1
|
in ’t Veld AE, Eveleens Maarse BC, Juachon MJ, Meziyerh S, de Vries APJ, van Rijn AL, Feltkamp MCW, Moes DJAR, Burggraaf J, Moerland M. Immune responsiveness in stable kidney transplantation patients: Complete inhibition of T-cell proliferation but residual T-cell activity during maintenance immunosuppressive treatment. Clin Transl Sci 2024; 17:e13860. [PMID: 38923308 PMCID: PMC11197031 DOI: 10.1111/cts.13860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
The recommended immunosuppressive treatment after kidney transplantation consists of tacrolimus, mycophenolate mofetil, and low-dose corticosteroids. Drug concentrations are monitored using therapeutic drug monitoring (TDM), which does not necessarily correlate with pharmacodynamic activity. To find the balance between optimal efficacy and minimal toxicity, it might be more informative to monitor patients' immunological status rather than drug concentrations. We selected a panel of T-cell-based immune assays, which were used for immunomonitoring of 14 stable kidney transplantation patients. Whole blood was incubated with a T-cell stimulus, after which T-cell proliferation, T-cell activation marker expression and cytokine production were measured to study residual immune activity in vitro (before drug intake; drug added to the incubation) and ex vivo (after drug intake). T-cell proliferation was completely suppressed in all patients over the full day, while IL-2, IFN-γ, CD71, and CD154 showed fluctuations over the day with a strong inhibition (75%-25%) at 2 h post-dose. The level of inhibition was variable between patients and could not be related to pharmacokinetic parameters or the presence of regulatory or senescence immune cells. Moreover, the level of inhibition did not correlate with the in vitro tacrolimus drug effect as studied by incubating pre-dose blood samples with additional tacrolimus. Overall, IL-2, IFN-γ, CD71, and CD154 seem to be good markers to monitor residual immune activity of transplantation patients. To evaluate the correlation between these pharmacodynamic biomarkers and clinical outcome, prospective observational studies are needed.
Collapse
Affiliation(s)
- Aliede E. in ’t Veld
- Centre for Human Drug ResearchLeidenThe Netherlands
- Department of SurgeryLeiden University Medical CenterLeidenThe Netherlands
| | - Boukje C. Eveleens Maarse
- Centre for Human Drug ResearchLeidenThe Netherlands
- Department of SurgeryLeiden University Medical CenterLeidenThe Netherlands
| | | | - Soufian Meziyerh
- Division of Nephrology, Department of Internal MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Aiko P. J. de Vries
- Division of Nephrology, Department of Internal MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Aline L. van Rijn
- Department of Medical MicrobiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Mariet C. W. Feltkamp
- Department of Medical MicrobiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Dirk Jan A. R. Moes
- Department of Pharmacy and Clinical ToxicologyLeiden University Medical CenterLeidenThe Netherlands
| | - Jacobus Burggraaf
- Centre for Human Drug ResearchLeidenThe Netherlands
- Department of SurgeryLeiden University Medical CenterLeidenThe Netherlands
- Leiden Academic Centre of Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Matthijs Moerland
- Centre for Human Drug ResearchLeidenThe Netherlands
- Department of Pharmacy and Clinical ToxicologyLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
2
|
Süsal C, Alvarez CM, Benning L, Daniel V, Zeier M, Schaier M, Morath C, Speer C. The balance between memory and regulatory cell populations in kidney transplant recipients with operational tolerance. Clin Exp Immunol 2024; 216:318-330. [PMID: 38393856 PMCID: PMC11097908 DOI: 10.1093/cei/uxae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/15/2024] [Accepted: 02/22/2024] [Indexed: 02/25/2024] Open
Abstract
Donor-reactive memory cells represent a barrier to long-term kidney graft survival. A better understanding of regulatory mechanisms that counterbalance alloreactive memory responses may help to identify patients with operational tolerance. This prospective study investigated the equilibrium between memory T-cell subsets and regulatory T or B cells (Tregs, Bregs) in peripheral blood of kidney transplant recipients with operational tolerance (N = 8), chronic rejection (N = 8), and different immunosuppressive treatment regimens (N = 81). Patients on hemodialysis and healthy individuals served as controls (N = 50). In addition, the expression of Treg- and Breg-associated molecule genes was analyzed. Patients with chronic rejection showed a disrupted memory T-cell composition with a significantly higher frequency of circulating CD8+ terminally differentiated effector memory (TEMRA) T cells than patients with operational tolerance, patients on hemodialysis, or healthy controls (P < 0.001). Low frequency of CD8+ TEMRA and high frequency of Tregs and transitional Bregs were found in operationally tolerant patients. Consequently, operationally tolerant patients showed, as compared to all other transplant recipients with different immunosuppressive regiments, the lowest ratios between CD8+ TEMRA T cells and Tregs or Bregs (for both P < 0.001). Moreover, a specific peripheral blood transcription pattern was found in operationally tolerant patients with an increased expression of Breg- and Treg-associated genes CD22 and FoxP3 and a decreased FcγRIIA/FcγRIIB transcript ratio (for all P < 0.001). In conclusion, monitoring the balance between circulating CD8+ TEMRA T cells and regulatory cell subsets and their transcripts may help to distinguish transplant recipients with operational tolerance from recipients at risk of graft loss.
Collapse
Affiliation(s)
- Caner Süsal
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
- Transplant Immunology Research Center of Excellence, Koç University Hospital, Istanbul, Turkey
| | - Cristiam M Alvarez
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Louise Benning
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Volker Daniel
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Martin Zeier
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Matthias Schaier
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Christian Morath
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Claudius Speer
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
3
|
Elias C, Chen C, Cherukuri A. Regulatory B Cells in Solid Organ Transplantation: From Immune Monitoring to Immunotherapy. Transplantation 2024; 108:1080-1089. [PMID: 37779239 PMCID: PMC10985051 DOI: 10.1097/tp.0000000000004798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Regulatory B cells (Breg) modulate the immune response in diverse disease settings including transplantation. Despite the lack of a specific phenotypic marker or transcription factor, their significance in transplantation is underscored by their ability to prolong experimental allograft survival, the possibility for their clinical use as immune monitoring tools, and the exciting prospect for them to form the basis for cell therapy. Interleukin (IL)-10 expression remains the most widely used marker for Breg. Several Breg subsets with distinct phenotypes that express this "signature Breg cytokine" have been described in mice and humans. Although T-cell immunoglobulin and mucin family-1 is the most inclusive and functional marker that accounts for murine Breg with disparate mechanisms of action, the significance of T-cell immunoglobulin and mucin family-1 as a marker for Breg in humans still needs to be explored. Although the primary focus of this review is the role of Breg in clinical transplantation, the net modulatory effect of B cells on the immune response and clinical outcomes is the result of the balancing functions of both Breg and effector B cells. Supporting this notion, B-cell IL-10/tumor necrosis factor α ratio is shown to predict immunologic reactivity and clinical outcomes in kidney and liver transplantation. Assessment of Breg:B effector balance using their IL-10/tumor necrosis factor α ratio may identify patients that require more immunosuppression and provide mechanistic insights into potential therapies. In summary, current advances in our understanding of murine and human Breg will pave way for future definitive clinical studies aiming to test them for immune monitoring and as therapeutic targets.
