1
|
So-Osman C, Burnouf T, Al-Riyami AZ, Bloch EM, Estcourt L, Goel R, Tiberghien P, Vermeulen M, Wendel S, Wood EM. The role of convalescent plasma and hyperimmune immunoglobulins in the COVID-19 pandemic, including implications for future preparedness. Front Immunol 2024; 15:1448720. [PMID: 39315108 PMCID: PMC11416983 DOI: 10.3389/fimmu.2024.1448720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction When Coronavirus Disease-19 (COVID-19) struck the world in December 2019, initiatives started to investigate the efficacy of convalescent plasma, a readily available source of passive antibodies, collected from recovered patients as a therapeutic option. This was based on historical observational data from previous virus outbreaks. Methods A scoping review was conducted on the efficacy and safety of convalescent plasma and hyperimmune immunoglobulins for COVID-19 treatment. This review included the latest Cochrane systematic review update on 30-day mortality and safety. We also covered use in pediatric and immunocompromised patients, as well as the logistic challenges faced in donor recruitment and plasma collection in general. Challenges for low resource countries were specifically highlighted. Results A major challenge is the high donation frequency required from first-time donors to ensure a safe product, which minimizes the risk of transfusion-transmitted infectious. This is particularly difficult in low- and middle- income countries due to inadequate infrastructure and insufficient blood product supplies. High-certainty evidence indicates that convalescent plasma does not reduce mortality or significantly improve clinical outcomes in patients with moderate to severe COVID-19 infection. However, CCP may provide a viable treatment for patients unable to mount an endogenous immune response to SARS-CoV-2, based on mostly observational studies and subgroup data of published and ongoing randomized trials. Convalescent plasma has been shown to be safe in adults and children with COVID-19 infection. However, the efficacy in pediatric patients remains unclear. Discussion Data on efficacy and safety of CCP are still underway in ongoing (randomized) studies and by reporting the challenges, limitations and successes encountered to-date, research gaps were identified to be addressed for the future. Conclusion This experience serves as a valuable example for future pandemic preparedness, particularly when therapeutic options are limited, and vaccines are either being developed or ineffective due to underlying immunosuppression.
Collapse
Affiliation(s)
- Cynthia So-Osman
- Department Transfusion Medicine, Division Blood Bank, Sanquin Blood Supply Foundation, Amsterdam, Netherlands
- Department Hematology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Arwa Z. Al-Riyami
- Department of Hematology, Sultan Qaboos University Hospital, Muscat, Oman
| | - Evan M. Bloch
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lise Estcourt
- Radcliffe Department of Medicine, University of Oxford and National Health Service (NHS) Blood and Transplant, Oxford, United Kingdom
| | - Ruchika Goel
- Division of Hematology/Oncology, Simmons Cancer Institute at Southern Illinois University (SIU) School of Medicine, Springfield, IL, United States
- Dept Corporate Medical Affairs, Vitalant Corporate Medical Affairs, Scottsdale, AZ, United States
| | - Pierre Tiberghien
- Etablissement Français du Sang, La Plaine-St-Denis and Université de Franche-Comté, Besançon, France
| | - Marion Vermeulen
- Department of Transfusion Medicine and Technical Services, The South African National Blood Service, Roodepoort, South Africa
| | - Silvano Wendel
- Dept Transfusion Medicine, Hospital Sírio-Libanês Blood Bank, São Paulo, Brazil
| | - Erica M. Wood
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Department of Clinical Haematology, Monash Health, Melbourne, VIC, Australia
| |
Collapse
|
2
|
O'Mahoney C, Watt I, Fiedler S, Devenish S, Srikanth S, Justice E, Dover T, Dean D, Peng C. Microfluidic Diffusional Sizing (MDS) Measurements of Secretory Neutralizing Antibody Affinity Against SARS-CoV-2. Ann Biomed Eng 2024; 52:1653-1664. [PMID: 38459195 PMCID: PMC11082020 DOI: 10.1007/s10439-024-03478-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/19/2024] [Indexed: 03/10/2024]
