1
|
Muller CR, Williams AT, Eaker AM, Walser C, Dos Santos F, Cuddington CT, Wolfe SR, Palmer AF, Cabrales P. Novel high molecular weight polymerized hemoglobin in a non-obese model of cardiovascular and metabolic dysfunction. Biomed Pharmacother 2024; 176:116789. [PMID: 38815289 DOI: 10.1016/j.biopha.2024.116789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
The widespread adoption of high-calorie, high-fat, high-sucrose diets (HFHSD) has become a global health concern, particularly due to their association with cardiovascular diseases and metabolic disorders. These comorbidities increase susceptibility to severe outcomes from viral infections and trauma, with trauma-related incidents significantly contributing to global mortality rates. This context underscores the critical need for a reliable blood supply. Recent research has focused on high molecular weight (MW) polymerized human hemoglobin (PolyhHb) as a promising alternative to red blood cells (RBCs), showing encouraging outcomes in previous studies. Given the overlap of metabolic disorders and trauma-related health issues, it is crucial to assess the potential toxicity of PolyhHb transfusions, particularly in models that represent these vulnerable populations. This study evaluated the effects of PolyhHb exchange transfusion in guinea pigs that had developed metabolic disorders due to a 12-week HFHSD regimen. The guinea pigs, underwent a 20 % blood volume exchange transfusion with either PolyhHb or the lower molecular weight polymerized bovine hemoglobin, Oxyglobin. Results revealed that both PolyhHb and Oxyglobin transfusions led to liver damage, with a more pronounced effect observed in HFHSD-fed animals. Additionally, markers of cardiac dysfunction indicated signs of cardiac injury in both the HFHSD and normal diet groups following the Oxyglobin transfusion. This study highlights how pre-existing metabolic disorders can exacerbate the potential side effects of hemoglobin-based oxygen carriers (HBOCs). Importantly, the newer generation of high MW PolyhHb showed lower cardiac toxicity compared to the earlier generation low MW PolyhHb, known as Oxyglobin, even in models with pre-existing endothelial and metabolic challenges.
Collapse
Affiliation(s)
- Cynthia R Muller
- Department of Bioengineering, University of California, San Diego, CA, USA
| | | | - Allyn M Eaker
- Department of Bioengineering, University of California, San Diego, CA, USA
| | - Cynthia Walser
- Department of Bioengineering, University of California, San Diego, CA, USA
| | - Fernando Dos Santos
- Department of Anesthesiology & Critical Care, University of California, San Diego, CA, USA
| | - Clayton T Cuddington
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Savannah R Wolfe
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Pedro Cabrales
- Department of Bioengineering, University of California, San Diego, CA, USA.
| |
Collapse
|
2
|
Muller CR, Courelli V, Walser C, Cuddington CT, Wolfe SR, Palmer AF, Cabrales P. Polymerized human hemoglobin with low and high oxygen affinity in trauma models. Transl Res 2023; 260:83-92. [PMID: 37268039 DOI: 10.1016/j.trsl.2023.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023]
Abstract
The present study aimed to compare the ability of tense (T) and relaxed (R) quaternary state polymerized human hemoglobin (PolyhHb) to restore hemodynamics after severe trauma in a rat model, and to assess their relative toxicity in a guinea pigs (GPs). To assess the efficacy of these PolyhHbs in restoring hemodynamics, Wistar rats were subjected to traumatic brain injury (TBI) followed by hemorrhagic shock (HS). Animals were separated into 3 groups based on the resuscitation solution: Whole blood, T-state or R-state PolyhHb, and followed for 2 hours after resuscitation. For toxicity evaluation, GPs were subjected to HS and the hypovolemic state was maintained for 50 minutes. Then, the GPs were divided randomly into 2 groups, and reperfused with T- or R-state PolyhHb. Rats resuscitated with blood and T-state PolyhHb had a higher recovery of MAP at 30 min after resuscitation when compared to R-state PolyhHb, demonstrating the greater ability of T-state PolyhHb to restore hemodynamics compared to R-state PolyhHb. Resuscitation with R-state PolyhHb in GPs increased markers of liver damage and inflammation, kidney injury and systemic inflammation compared to the T-state PolyhHb group. Finally, increased levels of cardiac damage markers, such as troponin were observed, indicating greater cardiac injury in GPs resuscitated with R-state PolyhHb. Therefore, our results showed that T-state PolyhHb exhibited superior efficacy in a model of TBI followed by HS in rats, and presented reduced vital organ toxicity in GPs, when compared to R-state PolyhHb.