Collapse
Affiliation(s)
- Charbel Elias
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chuxiao Chen
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Aravind Cherukuri
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Renal and Electrolyte Division, Department of Internal Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Fouza A, Tagkouta A, Daoudaki M, Stangou M, Fylaktou A, Bougioukas K, Xochelli A, Vagiotas L, Kasimatis E, Nikolaidou V, Skoura L, Papagianni A, Antoniadis N, Tsoulfas G. Exploring Perturbations in Peripheral B Cell Memory Subpopulations Early after Kidney Transplantation Using Unsupervised Machine Learning. J Clin Med 2023; 12:6331. [PMID: 37834974 PMCID: PMC10573378 DOI: 10.3390/jcm12196331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND B cells have a significant role in transplantation. We examined the distribution of memory subpopulations (MBCs) and naïve B cell (NBCs) phenotypes in patients soon after kidney transplantation. Unsupervised machine learning cluster analysis is used to determine the association between the cellular phenotypes and renal function. METHODS MBC subpopulations and NBCs from 47 stable renal transplant recipients were characterized by flow cytometry just before (T0) and 6 months after (T6) transplantation. T0 and T6 measurements were compared, and clusters of patients with similar cellular phenotypic profiles at T6 were identified. Two clusters, clusters 1 and 2, were formed, and the glomerular filtration rate was estimated (eGFR) for these clusters. RESULTS A significant increase in NBC frequency was observed between T0 and T6, with no statistically significant differences in the MBC subpopulations. Cluster 1 was characterized by a predominance of the NBC phenotype with a lower frequency of MBCs, whereas cluster 2 was characterized by a high frequency of MBCs and a lower frequency of NBCs. With regard to eGFR, cluster 1 showed a higher value compared to cluster 2. CONCLUSIONS Transplanted kidney patients can be stratified into clusters based on the combination of heterogeneity of MBC phenotype, NBCs and eGFR using unsupervised machine learning.
Collapse
Affiliation(s)
- Ariadni Fouza
- Department of Transplant Surgery, Medical School, Aristotle University of Thessaloniki, General Hospital “Hippokratio”, 54642 Thessaloniki, Greece; (L.V.); (N.A.); (G.T.)
| | - Anneta Tagkouta
- Laboratory of Biological Chemistry, Medical School, University Campus, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Department of Hygiene, Social-Preventive Medicine & Medical Statistics, Medical School, University Campus, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Maria Daoudaki
- Laboratory of Biological Chemistry, Medical School, University Campus, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Maria Stangou
- 1st Department of Nephrology, Medical School, Aristotle University of Thessaloniki, Hippokration General Hospital, 54642 Thessaloniki, Greece; (M.S.); (E.K.); (A.P.)
| | - Asimina Fylaktou
- Department of Immunology, National Peripheral Histocompatibility Center, Hippokration General Hospital of Thessaloniki, 54642 Thessaloniki, Greece; (A.F.); (A.X.); (V.N.)
| | - Konstantinos Bougioukas
- Department of Hygiene, Social-Preventive Medicine & Medical Statistics, Medical School, University Campus, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Aliki Xochelli
- Department of Immunology, National Peripheral Histocompatibility Center, Hippokration General Hospital of Thessaloniki, 54642 Thessaloniki, Greece; (A.F.); (A.X.); (V.N.)
| | - Lampros Vagiotas
- Department of Transplant Surgery, Medical School, Aristotle University of Thessaloniki, General Hospital “Hippokratio”, 54642 Thessaloniki, Greece; (L.V.); (N.A.); (G.T.)
| | - Efstratios Kasimatis
- 1st Department of Nephrology, Medical School, Aristotle University of Thessaloniki, Hippokration General Hospital, 54642 Thessaloniki, Greece; (M.S.); (E.K.); (A.P.)
| | - Vasiliki Nikolaidou
- Department of Immunology, National Peripheral Histocompatibility Center, Hippokration General Hospital of Thessaloniki, 54642 Thessaloniki, Greece; (A.F.); (A.X.); (V.N.)
| | - Lemonia Skoura
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, 54124 Thessaloniki, Greece;
| | - Aikaterini Papagianni
- 1st Department of Nephrology, Medical School, Aristotle University of Thessaloniki, Hippokration General Hospital, 54642 Thessaloniki, Greece; (M.S.); (E.K.); (A.P.)
| | - Nikolaos Antoniadis
- Department of Transplant Surgery, Medical School, Aristotle University of Thessaloniki, General Hospital “Hippokratio”, 54642 Thessaloniki, Greece; (L.V.); (N.A.); (G.T.)
| | - Georgios Tsoulfas
- Department of Transplant Surgery, Medical School, Aristotle University of Thessaloniki, General Hospital “Hippokratio”, 54642 Thessaloniki, Greece; (L.V.); (N.A.); (G.T.)
| |
Collapse
|
5
|
Hruba P, Klema J, Le AV, Girmanova E, Mrazova P, Massart A, Maixnerova D, Voska L, Piredda GB, Biancone L, Puga AR, Seyahi N, Sever MS, Weekers L, Muhfeld A, Budde K, Watschinger B, Miglinas M, Zahradka I, Abramowicz M, Abramowicz D, Viklicky O. Novel transcriptomic signatures associated with premature kidney allograft failure. EBioMedicine 2023; 96:104782. [PMID: 37660534 PMCID: PMC10480056 DOI: 10.1016/j.ebiom.2023.104782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND The power to predict kidney allograft outcomes based on non-invasive assays is limited. Assessment of operational tolerance (OT) patients allows us to identify transcriptomic signatures of true non-responders for construction of predictive models. METHODS In this observational retrospective study, RNA sequencing of peripheral blood was used in a derivation cohort to identify a protective set of transcripts by comparing 15 OT patients (40% females), from the TOMOGRAM Study (NCT05124444), 14 chronic active antibody-mediated rejection (CABMR) and 23 stable graft function patients ≥15 years (STA). The selected differentially expressed transcripts between OT and CABMR were used in a validation cohort (n = 396) to predict 3-year kidney allograft loss at 3 time-points using RT-qPCR. FINDINGS Archetypal analysis and classifier performance of RNA sequencing data showed that OT is clearly distinguishable from CABMR, but similar to STA. Based on significant transcripts from the validation cohort in univariable analysis, 2 multivariable Cox models were created. A 3-transcript (ADGRG3, ATG2A, and GNLY) model from POD 7 predicted graft loss with C-statistics (C) 0.727 (95% CI, 0.638-0.820). Another 3-transcript (IGHM, CD5, GNLY) model from M3 predicted graft loss with C 0.786 (95% CI, 0.785-0.865). Combining 3-transcripts models with eGFR at POD 7 and M3 improved C-statistics to 0.860 (95% CI, 0.778-0.944) and 0.868 (95% CI, 0.790-0.944), respectively. INTERPRETATION Identification of transcripts distinguishing OT from CABMR allowed us to construct models predicting premature graft loss. Identified transcripts reflect mechanisms of injury/repair and alloimmune response when assessed at day 7 or with a loss of protective phenotype when assessed at month 3. FUNDING Supported by the Ministry of Health of the Czech Republic under grant NV19-06-00031.
