1
|
Wang Z, Fu L, Liu D, Tang D, Liu K, Rao L, Yang J, Liu Y, Li Y, Chen H, Yang X. Controllable Preparation and Research Progress of Photosensitive Antibacterial Complex Hydrogels. Gels 2023; 9:571. [PMID: 37504450 PMCID: PMC10379193 DOI: 10.3390/gels9070571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/02/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023] Open
Abstract
Hydrogels are materials consisting of a network of hydrophilic polymers. Due to their good biocompatibility and hydrophilicity, they are widely used in biomedicine, food safety, environmental protection, agriculture, and other fields. This paper summarizes the typical complex materials of photocatalysts, photosensitizers, and hydrogels, as week as their antibacterial activities and the basic mechanisms of photothermal and photodynamic effects. In addition, the application of hydrogel-based photoresponsive materials in microbial inactivation is discussed, including the challenges faced in their application. The advantages of photosensitive antibacterial complex hydrogels are highlighted, and their application and research progress in various fields are introduced in detail.
Collapse
Affiliation(s)
- Zhijun Wang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Lili Fu
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Dongliang Liu
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Dongxu Tang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Kun Liu
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Lu Rao
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Jinyu Yang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yi Liu
- College of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, China
| | - Yuesheng Li
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Huangqin Chen
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Xiaojie Yang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
2
|
Amodeo D, Lucarelli V, De Palma I, Puccio A, Nante N, Cevenini G, Messina G. Efficacy of violet-blue light to inactive microbial growth. Sci Rep 2022; 12:20179. [PMID: 36424450 PMCID: PMC9691702 DOI: 10.1038/s41598-022-24563-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/17/2022] [Indexed: 11/26/2022] Open
Abstract
The increase in health care-associated infections and antibiotic resistance has led to a growing interest in the search for innovative technologies to solve these problems. In recent years, the interest of the scientific community has focused on violet-blue light at 405 nm (VBL405). This study aimed to assess the VBL405 efficiency in reducing microbial growth on surfaces and air. This descriptive study run between July and October 2020. Petri dishes were contaminated with P. aeruginosa, E. coli, S. aureus, S. typhimurium, K. pneumoniae and were placed at 2 and 3 m from a LED light source having a wavelength peak at 405 nm and an irradiance respectively of 967 and 497 µW/cm2. Simultaneously, the air in the room was sampled for 5 days with two air samplers (SAS) before and after the exposition to the VBL405 source. The highest microbial reduction was reached 2 m directly under the light source: S. typhimurium (2.93 log10), K. pneumoniae (2.30 log10), S. aureus (3.98 log10), E. coli (3.83 log10), P. aeruginosa (3.86 log10). At a distance of 3 m from the light source, the greatest reduction was observed for S. aureus (3.49 log10), and P. aeruginosa (3.80 log10). An average percent microbial reduction of about 70% was found in the sampled air after 12 h of exposure to VBL405. VBL405 has proven to contrast microbial growth on the plates. Implementing this technology in the environment to provide continuous disinfection and to control microbial presence, even in the presence of people, may be an innovative solution.
