1
|
Yazer MH, Díaz-Valdés JR, Triulzi DJ, Cap AP. Wider perspectives: It's a changing world-The use of ABO-incompatible plasma for resuscitating massively bleeding patients. Br J Haematol 2023; 200:291-296. [PMID: 36134727 DOI: 10.1111/bjh.18460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/23/2022] [Accepted: 09/01/2022] [Indexed: 01/21/2023]
Affiliation(s)
- Mark H Yazer
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - José R Díaz-Valdés
- Hematology and Transfusion Service, Spanish Military Central Hospital, University of Alcalá, Madrid, Spain
| | - Darrell J Triulzi
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andrew P Cap
- U.S. Army Institute of Surgical Research, Department of Medicine, Uniformed Services University, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Jajosky RP, Wu SC, Zheng L, Jajosky AN, Jajosky PG, Josephson CD, Hollenhorst MA, Sackstein R, Cummings RD, Arthur CM, Stowell SR. ABO blood group antigens and differential glycan expression: Perspective on the evolution of common human enzyme deficiencies. iScience 2023; 26:105798. [PMID: 36691627 PMCID: PMC9860303 DOI: 10.1016/j.isci.2022.105798] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Enzymes catalyze biochemical reactions and play critical roles in human health and disease. Enzyme variants and deficiencies can lead to variable expression of glycans, which can affect physiology, influence predilection for disease, and/or directly contribute to disease pathogenesis. Although certain well-characterized enzyme deficiencies result in overt disease, some of the most common enzyme deficiencies in humans form the basis of blood groups. These carbohydrate blood groups impact fundamental areas of clinical medicine, including the risk of infection and severity of infectious disease, bleeding risk, transfusion medicine, and tissue/organ transplantation. In this review, we examine the enzymes responsible for carbohydrate-based blood group antigen biosynthesis and their expression within the human population. We also consider the evolutionary selective pressures, e.g. malaria, that may account for the variation in carbohydrate structures and the implications of this biology for human disease.
Collapse
Affiliation(s)
- Ryan Philip Jajosky
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Biconcavity Inc, Lilburn, GA, USA
| | - Shang-Chuen Wu
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Leon Zheng
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Audrey N. Jajosky
- University of Rochester Medical Center, Department of Pathology and Laboratory Medicine, West Henrietta, NY, USA
| | | | - Cassandra D. Josephson
- Cancer and Blood Disorders Institute and Blood Bank/Transfusion Medicine Division, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
- Departments of Oncology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marie A. Hollenhorst
- Department of Pathology and Department of Medicine, Stanford University, Stanford, CA, USA
| | - Robert Sackstein
- Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Richard D. Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Connie M. Arthur
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Sean R. Stowell
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
3
|
Krishna NK, Cunnion KM, Parker GA. The EPICC Family of Anti-Inflammatory Peptides: Next Generation Peptides, Additional Mechanisms of Action, and In Vivo and Ex Vivo Efficacy. Front Immunol 2022; 13:752315. [PMID: 35222367 PMCID: PMC8863753 DOI: 10.3389/fimmu.2022.752315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/17/2022] [Indexed: 11/23/2022] Open
Abstract
The EPICC peptides are a family of peptides that have been developed from the sequence of the capsid protein of human astrovirus type 1 and previously shown to inhibit the classical and lectin pathways of complement. The EPICC peptides have been further optimized to increase aqueous solubility and identify additional mechanisms of action. Our laboratory has developed the lead EPICC molecule, PA-dPEG24 (also known as RLS-0071), which is composed of a 15 amino acid peptide with a C-terminal monodisperse 24-mer PEGylated moiety. RLS-0071 has been demonstrated to possess other mechanisms of action in addition to complement blockade that include the inhibition of neutrophil-driven myeloperoxidase (MPO) activity, inhibition of neutrophil extracellular trap (NET) formation as well as intrinsic antioxidant activity mediated by vicinal cysteine residues contained within the peptide sequence. RLS-0071 has been tested in various ex vivo and in vivo systems and has shown promise for the treatment of both immune-mediated hematological diseases where alterations in the classical complement pathway plays an important pathogenic role as well as in models of tissue-based diseases such as acute lung injury and hypoxic ischemic encephalopathy driven by both complement and neutrophil-mediated pathways (i.e., MPO activity and NET formation). Next generation EPICC peptides containing a sarcosine residue substitution in various positions within the peptide sequence possess aqueous solubility in the absence of PEGylation and demonstrate enhanced complement and neutrophil inhibitory activity compared to RLS-0071. This review details the development of the EPICC peptides, elucidation of their dual-acting complement and neutrophil inhibitory activities and efficacy in ex vivo systems using human clinical specimens and in vivo efficacy in animal disease models.