Collapse
Affiliation(s)
- Petra Hruba
- Transplant Laboratory, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jiri Klema
- Department of Computer Science, Czech Technical University, Prague, Czech Republic
| | - Anh Vu Le
- Department of Computer Science, Czech Technical University, Prague, Czech Republic
| | - Eva Girmanova
- Transplant Laboratory, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Petra Mrazova
- Transplant Laboratory, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Annick Massart
- Antwerp University Hospital and Antwerp University, Antwerp, Belgium
| | - Dita Maixnerova
- Department of Nephrology, 1st Faculty of Medicine and General Faculty Hospital, Prague, Czech Republic
| | - Ludek Voska
- Department of Clinical and Transplant Pathology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Gian Benedetto Piredda
- Department of Kidney Disease Medicine of Renal Transplantation, G.Brotzu Hospital Cagliari, Italy
| | - Luigi Biancone
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Ana Ramirez Puga
- Hospital Universitario Insular de Gran Canaria, Servicio de nefrología, Spain
| | - Nurhan Seyahi
- Istanbul University, Cerrahpasa Medical Faculty, Nephrology, Istanbul, Turkey
| | - Mehmet Sukru Sever
- Istanbul University, Istanbul School of Medicine, Internal Medicine, Nephrology, Istanbul, Turkey
| | | | - Anja Muhfeld
- Department of Nephrology, Uniklinik RWTH Aachen, Aachen, Germany
| | - Klemens Budde
- Charité - Universitätsmedizin Berlin, Medizinische Klinik mit Schwerpunkt Nephrologie und Internistische Intensivmedizin, Berlin, Germany
| | - Bruno Watschinger
- Department of Internal Medicine III, Nephrology, Medical University Vienna / AKH Wien, Vienna, Austria
| | - Marius Miglinas
- Faculty of Medicine, Nephrology Center, Vilnius University Hospital Santaros Klinikos, Vilnius University, Vilnius, Lithuania
| | - Ivan Zahradka
- Department of Nephrology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Marc Abramowicz
- Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, 1206 Geneva, Switzerland
| | - Daniel Abramowicz
- Antwerp University Hospital and Antwerp University, Antwerp, Belgium
| | - Ondrej Viklicky
- Transplant Laboratory, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Department of Nephrology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| |
Collapse
|
6
|
Li Z, Lu Z, Hu C, Zhang Y, Chen Y, Zhang J, Guo F, Wang J, Tang Z, Tang F, He Z. A Machine Learning Analysis of Prognostic Genes Associated With Allograft Tolerance After Renal Transplantation. Cell Transplant 2023; 32:9636897231195116. [PMID: 37650419 PMCID: PMC10475226 DOI: 10.1177/09636897231195116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 09/01/2023] Open
Abstract
In this study, we aimed to identify transplantation tolerance (TOL)-related gene signature and use it to predict the different types of renal allograft rejection performances in kidney transplantation. Gene expression data were obtained from the Gene Expression Omnibus (GEO) database, differently expressed genes (DEGs) were performed, and the gene ontology (GO) function enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were also conducted. The machine learning methods were combined to analyze the feature TOL-related genes and verify their predictive performance. Afterward, the gene expression levels and predictive performances of TOL-related genes were conducted in the context of acute rejection (AR), chronic rejection (CR), and graft loss through heatmap plots and the receiver operating characteristic (ROC) curves, and their respective immune infiltration results were also performed. Furthermore, the TOL-related gene signature for graft survival was conducted to discover gene immune cell enrichment. A total of 25 TOL-related DEGs were founded, and the GO and KEGG results indicated that DEGs mainly enriched in B cell-related functions and pathways. 7 TOL-related gene signature was constructed and performed delightedly in TOL groups and different types of allograft rejection. The immune infiltration analysis suggested that gene signature was correlated with different types of immune cells. The Kaplan-Meier (KM) survival analysis demonstrated that BLNK and MZB1 were the prognostic TOL-related genes. Our study proposed a novel gene signature that may influence TOL in kidney transplantation, providing possible guidance for immunosuppressive therapy in kidney transplant patients.
Collapse
Affiliation(s)
- Zhibiao Li
- Department of Urology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zechao Lu
- Department of Urology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Chuxian Hu
- The Sixth Clinical College of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yixin Zhang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, China
| | - Yushu Chen
- Department of Urology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jiahao Zhang
- Department of Urology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Feng Guo
- Department of Urology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jinjin Wang
- Department of Urology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhicheng Tang
- Department of Urology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Fucai Tang
- Department of Urology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhaohui He
- Department of Urology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Mai HL, Degauque N, Lorent M, Rimbert M, Renaudin K, Danger R, Kerleau C, Tilly G, Vivet A, Le Bot S, Delbos F, Walencik A, Giral M, Brouard S. Kidney allograft rejection is associated with an imbalance of B cells, regulatory T cells and differentiated CD28-CD8+ T cells: analysis of a cohort of 1095 graft biopsies. Front Immunol 2023; 14:1151127. [PMID: 37168864 PMCID: PMC10164960 DOI: 10.3389/fimmu.2023.1151127] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/06/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction The human immune system contains cells with either effector/memory or regulatory functions. Besides the well-established CD4+CD25hiCD127lo regulatory T cells (Tregs), we and others have shown that B cells can also have regulatory functions since their frequency and number are increased in kidney graft tolerance and B cell depletion as induction therapy may lead to acute rejection. On the other hand, we have shown that CD28-CD8+ T cells represent a subpopulation with potent effector/memory functions. In the current study, we tested the hypothesis that kidney allograft rejection may be linked to an imbalance of effector/memory and regulatory immune cells. Methods Based on a large cohort of more than 1000 kidney graft biopsies with concomitant peripheral blood lymphocyte phenotyping, we investigated the association between kidney graft rejection and the percentage and absolute number of circulating B cells, Tregs, as well as the ratio of B cells to CD28-CD8+ T cells and the ratio of CD28-CD8+ T cells to Tregs. Kidney graft biopsies were interpreted according to the Banff classification and divided into 5 biopsies groups: 1) normal/subnormal, 2) interstitial fibrosis and tubular atrophy grade 2/3 (IFTA), 3) antibody-mediated rejection (ABMR), 4) T cell mediated-rejection (TCMR), and 5) borderline rejection. We compared group 1 with the other groups as well as with a combined group 3, 4, and 5 (rejection of all types) using multivariable linear mixed models. Results and discussion We found that compared to normal/subnormal biopsies, rejection of all types was marginally associated with a decrease in the percentage of circulating B cells (p=0.06) and significantly associated with an increase in the ratio of CD28-CD8+ T cells to Tregs (p=0.01). Moreover, ABMR, TCMR (p=0.007), and rejection of all types (p=0.0003) were significantly associated with a decrease in the ratio of B cells to CD28-CD8+ T cells compared to normal/subnormal biopsies. Taken together, our results show that kidney allograft rejection is associated with an imbalance between immune cells with effector/memory functions and those with regulatory properties.
Collapse
Affiliation(s)
- Hoa Le Mai
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
| | - Nicolas Degauque
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
| | - Marine Lorent
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
| | - Marie Rimbert
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
- Laboratoire d’Immunologie, Centre d’ImmunoMonitorage Nantes-Atlantique (CIMNA), CHU Nantes, Nantes, France
| | - Karine Renaudin
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
- Service d’Anatomie et Cytologie Pathologiques, CHU Nantes, Nantes, France
| | - Richard Danger
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
| | - Clarisse Kerleau
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
| | - Gaelle Tilly
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
| | - Anaïs Vivet
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
| | - Sabine Le Bot
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
- Service de Néphrologie et Immunologie Clinique, CHU Nantes, Nantes, France
| | | | | | - Magali Giral
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
- Service de Néphrologie et Immunologie Clinique, CHU Nantes, Nantes, France
- Fondation Centaure (RTRS), Nantes, France
- *Correspondence: Magali Giral, ; Sophie Brouard,
| | - Sophie Brouard
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
- Fondation Centaure (RTRS), Nantes, France
- *Correspondence: Magali Giral, ; Sophie Brouard,
| |
Collapse
|
8
|
Cherukuri A, Rothstein DM. Regulatory and transitional B cells: potential biomarkers and therapeutic targets in organ transplantation. Curr Opin Organ Transplant 2022; 27:385-391. [PMID: 35950881 PMCID: PMC9474638 DOI: 10.1097/mot.0000000000001010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF THE REVIEW Regulatory B cells (Bregs) play a prominent role in various disease settings. While progress has been hindered by the lack of a specific Breg marker, new findings highlight their role modulating the alloimmune response and promoting allograft survival. RECENT FINDINGS Herein, we focus on the recent advances in Breg biology and their role in transplantation. We review studies showing that T-cell immunoglobulin and mucin domain 1 (TIM-1) is an inclusive and functional Breg marker in mice that may have human relevance. We highlight the utility of the B cell interleukin-10/tumor necrosis factor-alpha (IL-10/TNFα) ratio in identifying underlying immunological reactivity and predicting clinical outcomes in kidney transplantation. This may identify patients requiring more immunosuppression and provide insight into potential therapeutic approaches that can modulate the Breg: B effector cell (Beff) balance. SUMMARY Emerging data support Bregs as potent modulators of immune responses in humans. Their ability to promote allograft survival must await development of approaches to expand Bregs in vitro/in vivo . The low IL-10/TNFα ratio reflecting decreased Breg/Beff balance, predicts acute rejection (AR) and poorer outcomes in renal transplantation. It remains to be determined whether this paradigm can be extended to other allografts and whether therapy aiming to correct the relative deficiency of Bregs will improve outcomes.