Collapse
Affiliation(s)
- Cynthia R Muller
- Department of Bioengineering, University of California San Diego, San Diego, CA.
| | - Vasiliki Courelli
- Department of Bioengineering, University of California San Diego, San Diego, CA
| | - Cynthia Walser
- Department of Bioengineering, University of California San Diego, San Diego, CA
| | - Clayton T Cuddington
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH
| | - Savannah R Wolfe
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH
| | - Andre F Palmer
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH
| | - Pedro Cabrales
- Department of Bioengineering, University of California San Diego, San Diego, CA
| |
Collapse
|
3
|
Williams MC, Zhang X, Baek JH, D’Agnillo F. Renal glomerular and tubular responses to glutaraldehyde- polymerized human hemoglobin. Front Med (Lausanne) 2023; 10:1158359. [PMID: 37384048 PMCID: PMC10293615 DOI: 10.3389/fmed.2023.1158359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
Hemoglobin-based oxygen carriers (HBOCs) are being developed as oxygen and volume replacement therapeutics, however, their molecular and cellular effects on the vasculature and different organ systems are not fully defined. Using a guinea pig transfusion model, we examined the renal glomerular and tubular responses to PolyHeme, a highly characterized glutaraldehyde-polymerized human hemoglobin with low tetrameric hemoglobin content. PolyHeme-infused animals showed no major changes in glomerular histology or loss of specific markers of glomerular podocytes (Wilms tumor 1 protein, podocin, and podocalyxin) or endothelial cells (ETS-related gene and claudin-5) after 4, 24, and 72 h. Relative to sham controls, PolyHeme-infused animals also showed similar expression and subcellular distribution of N-cadherin and E-cadherin, two key epithelial junctional proteins of proximal and distal tubules, respectively. In terms of heme catabolism and iron-handling responses, PolyHeme induced a moderate but transient expression of heme oxygenase-1 in proximal tubular epithelium and tubulointerstitial macrophages that was accompanied by increased iron deposition in tubular epithelium. Contrary to previous findings with other modified or acellular hemoglobins, the present data show that PolyHeme does not disrupt the junctional integrity of the renal glomerulus and tubular epithelium, and triggers moderate activation of heme catabolic and iron sequestration systems likely as part of a renal adaptive response.
Collapse
|
4
|
Hui W, Mu W, Zhao C, Xue D, Zhong Z, Fang Y, Gao M, Li X, Gao S, Liu K, Yan K. Solid-Phase Polymerization Using Anion-Exchange Resin Can Almost Completely Crosslink Hemoglobin to Prepare Hemoglobin-Based Oxygen Carriers. Int J Nanomedicine 2023; 18:1777-1791. [PMID: 37041816 PMCID: PMC10083038 DOI: 10.2147/ijn.s403739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/24/2023] [Indexed: 04/07/2023] Open
Abstract
Introduction A limitation of hemoglobin-based oxygen carriers (HBOCs) as oxygen therapeutics is unpolymerized hemoglobin, which induces vasoconstriction leading to hypertension. The removal of unpolymerized hemoglobin from polymerized hemoglobin (PolyHb) is complex, expensive, and time-consuming. Methods Herein, we developed a method to completely polymerize hemoglobin almost without unpolymerized hemoglobin. Hemoglobin was adsorbed on the anion-exchange resin Q Sepharose Fast Flow or DEAE Sepharose Fast Flow, and acetal, a crosslinker prepared from glutaraldehyde and ethylene glycol, was employed to polymerize the hemoglobin. The polymerization conditions, including reaction time, pH, resin type, and molar ratios of glutaraldehyde to ethylene glycol and hemoglobin to acetal, were optimized. The blood pressure and blood gas of mice injected with PolyHb were monitored as well. Results The optimal polymerization condition of PolyHb was when the molar ratio of glutaraldehyde to ethylene glycol was 1:20, and the molar ratio of 10 mg/mL hemoglobin adsorbed on anion-exchange resin to glutaraldehyde was 1:300 for 60 min. Under optimized reactive conditions, hemoglobin was almost completely polymerized, with <1% hemoglobin remaining unpolymerized, and the molecular weight of PolyHb was more centrally distributed. Furthermore, hypertension was not induced in mice by PolyHb, and there were also no pathological changes observed in arterial oxygen, blood gas, electrolytes, and some metabolic indicators. Conclusion The findings of this study indicate that the use of solid-phase polymerization and acetal is a highly effective and innovative approach to HBOCs, resulting in the almost completely polymerized hemoglobin. These results offer promising implications for the development of new methods for preparing HBOCs.