Collapse
Affiliation(s)
- Neel K Krishna
- Division of Research, ReAlta Life Sciences, Norfolk, VA, United States
| | - Kenji M Cunnion
- Division of Research, ReAlta Life Sciences, Norfolk, VA, United States.,Department of Pediatrics, Children's Hospital of The King's Daughters, Norfolk, VA, United States.,Children's Specialty Group, Norfolk, VA, United States.,Department of Pediatrics, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Grace A Parker
- Division of Research, ReAlta Life Sciences, Norfolk, VA, United States
| |
Collapse
|
4
|
Moosavi MM, Duncan A, Stowell SR, Roback JD, Sullivan HC. Passenger Lymphocyte Syndrome; a Review of the Diagnosis, Treatment, and Proposed Detection Protocol. Transfus Med Rev 2020; 34:178-187. [PMID: 32826130 DOI: 10.1016/j.tmrv.2020.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022]
Abstract
Passenger lymphocyte syndrome (PLS) is caused by the transfer of B-lymphocytes present in the donor graft into the recipient circulation following solid organ or hematopoietic stem cell transplantation. These cells may produce antibodies against the recipient's red blood cells, thereby triggering antibody dependent cytotoxicity and erythroid clearance, with potential resulting hemolysis and jaundice. Although uncommon, the true incidence is unknown because many cases are subclinical, with only serologic findings or with non significant levels of hemolysis detectable clinically or by laboratory monitoring. Thus, these cases may not be detected in the immediate perioperative period. No standardized consensus exists on screening for PLS in patients. Through a review of the literature from 2009 to 2019, we aim to approximate the incidence of this condition in different solid organ transplant settings, as well as to streamline recognition, detection, and management of PLS early in the disease course to prevent adverse outcomes and minimize invasive therapy. The resultant literature review yielded 22 case reports and 8 case series comprising 71 solid organ transplant patients. Hematopoietic stem cell transplant cases were excluded, as PLS cases related to solid organ transplant were the primary focus of this review. Our institution has traditionally handled PLS on a case-by-case basis, although we hope to improve this process through an introduction of an algorithm based on review of the literature and formalized communication with primary caregivers.
Collapse
Affiliation(s)
- Mitchell M Moosavi
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Alexander Duncan
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Sean R Stowell
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - John D Roback
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Harold Clifford Sullivan
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA.
| |
Collapse
|
5
|
Lee-Sundlov MM, Stowell SR, Hoffmeister KM. Multifaceted role of glycosylation in transfusion medicine, platelets, and red blood cells. J Thromb Haemost 2020; 18:1535-1547. [PMID: 32350996 PMCID: PMC7336546 DOI: 10.1111/jth.14874] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/20/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022]
Abstract
Glycosylation is highly prevalent, and also one of the most complex and varied posttranslational modifications. This large glycan diversity results in a wide range of biological functions. Functional diversity includes protein degradation, protein clearance, cell trafficking, cell signaling, host-pathogen interactions, and immune defense, including both innate and acquired immunity. Glycan-based ABO(H) antigens are critical in providing compatible products in the setting of transfusion and organ transplantation. However, evidence also suggests that ABO expression may influence cardiovascular disease, thrombosis, and hemostasis disorders, including alterations in platelet function and von Willebrand factor blood levels. Glycans also regulate immune and hemostasis function beyond ABO(H) antigens. Mutations in glycogenes (PIGA, COSMC) lead to serious blood disorders, including Tn syndrome associated with hyperagglutination, hemolysis, and thrombocytopenia. Alterations in genes responsible for sialic acids (Sia) synthesis (GNE) and UDP-galactose (GALE) and lactosamine (LacNAc) (B4GALT1) profoundly affect circulating platelet counts. Desialylation (removal of Sia) is affected by human and pathogenic neuraminidases. This review addresses the role of glycans in transfusion medicine, hemostasis and thrombosis, and red blood cell and platelet survival.