Collapse
Affiliation(s)
- Aravind Cherukuri
- Thomas E Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, PA, USA
| | - David M. Rothstein
- Thomas E Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, PA, USA
| |
Collapse
|
9
|
Anwar IJ, DeLaura IF, Gao Q, Ladowski J, Jackson AM, Kwun J, Knechtle SJ. Harnessing the B Cell Response in Kidney Transplantation - Current State and Future Directions. Front Immunol 2022; 13:903068. [PMID: 35757745 PMCID: PMC9223638 DOI: 10.3389/fimmu.2022.903068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/25/2022] [Indexed: 01/21/2023] Open
Abstract
Despite dramatic improvement in kidney transplantation outcomes over the last decades due to advent of modern immunosuppressive agents, long-term outcomes remain poor. Antibody-mediated rejection (ABMR), a B cell driven process, accounts for the majority of chronic graft failures. There are currently no FDA-approved regimens for ABMR; however, several clinical trials are currently on-going. In this review, we present current mechanisms of B cell response in kidney transplantation, the clinical impact of sensitization and ABMR, the B cell response under current immunosuppressive regimens, and ongoing clinical trials for ABMR and desensitization treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stuart J. Knechtle
- Duke Transplant Center, Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
10
|
Vonbrunn E, Angeloni M, Büttner-Herold M, Müller-Deile J, Heller K, Bleich E, Söllner S, Amann K, Ferrazzi F, Daniel C. Can Gene Expression Analysis in Zero-Time Biopsies Predict Kidney Transplant Rejection? Front Med (Lausanne) 2022; 9:793744. [PMID: 35433772 PMCID: PMC9005644 DOI: 10.3389/fmed.2022.793744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Zero-time biopsies are taken to determine the quality of the donor organ at the time of transplantation. Histological analyses alone have so far not been able to identify parameters that allow the prediction of subsequent rejection episodes or graft survival. This study investigated whether gene expression analyses of zero-time biopsies might support this prediction. Using a well-characterized cohort of 26 zero-time biopsies from renal transplant patients that include 4 living donor (LD) and 22 deceased donor (DD) biopsies that later developed no rejection (Ctrl, n = 7), delayed graft function (DGF, n = 4), cellular (T-cell mediated rejection; TCMR, n = 8), or antibody-mediated rejection (ABMR, n = 7), we analyzed gene expression profiles for different types of subsequent renal transplant complication. To this end, RNA was isolated from formalin-fixed, paraffin-embedded (FFPE) sections and gene expression profiles were quantified. Results were correlated with transplant data and B-cell, and plasma cell infiltration was assessed by immunofluorescence microscopy. Both principal component analysis and clustering analysis of gene expression data revealed marked separation between LDs and DDs. Differential expression analysis identified 185 significant differentially expressed genes (adjusted p < 0.05). The expression of 68% of these genes significantly correlated with cold ischemia time (CIT). Furthermore, immunoglobulins were differentially expressed in zero-time biopsies from transplants later developing rejection (TCMR + ABMR) compared to non-rejected (Ctrl + DGF) transplants. In addition, immunoglobulin expression did not correlate with CIT but was increased in transplants with previous acute renal failure (ARF). In conclusion, gene expression profiles in zero-time biopsies derived from LDs are markedly different from those of DDs. Pre-transplant ARF increased immunoglobulin expression, which might be involved in triggering later rejection events. However, these findings must be confirmed in larger cohorts and the role of early immunoglobulin upregulation in zero-biopsies needs further clarification.
Collapse
Affiliation(s)
- Eva Vonbrunn
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg and University Hospital, Erlangen, Germany
| | - Miriam Angeloni
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg and University Hospital, Erlangen, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg and University Hospital, Erlangen, Germany
| | - Janina Müller-Deile
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nuremberg and University Hospital, Erlangen, Germany
| | - Katharina Heller
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nuremberg and University Hospital, Erlangen, Germany
| | - Erik Bleich
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg and University Hospital, Erlangen, Germany
| | - Stefan Söllner
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg and University Hospital, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg and University Hospital, Erlangen, Germany
| | - Fulvia Ferrazzi
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg and University Hospital, Erlangen, Germany.,Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg and University Hospital, Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg and University Hospital, Erlangen, Germany
| |
Collapse
|
11
|
Schuller M, Pfeifer V, Kirsch AH, Klötzer KA, Mooslechner AA, Rosenkranz AR, Stiegler P, Schemmer P, Sourij H, Eller P, Prietl B, Eller K. B Cell Composition Is Altered After Kidney Transplantation and Transitional B Cells Correlate With SARS-CoV-2 Vaccination Response. Front Med (Lausanne) 2022; 9:818882. [PMID: 35187002 PMCID: PMC8847739 DOI: 10.3389/fmed.2022.818882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background The COVID-19 pandemic has major implications on kidney transplant recipients (KTRs) since they show increased mortality due to impaired immune responses to SARS-CoV-2 infection and a reduced efficacy of SARS-CoV-2 vaccination. Surprisingly, dialysis patients have shown superior seroconversion rates after vaccination compared to KTRs. Therefore, we investigated peripheral blood B cell (BC) composition before and after kidney transplantation (KT) and aimed to screen the BC compartment to explain impaired antibody generation. Methods A total of 105 patients were recruited, and multicolor flow cytometric phenotyping of peripheral venous blood BC subpopulations was performed before and 1 year after KT. Complete follow-up was available for 71 individuals. Anti-SARS-CoV-2 antibodies were collected retrospectively and were available for 40 subjects, who had received two doses of an mRNA-based vaccine (BNT162b2 or mRNA-1273). Results Overall, relative BC frequencies within lymphocytes decreased, and their absolute counts trended in the same direction 1 year after KT as compared to CKD G5 patients. Frequencies and absolute numbers of naïve BCs remained stable. Frequencies of double negative BCs, a heterogeneous subpopulation of antigen experienced BCs lacking CD27 expression, were increased after KT, yet their absolute counts were similar at both time points. Transitional BCs (TrBCs) and plasmablasts were significantly reduced after KT in absolute and relative terms. Memory BCs were affected differently since class-switched and IgM-only subsets decreased after KT, but unswitched and IgD-only memory BCs remained unchanged. CD86+ and CD5+ expression on BCs was downregulated after KT. Correlational analysis revealed that TrBCs were the only subset to correlate with titer levels after SARS-CoV-2 vaccination. Responders showed higher TrBCs, both absolute and relative, than non-responders. Conclusion Together, after 1 year, KTRs showed persistent and profound compositional changes within the BC compartment. Low TrBCs, 1 year after KT, may account for the low serological response to SARS-CoV-2 vaccination in KTRs compared to dialysis patients. Our findings need confirmation in further studies as they may guide vaccination strategies.