Collapse
Affiliation(s)
- Davide Amodeo
- grid.9024.f0000 0004 1757 4641Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Valentina Lucarelli
- grid.9024.f0000 0004 1757 4641Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Isa De Palma
- grid.9024.f0000 0004 1757 4641Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Alessandro Puccio
- grid.9024.f0000 0004 1757 4641Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Nicola Nante
- grid.9024.f0000 0004 1757 4641Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Gabriele Cevenini
- grid.9024.f0000 0004 1757 4641Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Gabriele Messina
- grid.9024.f0000 0004 1757 4641Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
3
|
Qu B, Zhao H, Chen Y, Yu X. Effects of low-light stress on aquacultural water quality and disease resistance in Nile tilapia. PLoS One 2022; 17:e0268114. [PMID: 35522677 PMCID: PMC9075632 DOI: 10.1371/journal.pone.0268114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/23/2022] [Indexed: 11/30/2022] Open
Abstract
Light intensity has an important environmental influence on the quality and yield of aquatic products. It is essential to understand the effects of light intensity on water quality and fish metabolism before large-scale aquaculture is implemented. In this study, two low-intensity light levels, 0 lx and 100 lx, were used to stress Nile tilapia (Oreochromis niloticus), with a natural light level (500 lx) used as control. The pH, dissolved oxygen and ammonia contents were significantly lower in the water used in the 0 lx and 100 lx groups than in controls, while the levels of nitrite and total phosphorus were apparently higher. Moreover, the numbers of heterotrophic bacteria, Vibrio and total coliforms in aquaculture water were 157.1%, 314.2% and 502.4% higher, respectively, after 0 lx light stress for 15 days. The survival rate of Nile tilapia decreased significantly to 90.6% under 0 lx light on the 15th day. Of the immune-related genes, the expressions of IFN-γ, IL-12 and IL-4 were 390.3%, 757.8% and 387.5% higher under 0 lx light and 303.3%, 471.2% and 289.7% higher under 100 lx light, respectively. These results indicate that low-intensity light changes the physicochemical parameters of aquaculture water and increases the number of bacteria it hosts while decreasing the survival rate and increasing the disease resistance of Nile tilapia.
Collapse
Affiliation(s)
- Bingliang Qu
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Hui Zhao
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Ying Chen
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Xiangyong Yu
- Ocean College, South China Agriculture University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
He Y, Xu F, Ibrahim Z, Feyissa Q, Reed JL, Vostal JG. Viral reduction of human blood by ultraviolet A-photosensitized vitamin K5. J Med Virol 2021; 93:5134-5140. [PMID: 33837954 DOI: 10.1002/jmv.27008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/09/2022]
Abstract
Blood product transfusion can transmit viral pathogens. Pathogen reduction methods for blood products have been developed but, so far, are not available for whole blood. We evaluated if vitamin K5 (VK5) and ultraviolet A (UVA) irradiation could be used for virus inactivation in plasma and whole blood. Undiluted human plasma and whole blood diluted to 20% were spiked with high levels of vaccinia or Zika viruses. Infectious titers were measured by standard TCID50 assay before and after VK5/UVA treatments. Up to 3.6 log of vaccinia and 3.2 log of Zika were reduced in plasma by the combination of 500 μM VK5 and 3 J/cm2 UVA, and 3.1 log of vaccinia and 2.9 log of Zika were reduced in diluted human blood (20%) by the combination of 500 μM VK5 and 70 J/cm2 UVA. At end of whole blood treatment, hemolysis increased from 0.18% to 0.41% but remained below 1% hemolysis, which is acceptable to the Food and Drug Administration for red cell transfusion products. No significant alteration of biochemical parameters of red blood cells occurred with treatment. Our results provide proof of the concept that a viral pathogen reduction method based on VK5/UVA may be developed for whole blood.
Collapse
Affiliation(s)
- Yong He
- Division of Plasma Protein Therapeutics, OTAT, CBER, FDA, Silver Spring, Maryland, USA
| | - Fei Xu
- Division of Blood Components and Devices, OBRR, CBER, FDA, Silver Spring, Maryland, USA
| | - Zina Ibrahim
- Division of Blood Components and Devices, OBRR, CBER, FDA, Silver Spring, Maryland, USA
| | - Qinati Feyissa
- Division of Blood Components and Devices, OBRR, CBER, FDA, Silver Spring, Maryland, USA
| | - Jennifer L Reed
- Division of Plasma Protein Therapeutics, OTAT, CBER, FDA, Silver Spring, Maryland, USA
| | - Jaroslav G Vostal
- Division of Blood Components and Devices, OBRR, CBER, FDA, Silver Spring, Maryland, USA
| |
Collapse
|