Abstract
SARS-CoV-2 has rampantly spread around the globe and continues to cause unprecedented loss through ongoing waves of (re)infection. Increasing our understanding of the protection against infection with SARS-CoV-2 is critical to ending the pandemic. Serological assays have been widely used to assess immune responses, but secretory antibodies, the essential first line of defense, have been studied to only a limited extent. Of particular interest and importance are neutralizing antibodies, which block the binding of the spike protein of SARS-CoV-2 to the human receptor angiotensin-converting enzyme-2 (ACE2) and thus are essential for immune defense. Here, we employed Microfluidic Diffusional Sizing (MDS), an immobilization-free technology, to characterize neutralizing antibody affinity to SARS-CoV-2 spike receptor-binding domain (RBD) and spike trimer in saliva. Affinity measurement was obtained through a contrived sample and buffer using recombinant SARS-CoV-2 RBD and monoclonal antibody. Limited saliva samples demonstrated that MDS applies to saliva neutralizing antibody measurement. The ability to disrupt a complex of ACE2-Fc and spike trimer is shown. Using a quantitative assay on the patient sample, we determined the affinity and binding site concentration of the neutralizing antibodies.
Collapse
Affiliation(s)
- Cara O'Mahoney
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Ian Watt
- Fluidic Analytics, Cambridge, UK
| | | | | | - Sujata Srikanth
- Center for Innovative Medical Devices and Sensors, Clemson University, Clemson, SC, USA
| | - Erica Justice
- Center for Innovative Medical Devices and Sensors, Clemson University, Clemson, SC, USA
| | - Tristan Dover
- Center for Innovative Medical Devices and Sensors, Clemson University, Clemson, SC, USA
| | - Delphine Dean
- Department of Bioengineering, Clemson University, Clemson, SC, USA
- Center for Innovative Medical Devices and Sensors, Clemson University, Clemson, SC, USA
| | - Congyue Peng
- Department of Bioengineering, Clemson University, Clemson, SC, USA.
- Center for Innovative Medical Devices and Sensors, Clemson University, Clemson, SC, USA.
| |
Collapse
|
3
|
Kenny G, O'Reilly S, Wrigley Kelly N, Negi R, Gaillard C, Alalwan D, Saini G, Alrawahneh T, Francois N, Angeliadis M, Garcia Leon AA, Tinago W, Feeney ER, Cotter AG, de Barra E, Yousif O, Horgan M, Doran P, Stemler J, Koehler P, Cox RJ, O'Shea D, Olesen OF, Landay A, Hogan AE, Lelievre JD, Gautier V, Cornely OA, Mallon PWG. Distinct receptor binding domain IgG thresholds predict protective host immunity across SARS-CoV-2 variants and time. Nat Commun 2023; 14:7015. [PMID: 37919289 PMCID: PMC10622572 DOI: 10.1038/s41467-023-42717-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/19/2023] [Indexed: 11/04/2023] Open
Abstract
SARS-CoV-2 neutralising antibodies provide protection against COVID-19. Evidence from early vaccine trials suggested binding antibody thresholds could serve as surrogate markers of neutralising capacity, but whether these thresholds predict sufficient neutralising capacity against variants of concern (VOCs), and whether this is impacted by vaccine or infection history remains unclear. Here we analyse individuals recovered from, vaccinated or with hybrid immunity against SARS-CoV-2. An NT50 ≥ 100 IU confers protection in vaccine trials, however, as VOC induce a reduction in NT50, we use NT50 ≥ 1000 IU as a cut off for WT NT50 that would retain neutralisation against VOC. In unvaccinated convalescent participants, a receptor binding domain (RBD) IgG of 456 BAU/mL predicts an NT50 against WT of 1000 IU with an accuracy of 80% (95%CI 73-86%). This threshold maintains accuracy in determining loss of protective immunity against VOC in two vaccinated cohorts. It predicts an NT50 < 100 IU against Beta with an accuracy of 80% (95%CI 67-89%) in 2 vaccine dose recipients. In booster vaccine recipients with a history of COVID-19 (hybrid immunity), accuracy is 87% (95%CI 77-94%) in determining an NT50 of <100 IU against BA.5. This analysis provides a discrete threshold that could be used in future clinical studies.