Collapse
Affiliation(s)
- Wenli Hui
- College of Life Science, Northwest University, Xi’an City, Shaanxi Province, 710069, People’s Republic of China
| | - Wenhua Mu
- College of Life Science, Northwest University, Xi’an City, Shaanxi Province, 710069, People’s Republic of China
| | - Cong Zhao
- College of Life Science, Northwest University, Xi’an City, Shaanxi Province, 710069, People’s Republic of China
| | - Dan Xue
- College of Life Science, Northwest University, Xi’an City, Shaanxi Province, 710069, People’s Republic of China
| | - Zihua Zhong
- College of Life Science, Northwest University, Xi’an City, Shaanxi Province, 710069, People’s Republic of China
| | - Yani Fang
- College of Life Science, Northwest University, Xi’an City, Shaanxi Province, 710069, People’s Republic of China
| | - Ming Gao
- College of Life Science, Northwest University, Xi’an City, Shaanxi Province, 710069, People’s Republic of China
| | - Xiao Li
- College of Life Science, Northwest University, Xi’an City, Shaanxi Province, 710069, People’s Republic of China
| | - Shihao Gao
- College of Life Science, Northwest University, Xi’an City, Shaanxi Province, 710069, People’s Republic of China
| | - Kaiyue Liu
- College of Life Science, Northwest University, Xi’an City, Shaanxi Province, 710069, People’s Republic of China
| | - Kunping Yan
- College of Life Science, Northwest University, Xi’an City, Shaanxi Province, 710069, People’s Republic of China
- Correspondence: Kunping Yan, Email
| |
Collapse
|
5
|
Muller CR, Williams AT, Walser C, Eaker AM, Sandoval JL, Cuddington CT, Wolfe SR, Palmer AF, Cabrales P. Safety and efficacy of human polymerized hemoglobin on guinea pig resuscitation from hemorrhagic shock. Sci Rep 2022; 12:20480. [PMID: 36443351 PMCID: PMC9703428 DOI: 10.1038/s41598-022-23926-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 11/07/2022] [Indexed: 11/29/2022] Open
Abstract
For the past thirty years, hemoglobin-based oxygen carriers (HBOCs) have been under development as a red blood cell substitute. Side-effects such as vasoconstriction, oxidative injury, and cardiac toxicity have prevented clinical approval of HBOCs. Recently, high molecular weight (MW) polymerized human hemoglobin (PolyhHb) has shown positive results in rats. Studies have demonstrated that high MW PolyhHb increased O2 delivery, with minimal effects on blood pressure, without vasoconstriction, and devoid of toxicity. In this study, we used guinea pigs to evaluate the efficacy and safety of high MW PolyhHb, since like humans guinea pigs cannot produce endogenous ascorbic acid, which limits the capacity of both species to deal with oxidative stress. Hence, this study evaluated the efficacy and safety of resuscitation from severe hemorrhagic shock with high MW PolyhHb, fresh blood, and blood stored for 2 weeks. Animals were randomly assigned to each experimental group, and hemorrhage was induced by the withdrawal of 40% of the blood volume (BV, estimated as 7.5% of body weight) from the carotid artery catheter. Hypovolemic shock was maintained for 50 min. Resuscitation was implemented by infusing 25% of the animal's BV with the different treatments. Hemodynamics, blood gases, total hemoglobin, and lactate were not different before hemorrhage and during shock between groups. The hematocrit was lower for the PolyhHb group compared to the fresh and stored blood groups after resuscitation. Resuscitation with stored blood had lower blood pressure compared to fresh blood at 2 h. There was no difference in mean arterial pressure between groups at 24 h. Resuscitation with PolyhHb was not different from fresh blood for most parameters. Resuscitation with PolyhHb did not show any remarkable change in liver injury, inflammation, or cardiac damage. Resuscitation with stored blood showed changes in liver function and inflammation, but no kidney injury or systemic inflammation. Resuscitation with stored blood after 24 h displayed sympathetic hyper-activation and signs of cardiac injury. These results suggest that PolyhHb is an effective resuscitation alternative to blood. The decreased toxicities in terms of cardiac injury markers, vital organ function, and inflammation following PolyhHb resuscitation in guinea pigs indicate a favorable safety profile. These results are promising and support future studies with this new generation of PolyhHb as alternative to blood when blood is unavailable.