Collapse
Affiliation(s)
- Melissa M. Lee-Sundlov
- Translational Glycomics Center, Blood Research Institute Versiti, Milwaukee, WI, United States
| | - Sean R. Stowell
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, United States
| | - Karin M. Hoffmeister
- Translational Glycomics Center, Blood Research Institute Versiti, Milwaukee, WI, United States
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee WI, United States
| |
Collapse
|
6
|
Skattum L. Clinical Complement Analysis-An Overview. Transfus Med Rev 2019; 33:207-216. [PMID: 31672339 DOI: 10.1016/j.tmrv.2019.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022]
Abstract
The complement system plays an important role in varying types of disease, ranging from inflammatory and autoimmune disorders to immune deficiency states. In addition, new settings have emerged where complement analysis is of interest to monitor complement-directed therapy and aid identification of transplant complications. Therefore, it is critical that clinical laboratories offer optimized and timely complement analysis. This review presents a comprehensive overview of the most important complement analysis methods that are currently used. It also points to some areas within complement diagnostics where development is needed, for example, regarding certain analytes for which practical methods suitable for the routine laboratory are lacking. Furthermore, it contains a more detailed discussion on complement autoantibody assessment. The list of analyses providing clinically valuable information includes analysis of complement function, quantification of individual complement components and complement activation fragments, identification of autoantibodies to complement, as well as genetic complement analyses. There is still a shortage of commercially available methods suitable for high-throughput screening of complement deficiency and for assessment of complement activation, but development is under way. There is also ongoing work within the complement community to improve standardization of measurements, and recently, an extensive quality assurance program has been initiated.
Collapse
Affiliation(s)
- Lillemor Skattum
- Department of Laboratory Medicine, Section of Microbiology, Immunology and Glycobiology, Lund University, and Clinical Immunology and Transfusion Medicine, Region Skåne, Lund, Sweden.
| |
Collapse
|
7
|
Arthur CM, Chonat S, Fasano R, Yee MEM, Josephson CD, Roback JD, Stowell SR. Examining the Role of Complement in Predicting, Preventing, and Treating Hemolytic Transfusion Reactions. Transfus Med Rev 2019; 33:217-224. [PMID: 31679762 PMCID: PMC7147990 DOI: 10.1016/j.tmrv.2019.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/24/2022]
Abstract
Red blood cell (RBC) transfusion is a critical component of optimal management for a broad range of conditions. Regardless of the indication, pretransfusion testing is required to appropriately match RBC donors and recipients to provide immunologically compatible blood. Although this approach is effective in the vast majority of situations, occasionally, patients will inadvertently receive an incompatible RBC transfusion, which can result in a hemolytic transfusion reaction (HTR). In addition, patients with life-threatening anemia and a complex alloantibody profile, which precludes rapid procurement of compatible RBCs, may also receive incompatible RBCs, placing them at risk for an HTR. Despite the rarity of these clinical situations, when incompatible blood transfusion results in an HTR, the consequences can be devastating. In this review, we will explore the challenges associated with actively preventing and treating acute HTRs following incompatible RBC transfusion. In doing so, we will focus primarily on the role of complement, not only as a key player in HTRs, but also as a potential target for the prevention and treatment of HTRs.