Collapse
Affiliation(s)
- Grace Kenny
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland.
| | - Sophie O'Reilly
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
| | - Neil Wrigley Kelly
- St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
| | - Riya Negi
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
| | - Colette Gaillard
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
| | - Dana Alalwan
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
| | - Gurvin Saini
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
| | - Tamara Alrawahneh
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
| | - Nathan Francois
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
| | - Matthew Angeliadis
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
| | - Alejandro Abner Garcia Leon
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
| | - Willard Tinago
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
| | - Eoin R Feeney
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - Aoife G Cotter
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- Department of Infectious Diseases, Mater Misericordiae University Hospital, Eccles St, Dublin 7, Ireland
| | - Eoghan de Barra
- Department of Infectious Diseases, Beaumont Hospital, Beaumont, Dublin 9, Ireland
- Department of International Health and Tropical Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Obada Yousif
- Endocrinology Department, Wexford General Hospital, Carricklawn, Wexford, Ireland
| | - Mary Horgan
- Department of Infectious Diseases, Cork University Hospital, Wilton, Co Cork, Ireland
| | - Peter Doran
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jannik Stemler
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Internal Medicine and University of Cologne, Faculty of Medicine Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne Department Cologne, Cologne, Germany
| | - Philipp Koehler
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Internal Medicine and University of Cologne, Faculty of Medicine Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne Department Cologne, Cologne, Germany
| | - Rebecca Jane Cox
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Donal O'Shea
- St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - Ole F Olesen
- European Vaccine Initiative, Heidelberg, Germany
| | - Alan Landay
- Department of internal Medicine, Rush University, Chicago, IL, USA
| | - Andrew E Hogan
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
- National Children's Research Centre, Dublin 12, Ireland
| | | | - Virginie Gautier
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
| | - Oliver A Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Internal Medicine and University of Cologne, Faculty of Medicine Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne Department Cologne, Cologne, Germany
| | - Patrick W G Mallon
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| |
Collapse
|
4
|
Tawinprai K, Siripongboonsitti T, Porntharukchareon T, Wittayasak K, Thonwirak N, Soonklang K, Sornsamdang G, Auewarakul C, Mahanonda N. Immunogenicity and safety of an intradermal fractional third dose of ChAdOx1 nCoV-19/AZD1222 vaccine compared with those of a standard intramuscular third dose in volunteers who previously received two doses of CoronaVac: A randomized controlled trial. Vaccine 2022; 40:1761-1767. [PMID: 35210118 PMCID: PMC8860330 DOI: 10.1016/j.vaccine.2022.02.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Kriangkrai Tawinprai
- Department of Medicine, Chulabhorn Hospital, Chulabhorn Royal Academy, Thailand.
| | | | | | - Kasiruck Wittayasak
- Center of Learning and Research in Celebration of HRH Princess Chulabhorn's 60(th) Birthday Anniversary, Chulabhorn Royal Academy, Thailand
| | - Nawarat Thonwirak
- Center of Learning and Research in Celebration of HRH Princess Chulabhorn's 60(th) Birthday Anniversary, Chulabhorn Royal Academy, Thailand
| | - Kamonwan Soonklang
- Center of Learning and Research in Celebration of HRH Princess Chulabhorn's 60(th) Birthday Anniversary, Chulabhorn Royal Academy, Thailand
| | | | - Chirayu Auewarakul
- Center of Learning and Research in Celebration of HRH Princess Chulabhorn's 60(th) Birthday Anniversary, Chulabhorn Royal Academy, Thailand; Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Thailand
| | - Nithi Mahanonda
- Department of Medicine, Chulabhorn Hospital, Chulabhorn Royal Academy, Thailand
| |
Collapse
|