Collapse
Affiliation(s)
- Max Schuller
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Verena Pfeifer
- Center for Biomarker Research in Medicine, CBmed GmbH, Graz, Austria.,Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Alexander H Kirsch
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Konstantin A Klötzer
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Agnes A Mooslechner
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Alexander R Rosenkranz
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Philipp Stiegler
- General, Visceral, and Transplant Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Peter Schemmer
- General, Visceral, and Transplant Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Philipp Eller
- Intensive Care Unit, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Barbara Prietl
- Center for Biomarker Research in Medicine, CBmed GmbH, Graz, Austria.,Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Kathrin Eller
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
12
|
Louis K, Fadakar P, Macedo C, Yamada M, Lucas M, Gu X, Zeevi A, Randhawa P, Lefaucheur C, Metes D. Concomitant loss of regulatory T and B cells is a distinguishing immune feature of antibody-mediated rejection in kidney transplantation. Kidney Int 2022; 101:1003-1016. [PMID: 35090879 PMCID: PMC9038633 DOI: 10.1016/j.kint.2021.12.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/04/2021] [Accepted: 12/16/2021] [Indexed: 02/08/2023]
Abstract
Although considerable advances have been made in understanding the cellular effector mechanisms responsible for donor-specific antibody generation leading to antibody-mediated rejection (ABMR), the identification of cellular regulators of such immune responses is lacking. To clarify this, we used high dimensional flow cytometry to concomitantly profile and track the two major subsets of regulatory lymphocytes in blood: T regulatory (TREG) and transitional B cells in a cohort of 96 kidney transplant recipients. Additionally, we established co-culture assays to address their respective capacity to suppress antibody responses in vitro. TREG and transitional B cells were found to be potent suppressors of T follicular helper-mediated B-cell differentiation into plasmablast and antibody generation. TREG and transitional B cells were both durably expanded in patients who did not develop donor-specific antibody post-transplant. However, patients who manifested donor-specific antibody and progressed to ABMR displayed a marked and persistent numerical reduction in TREG and transitional B cells. Strikingly, specific cell clusters expressing the transcription factor T-bet were selectively depleted in both TREG and transitional B-cell compartments in patients with ABMR. Importantly, the coordinated loss of these T-bet+CXCR5+TREG and T-bet+CD21- transitional B-cell clusters was correlated with increased and inflammatory donor specific antibody responses, more extensive microvascular inflammation and a higher rate of kidney allograft loss. Thus, our study identified coordinated and persistent defects in regulatory T- and B-cell responses in patients undergoing ABMR, which may contribute to their loss of humoral immune regulation, and warrant timely therapeutic interventions to replenish and sustain TREG and transitional B cells in these patients.
Collapse
|
13
|
Liu J, Tang T, Qu Z, Wang L, Si R, Wang H, Jiang Y. Elevated number of IL-21+ TFH and CD86+CD38+ B cells in blood of renal transplant recipients with AMR under conventional immuno-suppression. Int J Immunopathol Pharmacol 2022; 36:20587384211048027. [PMID: 35012395 PMCID: PMC8755922 DOI: 10.1177/20587384211048027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/03/2021] [Indexed: 11/12/2022] Open
Abstract
The objective of this study is to detect the number of different subsets of TFH and B cells in renal transplant recipients (RTR) with antibody-mediated acute rejection (AMR), acute rejection (AR), chronic rejection (CR), or transplant stable (TS). The present study was a prospective study. The numbers of ICOS +, PD-1+ and IL-21+ TFH, CD86+, CD38+, CD27+, and IgD- B cells in 21 patients with end-stage renal disease (ESRD) and post-transplant times were measured by flow cytometry. The level of serum IL-21 was detected by ELISA. The numbers of circulating CD4+CXCR5+, CD4+CXCR5+ICOS+, CD4+CXCR5+PD-1+, CD4+CXCR5+IL-21+ TFH, CD19+CD86+, and CD19 +CD86+CD38+ B cells as well as the level of serum IL-21 in the AMR, AR, and CR groups at post-transplantation were significantly higher than those at pre-transplantation. In contrast, the number of circulating CD19+CD27+IgD B cells was significantly increased in the TS groups in respect to the other groups. Moreover, the numbers of circulating CD4+CXCR5+IL-21+ TFH cells, CD19+CD86+CD38+ B cells as well as the level of serum IL-21 were positive related to the level of serum Cr while showing negative correlated with the values of eGFR in the AMR groups at post-transplantation for 4 and 12 weeks. Circulating TFH cells may be a biomarker in RTR with AMR, which can promote the differentiation of B cells into plasma cells by activating B cells, thereby promoting disease progression.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Tongyu Tang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Zhihui Qu
- Department of Nephrology, the First Hospital of Jilin University, Changchun, China
| | - Li Wang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
- Xu Zhou Central Hospital, Xuzhou, China
| | - Rui Si
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Haifeng Wang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Yanfang Jiang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Zoonoses Research, Ministry of Education, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Wang L, Rondaan C, de Joode AAE, Raveling-Eelsing E, Bos NA, Westra J. Changes in T and B cell subsets in end stage renal disease patients before and after kidney transplantation. IMMUNITY & AGEING 2021; 18:43. [PMID: 34749733 PMCID: PMC8574047 DOI: 10.1186/s12979-021-00254-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/28/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND The incidence of kidney transplantation performed in elderly patients has increased steadily recently. Higher risk of infection and mortality, but lower rate of rejection, are reported in older kidney transplant patients. This study aims to analyze the effect of transplantation on aging of T and B cells in kidney transplant patients, with the emphasis on age and Cytomegalovirus (CMV) latency. RESULTS We included 36 patients before and after (median 2.7 years) kidney transplantation and 27 age- and sex-matched healthy controls (HC). T and B cell subsets were measured by flow cytometry, with a focus on aged T cells (CD28-), and age associated B cells (ABCs, CD19 + CD21-CD11c+). Three years after transplantation a significant increase of total T cells among the lymphocytes was found compared to pre-transplantation and HC. Among the T cells CD4+ cells were decreased, especially naïve CD4+ cells and regulatory T cells. Total CD8+ cell proportions were increased, and proportions of naïve CD8+ cells were significantly decreased after transplantation, while CD8+ effector memory T cells re-expressing CD45RA were increased. CD28- T cells were significantly higher compared to HC after transplantation, especially in CMV seropositive patients. B cells were significantly decreased, while among B cells memory B cells and especially ABCs were increased after transplantation. CONCLUSIONS After transplantation T and B cell subsets change towards more terminally differentiated memory cells compared to age-matched HC. Proportions of aged T cells and ABCs were associated with CMV serostatus.
Collapse
Affiliation(s)
- Lei Wang
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, NL, The Netherlands
| | - Christien Rondaan
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anoek A E de Joode
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Elisabeth Raveling-Eelsing
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, NL, The Netherlands
| | - Nicolaas A Bos
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, NL, The Netherlands
| | - Johanna Westra
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, NL, The Netherlands.
| |
Collapse
|
15
|
Munir H, Lu TT. T2B or not to B: Calming neutrophils offshore. J Exp Med 2021; 218:e20211407. [PMID: 34374712 PMCID: PMC8357534 DOI: 10.1084/jem.20211407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
In this issue of JEM, Podstawka et al. (2021. J. Exp. Med.https://doi.org/10.1084/jem.20210409) show that B cells can limit neutrophil responses within the lung microvasculature by marginating and acting on marginated neutrophils. This study provides a new view of B cells and reveals a novel mechanism of cell-mediated intravascular regulation.
Collapse
Affiliation(s)
- Hafsa Munir
- Hospital for Special Surgery Research Institute, New York, NY
- Weill Cornell Medicine, New York, NY
| | - Theresa T. Lu
- Hospital for Special Surgery Research Institute, New York, NY
- Weill Cornell Medicine, New York, NY
| |
Collapse
|
16
|
Rincon-Arevalo H, Choi M, Stefanski AL, Halleck F, Weber U, Szelinski F, Jahrsdörfer B, Schrezenmeier H, Ludwig C, Sattler A, Kotsch K, Potekhin A, Chen Y, Burmester GR, Eckardt KU, Guerra GM, Durek P, Heinrich F, Ferreira-Gomes M, Radbruch A, Budde K, Lino AC, Mashreghi MF, Schrezenmeier E, Dörner T. Impaired humoral immunity to SARS-CoV-2 BNT162b2 vaccine in kidney transplant recipients and dialysis patients. Sci Immunol 2021; 6:6/60/eabj1031. [PMID: 34131023 DOI: 10.1126/sciimmunol.abj1031] [Citation(s) in RCA: 205] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022]
Abstract
Patients with kidney failure are at increased risk for SARS-CoV-2 infection making effective vaccinations a critical need. It is not known how well mRNA vaccines induce B and plasma cell responses in dialysis patients (DP) or kidney transplant recipients (KTR) compared to healthy controls (HC). We studied humoral and B cell responses of 35 HC, 44 DP and 40 KTR. Markedly impaired anti-BNT162b2 responses were identified among KTR and DP compared to HC. In DP, the response was delayed (3-4 weeks after boost) and reduced with anti-S1 IgG and IgA positivity in 70.5% and 68.2%, respectively. In contrast, KTR did not develop IgG responses except one patient who had a prior unrecognized infection and developed anti-S1 IgG. The majority of antigen-specific B cells (RBD+) were identified in the plasmablast or post-switch memory B cell compartments in HC, whereas RBD+ B cells were enriched among pre-switch and naïve B cells from DP and KTR. The frequency and absolute number of antigen-specific circulating plasmablasts in the cohort correlated with the Ig response, a characteristic not reported for other vaccinations. In conclusion, these data indicated that immunosuppression resulted in impaired protective immunity after mRNA vaccination, including Ig induction with corresponding generation of plasmablasts and memory B cells. Thus, there is an urgent need to improve vaccination protocols in patients after kidney transplantation or on chronic dialysis.