Collapse
Affiliation(s)
- Connie M Arthur
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Satheesh Chonat
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA
| | - Ross Fasano
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA; Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA
| | - Marianne E M Yee
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA; Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA
| | - Cassandra D Josephson
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA; Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA
| | - John D Roback
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA
| | - Sean R Stowell
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA.
| |
Collapse
|
8
|
Stowell CP, Stowell SR. Biologic roles of the ABH and Lewis histo-blood group antigens Part I: infection and immunity. Vox Sang 2019; 114:426-442. [PMID: 31070258 DOI: 10.1111/vox.12787] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 12/22/2022]
Abstract
The ABH and Lewis antigens were among the first of the human red blood cell polymorphisms to be identified and, in the case of the former, play a dominant role in transfusion and transplantation. But these two therapies are largely twentieth century innovations, and the ABH and related carbohydrate antigens are not only expressed on a very wide range of human tissues, but were present in primates long before modern humans evolved. Although we have learned a great deal about the biochemistry and genetics of these structures, the biological roles that they play in human health and disease are incompletely understood. This review and its companion, to appear in a later issue of Vox Sanguinis, will focus on a few of the biologic and pathologic processes which appear to be affected by histo-blood group phenotype. The first of the two reviews will explore the interactions of two bacteria with the ABH and Lewis glycoconjugates of their human host cells, and describe the possible connections between the immune response of the human host to infection and the development of the AB-isoagglutinins. The second review will describe the relationship between ABO phenotype and thromboembolic disease, cardio-vascular disease states, and general metabolism.
Collapse
Affiliation(s)
- Christopher P Stowell
- Blood Transfusion Service, Massachusetts General Hospital, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Sean R Stowell
- Center for Apheresis, Center for Transfusion and Cellular Therapies, Emory Hospital, Emory University School of Medicine, Atlanta, GA, USA.,Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
9
|
Dean CL, Maier CL, Chonat S, Chang A, Carden MA, El Rassi F, McLemore ML, Stowell SR, Fasano RM. Challenges in the treatment and prevention of delayed hemolytic transfusion reactions with hyperhemolysis in sickle cell disease patients. Transfusion 2019; 59:1698-1705. [PMID: 30848512 DOI: 10.1111/trf.15227] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/13/2018] [Accepted: 01/08/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Delayed hemolytic transfusion reactions (DHTRs) are serious complications of RBC transfusion that can occur in previously alloimmunized patients. Patients who require episodic transfusions during heightened inflammatory states, such as patients with sickle cell disease (SCD), are particularly prone to alloimmunization and developing DHTRs with hyperhemolysis. While efforts to mitigate these hemolytic episodes via immunosuppressive drugs can be employed, the relative efficacy of various treatment options remains incompletely understood. CASE REPORTS In this study, we explored five patients with SCD and multiple RBC alloantibodies who received various forms of immunosuppressive therapy in an attempt to prevent or treat severe DHTRs. RESULTS The clinical course for these five patients provides insight into the difficulty of effectively treating and preventing DHTRs in patients with SCD with currently available immunosuppressive therapies. CONCLUSION Based on our experience, and the current literature, it is difficult to predict the potential impact of various immunosuppressive therapies when seeking to prevent or treat DHTRs. Future mechanistic studies are needed to identify the optimal treatment options for DHTRs in the presence or absence of distinct alloantibodies in patients with SCD.
