. Blood 2019; 133:1840-1853. [PMID: 30808638 DOI: 10.1182/blood-2018-10-860809] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/10/2018] [Indexed: 01/18/2023] Open
Abstract
Transfusion-associated circulatory overload (TACO) and transfusion-related acute lung injury (TRALI) are syndromes of acute respiratory distress that occur within 6 hours of blood transfusion. TACO and TRALI are the leading causes of transfusion-related fatalities, and specific therapies are unavailable. Diagnostically, it remains very challenging to distinguish TACO and TRALI from underlying causes of lung injury and/or fluid overload as well as from each other. TACO is characterized by pulmonary hydrostatic (cardiogenic) edema, whereas TRALI presents as pulmonary permeability edema (noncardiogenic). The pathophysiology of both syndromes is complex and incompletely understood. A 2-hit model is generally assumed to underlie TACO and TRALI disease pathology, where the first hit represents the clinical condition of the patient and the second hit is conveyed by the transfusion product. In TACO, cardiac or renal impairment and positive fluid balance appear first hits, whereas suboptimal fluid management or other components in the transfused product may enable the second hit. Remarkably, other factors beyond volume play a role in TACO. In TRALI, the first hit can, for example, be represented by inflammation, whereas the second hit is assumed to be caused by antileukocyte antibodies or biological response modifiers (eg, lipids). In this review, we provide an up-to-date overview of TACO and TRALI regarding clinical definitions, diagnostic strategies, pathophysiological mechanisms, and potential therapies. More research is required to better understand TACO and TRALI pathophysiology, and more biomarker studies are warranted. Collectively, this may result in improved diagnostics and development of therapeutic approaches for these life-threatening transfusion reactions.
Collapse
|
13
|
Kopko PM, Bux J, Toy P. Antibodies associated with TRALI: differences in clinical relevance. Transfusion 2018; 59:1147-1151. [PMID: 30548883 DOI: 10.1111/trf.15094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/07/2018] [Accepted: 11/11/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Patricia M Kopko
- Department of Pathology, University of California, San Diego, San Diego, California
| | | | - Pearl Toy
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California
| |
Collapse
|
14
|
Loi MM, Kelher M, Dzieciatkowska M, Hansen KC, Banerjee A, West FB, Stanley C, Briel M, Silliman CC. A comparison of different methods of red blood cell leukoreduction and additive solutions on the accumulation of neutrophil-priming activity during storage. Transfusion 2018; 58:2003-2012. [PMID: 30171813 DOI: 10.1111/trf.14788] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/21/2018] [Accepted: 03/15/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Three methods of leukoreduction (LR) are used worldwide: filtration, buffy coat removal (BCR), and a combination of the previous two methods. Additionally, there are a number of additive solutions (ASs) used to preserve red blood cell (RBC) function throughout storage. During RBC storage, proinflammatory activity accumulates; thus, we hypothesize that both the method of LR and the AS affect the accumulation of proinflammatory activity. STUDY DESIGN AND METHODS Ten units of whole blood were drawn from healthy donors, the RBC units were isolated, divided in half by weight, and leukoreduced by: 1) BCR, 2) filtration, or 3) BCR and filtration (combination-LR); stored in bags containing AS-3 per AABB criteria; and sampled weekly. The supernatants were isolated and frozen (-80°C). RBC units drawn from healthy donors into AS-1-, AS-3-, or AS-5-containing bags were also stored and sampled weekly, and the supernatants were isolated and frozen. The supernatants were assayed for neutrophil (PMN)-priming activity and underwent proteomic analyses. RESULTS Filtration and combination LR decreased priming activity accumulation versus buffy coat LR, although the accumulation of priming activity was not different during storage. Combination LR increased hemolysis versus filtration via proteomic analysis. Priming activity from AS-3 units was significant later in storage versus AS-1- or AS-5-stored units. CONCLUSIONS Although both filtration and combination LR decrease the accumulation of proinflammatory activity versus buffy coat LR, combination LR is not more advantageous over filtration, has increased costs, and may cause increased hemolysis. In addition, AS-3 decreases the early accumulation of PMN-priming activity during storage versus AS-1 or AS-5.
Collapse
Affiliation(s)
- Michele M Loi
- Department of Research Laboratory, University of Colorado Denver, Aurora, Colorado.,Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - Marguerite Kelher
- Department of Research Laboratory, University of Colorado Denver, Aurora, Colorado.,Department of Surgery, University of Colorado Denver, Aurora, Colorado
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado
| | - Anirban Banerjee
- Department of Surgery, University of Colorado Denver, Aurora, Colorado
| | - F Bernadette West
- Connecticut, Mid-Atlantic, and Appalachian Regions, American Red Cross, Hartford, Connecticut
| | | | - Matthew Briel
- Manufacturing, Bonfils Blood Center, Denver, Colorado
| | - Christopher C Silliman
- Department of Research Laboratory, University of Colorado Denver, Aurora, Colorado.,Department of Pediatrics, University of Colorado Denver, Aurora, Colorado.,Department of Surgery, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
15
|
Affiliation(s)
- Y. L. Fung
- School of Health & Sports Sciences; University of Sunshine Coast; Sunshine Coast QLD Australia
| | - J.P. Tung
- Research and Development; Australian Red Cross Blood Service; Kelvin Grove QLD Australia
- Critical Care Research Group; University of Queensland and The Prince Charles Hospital; Brisbane QLD Australia
| |
Collapse
|
16
|
Attenuation of hemorrhage-associated lung injury by adjuvant treatment with C23, an oligopeptide derived from cold-inducible RNA-binding protein. J Trauma Acute Care Surg 2017; 83:690-697. [PMID: 28930962 DOI: 10.1097/ta.0000000000001566] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Hemorrhagic shock (HS) is an important cause of mortality. HS is associated with an elevated incidence of acute lung injury and acute respiratory distress syndrome, significantly contributing to HS morbidity and mortality. Cold-inducible RNA-binding protein (CIRP) is released into the circulation during HS and can cause lung injury. C23 is a CIRP-derived oligopeptide that binds with high affinity to the CIRP receptor and inhibits CIRP-induced phagocyte secretion of TNF-α. This study was designed to determine whether C23 is able to attenuate HS-associated lung injury. METHODS C57BL/6 mice were subjected to controlled hemorrhage leading to a mean arterial pressure of 25 ± 3 mm Hg for 90 minutes. Mice were then volume-resuscitated for 30 minutes with normal saline solution alone (vehicle) or plus adjuvant treatment with C23 (8 mg/kg BW). At 4.5 hours after resuscitation, the blood and lungs were harvested. RESULTS Serum levels of organ injury markers lactate dehydrogenase, aspartate aminotransferase were significantly elevated in hemorrhaged mice receiving vehicle and were reduced by 51.3% and 52.2% in mice adjuvantly treated with C23, respectively. Similarly, lung mRNA levels of IL-1β, TNF-α, and IL-6, and lung myeloperoxidase activity were elevated after HS and reduced by 66.1%, 54.4%, 69.7%, and 24.3%, respectively, in mice treated with C23. Adjuvant treatment with C23 also decreased the lung histology score by 33.9%, lung extravasation of albumin carrying Evans blue dye by 36.8%, and the protein level of intercellular adhesion molecule-1, and indicator of vascular endothelial cell activation, by 40.3%. CONCLUSION Together, these results indicate that adjuvant treatment with the CIRP-derived oligopeptide C23 is able to improve lung inflammation and vascular endothelial activation secondary to HS, lending support to the development of CIRP-targeting adjuvant treatments to minimize lung injury after HS.
Collapse
|