Collapse
Affiliation(s)
- Hector Rincon-Arevalo
- Department of Nephrology and Intensive Medical Care, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany.,Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Instituto de Investigaciones Médicas, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Mira Choi
- Department of Nephrology and Intensive Medical Care, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ana-Luisa Stefanski
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
| | - Fabian Halleck
- Department of Nephrology and Intensive Medical Care, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulrike Weber
- Department of Nephrology and Intensive Medical Care, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Franziska Szelinski
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
| | - Bernd Jahrsdörfer
- Institute of Transfusion Medicine, Ulm University, Ulm, Germany and Institute for Clinical Transfusion Medicine and Immunogenetics. German Red Cross Blood Transfusion Service Baden-Württemberg - Hessen and University Hospital Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute of Transfusion Medicine, Ulm University, Ulm, Germany and Institute for Clinical Transfusion Medicine and Immunogenetics. German Red Cross Blood Transfusion Service Baden-Württemberg - Hessen and University Hospital Ulm, Ulm, Germany
| | - Carolin Ludwig
- Institute of Transfusion Medicine, Ulm University, Ulm, Germany and Institute for Clinical Transfusion Medicine and Immunogenetics. German Red Cross Blood Transfusion Service Baden-Württemberg - Hessen and University Hospital Ulm, Ulm, Germany
| | - Arne Sattler
- Department for General and Visceral Surgery, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Katja Kotsch
- Department for General and Visceral Surgery, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Yidan Chen
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
| | - Gerd R Burmester
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Intensive Medical Care, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Pawel Durek
- Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
| | | | | | | | - Klemens Budde
- Department of Nephrology and Intensive Medical Care, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreia C Lino
- Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
| | - Mir-Farzin Mashreghi
- Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany.,Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Eva Schrezenmeier
- Department of Nephrology and Intensive Medical Care, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany. .,Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Thomas Dörner
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
| |
Collapse
|
17
|
Ibrahim EH, Aly M, Morath C, Sayed DM, Ekpoom N, Opelz G, Süsal C, Daniel V. Relationship of transitional regulatory B and regulatory T cells and immunosuppressive drug doses in stable renal transplant recipients. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:1252-1271. [PMID: 34102006 PMCID: PMC8589411 DOI: 10.1002/iid3.473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 11/10/2022]
Abstract
OBJECTIVES Regulatory B cells (Bregs) and T cells (Tregs) are thought to be involved in the regulation of graft acceptance in renal transplant recipients. However, mechanisms that affect Breg differentiation and interaction with Tregs are rather unclear. METHODS Using eight-color-fluorescence flow cytometry, Tregs and CD19+ CD24hiCD38hi Bregs were analyzed in whole blood samples of 80 stable kidney transplant recipients, 20 end-stage renal disease (ESRD) patients and 32 healthy controls (HC). In addition, differentiation of Bregs and Tregs was studied in different micromilieus using cocultures with strongly enriched B-lymphocytes and autologous peripheral blood mononuclear cells stimulated with CpG and phytohemagglutinin. RESULTS Bregs were higher in HC than in ESRD patients and lowest in transplant recipients. Bregs were higher early as compared to late posttransplant. Posttransplant, high Bregs were associated with higher glomerular filtration rate (GFR) and lower C-reactive protein (CRP). Higher doses and blood levels of ciclosporine, tacrolimus, and mycophenolate mofetil as well as higher doses of steroids were not associated with low Bregs. In contrast, most Treg subsets were lower when blood levels of ciclosporine, tacrolimus, and mycophenolate mofetil were higher. Tregs were not associated with Bregs, GFR, CRP plasma levels, and occurrence of rejection or infection. In vitro, differentiation of Bregs was strongly dependent on T cell support and was blocked by excessive or lacking T-cell help. Tregs were not associated with Breg numbers in vitro. CONCLUSION Bregs appear to be insensitive to high doses of posttransplant immunosuppressive drugs. The protracted Breg decrease posttransplant might be caused by impaired T cell support attributable to immunosuppressive drugs.
Collapse
Affiliation(s)
- Eman H Ibrahim
- Transplantation Immunology, Institute of Immunology, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Pathology Department, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Mostafa Aly
- Transplantation Immunology, Institute of Immunology, University Hospital Heidelberg, Heidelberg, Germany.,Department of Nephrology, University Hospital Heidelberg, Heidelberg, Germany.,Nephrology Unit, Internal Medicine Department, Assiut University, Assiut, Egypt
| | - Christian Morath
- Department of Nephrology, University Hospital Heidelberg, Heidelberg, Germany
| | - Douaa M Sayed
- Clinical Pathology Department, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Naruemol Ekpoom
- Transplantation Immunology, Institute of Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Gerhard Opelz
- Transplantation Immunology, Institute of Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Caner Süsal
- Transplantation Immunology, Institute of Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Volker Daniel
- Transplantation Immunology, Institute of Immunology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
18
|
Catalán D, Mansilla MA, Ferrier A, Soto L, Oleinika K, Aguillón JC, Aravena O. Immunosuppressive Mechanisms of Regulatory B Cells. Front Immunol 2021; 12:611795. [PMID: 33995344 PMCID: PMC8118522 DOI: 10.3389/fimmu.2021.611795] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Regulatory B cells (Bregs) is a term that encompasses all B cells that act to suppress immune responses. Bregs contribute to the maintenance of tolerance, limiting ongoing immune responses and reestablishing immune homeostasis. The important role of Bregs in restraining the pathology associated with exacerbated inflammatory responses in autoimmunity and graft rejection has been consistently demonstrated, while more recent studies have suggested a role for this population in other immune-related conditions, such as infections, allergy, cancer, and chronic metabolic diseases. Initial studies identified IL-10 as the hallmark of Breg function; nevertheless, the past decade has seen the discovery of other molecules utilized by human and murine B cells to regulate immune responses. This new arsenal includes other anti-inflammatory cytokines such IL-35 and TGF-β, as well as cell surface proteins like CD1d and PD-L1. In this review, we examine the main suppressive mechanisms employed by these novel Breg populations. We also discuss recent evidence that helps to unravel previously unknown aspects of the phenotype, development, activation, and function of IL-10-producing Bregs, incorporating an overview on those questions that remain obscure.