Collapse
Affiliation(s)
- Christina L Dean
- Center for Transfusion and Cellular Therapy, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Cheryl L Maier
- Center for Transfusion and Cellular Therapy, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Satheesh Chonat
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia.,Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Andres Chang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Marcus A Carden
- Department of Pediatrics and Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Fuad El Rassi
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Morgan L McLemore
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Sean R Stowell
- Center for Transfusion and Cellular Therapy, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Ross M Fasano
- Center for Transfusion and Cellular Therapy, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia.,Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| |
Collapse
|
10
|
Ceftriaxone-Induced Immune Hemolytic Anemia: In Vitro Reversal with Peptide Inhibitor of Complement C1 (PIC1). Case Rep Hematol 2019; 2019:4105653. [PMID: 30838143 PMCID: PMC6374879 DOI: 10.1155/2019/4105653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/14/2019] [Indexed: 12/18/2022] Open
Abstract
We report a case of ceftriaxone-induced immune hemolytic anemia in a 10-year-old with chronic active Epstein-Barr virus disease and hemophagocytic lymphohistiocytosis. After chemotherapy, she became febrile and received ceftriaxone. She rapidly developed respiratory failure and anemia. Her direct antiglobulin test was positive for IgG and C3. To confirm this was ceftriaxone-induced complement-mediated hemolysis, we adapted the complement hemolysis using human erythrocytes (CHUHE) assay by adding exogenous ceftriaxone to the patient's serum which enhanced lysis of her erythrocytes. We confirmed that ceftriaxone initiated a classical complement pathway-mediated hemolysis by in vitro reversal with peptide inhibitor of complement C1 (PIC1).
Collapse
|
11
|
Harm SK, Yazer MH, Bub CB, Cohn CS, Jacob EK, Kutner JM, Mair DC, Raval JS, Shaz BH, Ziman A, Dunbar NM. Seasonal variability is not observed in the rates of high anti‐A and anti‐B titers in plasma, apheresis platelet, and whole blood units tested by different methods. Transfusion 2018; 59:762-767. [DOI: 10.1111/trf.15083] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Sarah K. Harm
- Department of Pathology and Laboratory MedicineUniversity of Vermont Medical Center Burlington Vermont
| | - Mark H. Yazer
- Department of Pathology and Laboratory MedicineUniversity of Pittsburgh Pittsburgh Pennsylvania
| | - Carolina B. Bub
- Hemotherapy and Cell Therapy DepartmentHospital Israelita Albert Einstein Sao Paulo Brazil
| | - Claudia S. Cohn
- Department of Laboratory Medicine and PathologyUniversity of Minnesota Minneapolis Minnesota
| | - Eapen K. Jacob
- Department of Laboratory Medicine and PathologyMayo Clinic Rochester Minnesota
| | - Jose M. Kutner
- Hemotherapy and Cell Therapy DepartmentHospital Israelita Albert Einstein Sao Paulo Brazil
| | - David C. Mair
- Blood Services ‐ West DivisionAmerican Red Cross Minnesota
| | - Jay S. Raval
- Department of Pathology and Laboratory MedicineUniversity of North Carolina Chapel Hill North Carolina
| | | | - Alyssa Ziman
- Wing‐Kwai and Alice Lee‐Tsing Chung Transfusion Service, Department of Pathology and Laboratory MedicineDavid Geffen School of Medicine, University of California Los Angeles Los Angeles California
| | - Nancy M. Dunbar
- Department of Pathology and Laboratory MedicineDartmouth‐Hitchcock Medical Center Lebanon New Hampshire
| | | |
Collapse
|
12
|
Anliker M, Schmidt CQ, Harder MJ, Ganchev G, von Zabern I, Höchsmann B, Schrezenmeier H, Weinstock C. Complement activation by human red blood cell antibodies: hemolytic potential of antibodies and efficacy of complement inhibitors assessed by a sensitive flow cytometric assay. Transfusion 2018; 58:2992-3002. [PMID: 30367826 DOI: 10.1111/trf.14893] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/09/2018] [Accepted: 05/13/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Therapeutic intervention strategies in complement-mediated hemolytic diseases are still inappropriate, and lethal events cannot be reliably prevented. As an in vitro model of intravascular hemolysis, a sensitive flow cytometric assay was designed using red blood cells (RBCs) of patients with paroxysmal nocturnal hemoglobinuria (PNH) as target cells. Complement activation by human allo- and autoantibodies directed against RBC antigens and the effect of different complement inhibitors were studied. STUDY DESIGN AND METHODS RBCs of patients with a PNH III RBC clone of more than 20% were coated with different human allo- or autoantibodies. Hemolysis was initiated with pooled normal human AB serum with or without the addition of complement inhibitors. Loss of PNH III RBCs was estimated by flow cytometry. RESULTS RBC antibodies of 174 different patients representing 37 different specificities were tested for their potency to activate complement. In correlation with blood group specificities roughly three different patterns were observed: 1) strong and regular, 2) sporadic, and 3) weak or absent complement activation. Remarkably strong complement activators were among antibodies directed against high-prevalence blood group antigens. The C5 inhibitor eculizumab abrogated mild but not strong complement activation, even in presence of excess inhibitor. However, this residual complement activity could be further depressed by combining eculizumab with other inhibitors. CONCLUSION The PNH hemolysis assay offers a sensitive tool for in vitro analyses of classical pathway-mediated complement activation. The recognition of additive effects of complement inhibitors may guide novel intervention strategies against unwanted complement damage.