Collapse
Affiliation(s)
- Cynthia R Muller
- Department of Bioengineering, University of California, 0412, 9500 Gilman Dr. La Jolla, San Diego, CA, 92093-0412, USA
| | - Alexander T Williams
- Department of Bioengineering, University of California, 0412, 9500 Gilman Dr. La Jolla, San Diego, CA, 92093-0412, USA
| | - Cynthia Walser
- Department of Bioengineering, University of California, 0412, 9500 Gilman Dr. La Jolla, San Diego, CA, 92093-0412, USA
| | - Allyn M Eaker
- Department of Bioengineering, University of California, 0412, 9500 Gilman Dr. La Jolla, San Diego, CA, 92093-0412, USA
| | - Jose Luis Sandoval
- Department of Bioengineering, University of California, 0412, 9500 Gilman Dr. La Jolla, San Diego, CA, 92093-0412, USA
| | - Clayton T Cuddington
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Savannah R Wolfe
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Pedro Cabrales
- Department of Bioengineering, University of California, 0412, 9500 Gilman Dr. La Jolla, San Diego, CA, 92093-0412, USA.
| |
Collapse
|
6
|
Pires IS, Govender K, Munoz CJ, Williams AT, O'Boyle QT, Savla C, Cabrales P, Palmer AF. Purification and analysis of a protein cocktail capable of scavenging cell-free hemoglobin, heme, and iron. Transfusion 2021; 61:1894-1907. [PMID: 33817808 DOI: 10.1111/trf.16393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/14/2021] [Accepted: 03/19/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Hemolysis releases toxic cell-free hemoglobin (Hb), heme, and iron, which overwhelm their natural scavenging mechanisms during acute or chronic hemolytic conditions. This study describes a novel strategy to purify a protein cocktail containing a comprehensive set of scavenger proteins for potential treatment of hemolysis byproducts. STUDY DESIGN AND METHODS Tangential flow filtration was used to purify a protein cocktail from Human Cohn Fraction IV (FIV). A series of in vitro assays were performed to characterize composition and biocompatibility. The in vivo potential for hemolysis byproduct mitigation was assessed in a hamster exchange transfusion model using mechanically hemolyzed blood plasma mixed with the protein cocktail or a control colloid (dextran 70 kDa). RESULTS A basis of 500 g of FIV yielded 62 ± 9 g of a protein mixture at 170 g/L, which bound to approximately 0.6 mM Hb, 1.2 mM heme, and 1.2 mM iron. This protein cocktail was shown to be biocompatible in vitro with red blood cells and platelets and exhibits nonlinear concentration dependence with respect to viscosity and colloidal osmotic pressure. In vivo assessment of the protein cocktail demonstrated higher iron transport to the liver and spleen and less to the kidney and heart with significantly reduced renal and cardiac inflammation markers and lower kidney and hepatic damage compared to a control colloid. DISCUSSION Taken together, this study provides an effective method for large-scale production of a protein cocktail suitable for comprehensive reduction of hemolysis-induced toxicity.
Collapse
Affiliation(s)
- Ivan S Pires
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Krianthan Govender
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Carlos J Munoz
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Alexander T Williams
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Quintin T O'Boyle
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Chintan Savla
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Pedro Cabrales
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|