Collapse
Affiliation(s)
- Diego Catalán
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Miguel Andrés Mansilla
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Ashley Ferrier
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Lilian Soto
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Unidad de Dolor, Hospital Clínico, Universidad de Chile (HCUCH), Santiago, Chile
| | | | - Juan Carlos Aguillón
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Octavio Aravena
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| |
Collapse
|
19
|
Alfaro R, Legaz I, González-Martínez G, Jimenez-Coll V, Martínez-Banaclocha H, Galián JA, Botella C, de la Peña-Moral J, Moya-Quiles MR, Campillo JA, Minguela A, Llorente S, Muro M. Monitoring of B Cell in Kidney Transplantation: Development of a Novel Clusters Analysis and Role of Transitional B Cells in Transplant Outcome. Diagnostics (Basel) 2021; 11:diagnostics11040641. [PMID: 33916199 PMCID: PMC8065535 DOI: 10.3390/diagnostics11040641] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/21/2021] [Accepted: 03/27/2021] [Indexed: 01/08/2023] Open
Abstract
Background: B lymphocytes (BL) seem to play an important role in transplantation, although the and role of different subpopulations in monitoring and outcome is not clear. Our aim was to monitoring immunological profiles based on BL subpopulations in kidney recipients (KR) with the risk of acute rejection (AR). Methods: Monitoring of BL subpopulations was performed by flow cytometry in PBLs before transplantation and three and six months after transplantation (PTX). We used two methodological approaches, a traditional analysis, and a novel cluster analysis, to determine the association between BL subpopulations, AR incidence, and graft function. Results: After three months of PTX, KRs with a B phenotype enriched in transitional BL and plasmablasts had better kidney function and lower AR incidence. KRs with decreased transitional BL and plasmablasts were associated with lower kidney function and higher AR PTX. KRs that had an increase in transitional BL PTX had a better clinical outcome. The increase in transitory BL during PTX was also associated with an increase in Tregs. Indeed, KRs receiving thymoglobulin as induction therapy showed a slight decrease in the relative frequency of naive BLs after three months of PTX. Conclusion: The monitoring of BL subpopulations may serve as a non-invasive tool to improve immunological follow-up of patients after kidney transplantation. However, further studies are needed to confirm the obtained results, define cut-off values, and standardize more optimal and even custom/customized protocols.
Collapse
Affiliation(s)
- Rafael Alfaro
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (R.A.); (V.J.-C.); (H.M.-B.); (J.A.G.); (C.B.); (M.R.M.-Q.); (J.A.C.); (A.M.)
| | - Isabel Legaz
- Department of Legal and Forensic Medicine, Biomedical Research Institute (IMIB), Regional Campus of International Excellence “Campus Mare Nostrum”, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain; (I.L.); (G.G.-M.)
| | - Gema González-Martínez
- Department of Legal and Forensic Medicine, Biomedical Research Institute (IMIB), Regional Campus of International Excellence “Campus Mare Nostrum”, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain; (I.L.); (G.G.-M.)
| | - Víctor Jimenez-Coll
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (R.A.); (V.J.-C.); (H.M.-B.); (J.A.G.); (C.B.); (M.R.M.-Q.); (J.A.C.); (A.M.)
| | - Helios Martínez-Banaclocha
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (R.A.); (V.J.-C.); (H.M.-B.); (J.A.G.); (C.B.); (M.R.M.-Q.); (J.A.C.); (A.M.)
| | - José Antonio Galián
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (R.A.); (V.J.-C.); (H.M.-B.); (J.A.G.); (C.B.); (M.R.M.-Q.); (J.A.C.); (A.M.)
| | - Carmen Botella
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (R.A.); (V.J.-C.); (H.M.-B.); (J.A.G.); (C.B.); (M.R.M.-Q.); (J.A.C.); (A.M.)
| | - Jesús de la Peña-Moral
- Pathology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain;
| | - María Rosa Moya-Quiles
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (R.A.); (V.J.-C.); (H.M.-B.); (J.A.G.); (C.B.); (M.R.M.-Q.); (J.A.C.); (A.M.)
| | - José Antonio Campillo
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (R.A.); (V.J.-C.); (H.M.-B.); (J.A.G.); (C.B.); (M.R.M.-Q.); (J.A.C.); (A.M.)
| | - Alfredo Minguela
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (R.A.); (V.J.-C.); (H.M.-B.); (J.A.G.); (C.B.); (M.R.M.-Q.); (J.A.C.); (A.M.)
| | - Santiago Llorente
- Nephrology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain;
| | - Manuel Muro
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (R.A.); (V.J.-C.); (H.M.-B.); (J.A.G.); (C.B.); (M.R.M.-Q.); (J.A.C.); (A.M.)
- Correspondence: ; Tel.: +34-968-369599; Fax: +34-968-349678
| |
Collapse
|
20
|
Morath C, Schmitt A, Kleist C, Daniel V, Opelz G, Süsal C, Ibrahim E, Kälble F, Speer C, Nusshag C, Pego da Silva L, Sommerer C, Wang L, Ni M, Hückelhoven-Krauss A, Czock D, Merle U, Mehrabi A, Sander A, Hackbusch M, Eckert C, Waldherr R, Schnitzler P, Müller-Tidow C, Hoheisel JD, Mustafa SA, Alhamdani MS, Bauer AS, Reiser J, Zeier M, Schmitt M, Schaier M, Terness P. Phase I trial of donor-derived modified immune cell infusion in kidney transplantation. J Clin Invest 2021; 130:2364-2376. [PMID: 31990685 DOI: 10.1172/jci133595] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/22/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUNDPreclinical experiments have shown that donor blood cells, modified in vitro by an alkylating agent (modified immune cells [MICs]), induced long-term specific immunosuppression against the allogeneic donor.METHODSIn this phase I trial, patients received either 1.5 × 106 MICs per kg BW on day -2 (n = 3, group A), or 1.5 × 108 MICs per kg BW on day -2 (n = 3, group B) or day -7 (n = 4, group C) before living donor kidney transplantation in addition to post-transplantation immunosuppression. The primary outcome measure was the frequency of adverse events (AEs) until day 30 (study phase) with follow-up out to day 360.RESULTSMIC infusions were extremely well tolerated. During the study phase, 10 treated patients experienced a total of 69 AEs that were unlikely to be related or not related to MIC infusion. No donor-specific human leukocyte antigen Abs or rejection episodes were noted, even though the patients received up to 1.3 × 1010 donor mononuclear cells before transplantation. Group C patients with low immunosuppression during follow-up showed no in vitro reactivity against stimulatory donor blood cells on day 360, whereas reactivity against third-party cells was still preserved. Frequencies of CD19+CD24hiCD38hi transitional B lymphocytes (Bregs) increased from a median of 6% before MIC infusion to 20% on day 180, which was 19- and 68-fold higher, respectively, than in 2 independent cohorts of transplanted controls. The majority of Bregs produced the immunosuppressive cytokine IL-10. MIC-treated patients showed the Immune Tolerance Network operational tolerance signature.CONCLUSIONMIC administration was safe and could be a future tool for the targeted induction of tolerogenic Bregs.TRIAL REGISTRATIONEudraCT number: 2014-002086-30; ClinicalTrials.gov identifier: NCT02560220.FUNDINGFederal Ministry for Economic Affairs and Technology, Berlin, Germany, and TolerogenixX GmbH, Heidelberg, Germany.
Collapse
Affiliation(s)
- Christian Morath
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany.,TolerogenixX GmbH, Heidelberg, Germany
| | - Anita Schmitt
- TolerogenixX GmbH, Heidelberg, Germany.,Department of Hematology, Oncology and Rheumatology
| | - Christian Kleist
- Transplantation Immunology, Institute of Immunology.,Department of Nuclear Medicine
| | | | | | - Caner Süsal
- Transplantation Immunology, Institute of Immunology
| | - Eman Ibrahim
- Transplantation Immunology, Institute of Immunology
| | - Florian Kälble
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Claudius Speer
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Nusshag
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Luiza Pego da Silva
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany.,TolerogenixX GmbH, Heidelberg, Germany
| | - Claudia Sommerer
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Lei Wang
- TolerogenixX GmbH, Heidelberg, Germany.,Department of Hematology, Oncology and Rheumatology
| | - Ming Ni
- Department of Hematology, Oncology and Rheumatology
| | | | - David Czock
- Department of Clinical Pharmacology and Pharmacoepidemiology
| | | | | | - Anja Sander
- Institute of Medical Biometry and Informatics
| | | | | | | | - Paul Schnitzler
- Virology, Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Jörg D Hoheisel
- Division of Functional Genome Analysis, DKFZ, Heidelberg, Germany
| | - Shakhawan A Mustafa
- Division of Functional Genome Analysis, DKFZ, Heidelberg, Germany.,Kurdistan Institution for Strategic Studies and Scientific Research, Kurdistan Region, Iraq
| | | | - Andrea S Bauer
- Division of Functional Genome Analysis, DKFZ, Heidelberg, Germany
| | - Jochen Reiser
- Department of Medicine, Rush Medical College, Rush University, Chicago, Illinois, USA
| | - Martin Zeier
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Matthias Schaier
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany.,TolerogenixX GmbH, Heidelberg, Germany
| | | |
Collapse
|
21
|
Cherukuri A, Mohib K, Rothstein DM. Regulatory B cells: TIM-1, transplant tolerance, and rejection. Immunol Rev 2021; 299:31-44. [PMID: 33484008 PMCID: PMC7968891 DOI: 10.1111/imr.12933] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022]
Abstract
Regulatory B cells (Bregs) ameliorate autoimmune disease and prevent allograft rejection. Conversely, they hinder effective clearance of pathogens and malignancies. Breg activity is mainly attributed to IL-10 expression, but also utilizes additional regulatory mechanisms such as TGF-β, FasL, IL-35, and TIGIT. Although Bregs are present in various subsets defined by phenotypic markers (including canonical B cell subsets), our understanding of Bregs has been limited by the lack of a broadly inclusive and specific phenotypic or transcriptional marker. TIM-1, a broad marker for Bregs first identified in transplant models, plays a major role in Breg maintenance and induction. Here, we expand on the role of TIM-1+ Bregs in immune tolerance and propose TIM-1 as a unifying marker for Bregs that utilize various inhibitory mechanisms in addition to IL-10. Further, this review provides an in-depth assessment of our understanding of Bregs in transplantation as elucidated in murine models and clinical studies. These studies highlight the major contribution of Bregs in preventing allograft rejection, and their ability to serve as highly predictive biomarkers for clinical transplant outcomes.