Collapse
Affiliation(s)
- Markus Anliker
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Württemberg - Hessen and University Hospital, Ulm, Germany.,Institute of Medical and Chemical Laboratory Diagnostics (ZIMCL), University Hospital Innsbruck, Innsbruck, Austria
| | - Christoph Q Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Markus J Harder
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Georgi Ganchev
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Württemberg - Hessen and University Hospital, Ulm, Germany
| | - Inge von Zabern
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Württemberg - Hessen and University Hospital, Ulm, Germany
| | - Britta Höchsmann
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Württemberg - Hessen and University Hospital, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Württemberg - Hessen and University Hospital, Ulm, Germany
| | - Christof Weinstock
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Württemberg - Hessen and University Hospital, Ulm, Germany
| |
Collapse
|
13
|
Dean CL, Sullivan HC, Stowell SR, Fasano RM, West LJ, Robitaille N, Josephson CD. Current state of transfusion practices for ABO-incompatible pediatric heart transplant patients in the United States and Canada. Transfusion 2018; 58:2243-2249. [DOI: 10.1111/trf.14775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/15/2018] [Accepted: 04/16/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Christina L. Dean
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine; Emory University School of Medicine
| | - Harold C. Sullivan
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine; Emory University School of Medicine
| | - Sean R. Stowell
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine; Emory University School of Medicine
| | - Ross M. Fasano
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine; Emory University School of Medicine
- Departments of Hematology and Clinical Pathology; Children's Healthcare of Atlanta; Atlanta Georgia
| | - Lori J. West
- Department of Pediatrics; Alberta Transplant Institute, Stollery Children's Hospital, University of Alberta; Edmonton Alberta Canada
| | - Nancy Robitaille
- Division of Hematology-Oncology, Department of Pediatrics; CHU Sainte-Justine; Montreal Quebec Canada
| | - Cassandra D. Josephson
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine; Emory University School of Medicine
- Departments of Hematology and Clinical Pathology; Children's Healthcare of Atlanta; Atlanta Georgia
| |
Collapse
|
14
|
Stowell SR. Toward functional assays for assessing the significance of anti-ABO(H) alloantibodies. Transfusion 2018; 57:491-494. [PMID: 28297078 DOI: 10.1111/trf.14030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 12/29/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Sean R Stowell
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
15
|
Yazer MH, Seheult J, Kleinman S, Sloan SR, Spinella PC. Who's afraid of incompatible plasma? A balanced approach to the safe transfusion of blood products containing ABO-incompatible plasma. Transfusion 2017; 58:532-538. [PMID: 29193106 DOI: 10.1111/trf.14415] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 01/12/2023]
Affiliation(s)
- Mark H Yazer
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jansen Seheult
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Steven Kleinman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Victoria, British Columbia, Canada
| | - Steven R Sloan
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Philip C Spinella
- Department of Pediatrics, Division of Critical Care Medicine, Washington University in St Louis, St Louis, Missouri
| |
Collapse
|