Collapse
Affiliation(s)
- Aravind Cherukuri
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kanishka Mohib
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David M Rothstein
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
22
|
Beckett J, Hester J, Issa F, Shankar S. Regulatory B cells in transplantation: roadmaps to clinic. Transpl Int 2020; 33:1353-1368. [PMID: 32725703 DOI: 10.1111/tri.13706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/08/2020] [Accepted: 07/23/2020] [Indexed: 12/16/2022]
Abstract
Over the last two decades, an additional and important role for B cells has been established in immune regulation. Preclinical studies demonstrate that regulatory B cells (Breg) can prolong allograft survival in animal models and induce regulatory T cells. Operationally tolerant human kidney transplant recipients demonstrate B-cell-associated gene signatures of immune tolerance, and novel therapeutic agents can induce Bregs in phase I clinical trials in transplantation. Our rapidly expanding appreciation of this novel B-cell subtype has made the road to clinical application a reality. Here, we outline several translational pathways by which Bregs could soon be introduced to the transplant clinic.
Collapse
Affiliation(s)
- Joseph Beckett
- Transplant Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Joanna Hester
- Transplant Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Fadi Issa
- Transplant Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Sushma Shankar
- Transplant Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
23
|
Christakoudi S, Runglall M, Mobillo P, Rebollo-Mesa I, Tsui TL, Nova-Lamperti E, Taube C, Norris S, Kamra Y, Hilton R, Augustine T, Bhandari S, Baker R, Berglund D, Carr S, Game D, Griffin S, Kalra PA, Lewis R, Mark PB, Marks SD, MacPhee I, McKane W, Mohaupt MG, Paz-Artal E, Kon SP, Serón D, Sinha MD, Tucker B, Viklický O, Stahl D, Lechler RI, Lord GM, Hernandez-Fuentes MP. Development and validation of the first consensus gene-expression signature of operational tolerance in kidney transplantation, incorporating adjustment for immunosuppressive drug therapy. EBioMedicine 2020; 58:102899. [PMID: 32707447 PMCID: PMC7374249 DOI: 10.1016/j.ebiom.2020.102899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Kidney transplant recipients (KTRs) with "operational tolerance" (OT) maintain a functioning graft without immunosuppressive (IS) drugs, thus avoiding treatment complications. Nevertheless, IS drugs can influence gene-expression signatures aiming to identify OT among treated KTRs. METHODS We compared five published signatures of OT in peripheral blood samples from 18 tolerant, 183 stable, and 34 chronic rejector KTRs, using gene-expression levels with and without adjustment for IS drugs and regularised logistic regression. FINDINGS IS drugs explained up to 50% of the variability in gene-expression and 20-30% of the variability in the probability of OT predicted by signatures without drug adjustment. We present a parsimonious consensus gene-set to identify OT, derived from joint analysis of IS-drug-adjusted expression of five published signature gene-sets. This signature, including CD40, CTLA4, HSD11B1, IGKV4-1, MZB1, NR3C2, and RAB40C genes, showed an area under the curve 0⋅92 (95% confidence interval 0⋅88-0⋅94) in cross-validation and 0⋅97 (0⋅93-1⋅00) in six months follow-up samples. INTERPRETATION We advocate including adjustment for IS drug therapy in the development stage of gene-expression signatures of OT to reduce the risk of capturing features of treatment, which could be lost following IS drug minimisation or withdrawal. Our signature, however, would require further validation in an independent dataset and a biomarker-led trial. FUNDING FP7-HEALTH-2012-INNOVATION-1 [305147:BIO-DrIM] (SC,IR-M,PM,DSt); MRC [G0801537/ID:88245] (MPH-F); MRC [MR/J006742/1] (IR-M); Guy's&StThomas' Charity [R080530]&[R090782]; CONICYT-Bicentennial-Becas-Chile (EN-L); EU:FP7/2007-2013 [HEALTH-F5-2010-260687: The ONE Study] (MPH-F); Czech Ministry of Health [NV19-06-00031] (OV); NIHR-BRC Guy's&StThomas' NHS Foundation Trust and KCL (SC); UK Clinical Research Networks [portfolio:7521].
Collapse
Affiliation(s)
- Sofia Christakoudi
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, UK; Biostatistics and Health Informatics Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK.
| | - Manohursingh Runglall
- NIHR Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Paula Mobillo
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Irene Rebollo-Mesa
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, UK; Biostatistics and Health Informatics Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK
| | - Tjir-Li Tsui
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, UK; Guy's and St Thomas' NHS Foundation Trust, Great Maze Pond, London SE1 9RT, UK
| | | | - Catharine Taube
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Sonia Norris
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Yogesh Kamra
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Rachel Hilton
- Guy's and St Thomas' NHS Foundation Trust, Great Maze Pond, London SE1 9RT, UK
| | - Titus Augustine
- Manchester Royal Infirmary, Oxford Rd, Manchester M13 9WL, UK
| | - Sunil Bhandari
- Hull University Teaching Hospitals NHS Trust, Anlaby Rd, Hull HU3 2JZ, UK
| | - Richard Baker
- St James's University Hospital, Beckett St, Leeds LS9 7TF, UK
| | - David Berglund
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbecklaboratoriet, 751 85 Uppsala, Sweden
| | - Sue Carr
- Leicester General Hospital, Gwendolen Rd, Leicester LE5 4PW, UK
| | - David Game
- Guy's and St Thomas' NHS Foundation Trust, Great Maze Pond, London SE1 9RT, UK
| | - Sian Griffin
- Cardiff and Vale University Health Board, Cardiff CF14 4XW, UK
| | - Philip A Kalra
- Salford Royal NHS Foundation Trust, Stott Ln, Salford M6 8HD, UK
| | - Robert Lewis
- Queen Alexandra Hospital, Southwick Hill Rd, Cosham, Portsmouth PO6 3LY, UK
| | - Patrick B Mark
- University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Stephen D Marks
- Department of Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK; University College London Great Ormond Street Institute of Child Health, NIHR Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, UK
| | - Iain MacPhee
- St George's Hospital, Blackshaw Rd, London SW17 0QT, UK & Institute of Medical and Biomedical Education, St George's, University of London, Cranmer Terrace, London SW17 0RE
| | - William McKane
- Northern General Hospital, Herries Rd, Sheffield S5 7AU, UK
| | - Markus G Mohaupt
- Internal Medicine, Lindenhofgruppe Berne, Switzerland; University of Bern, Berne, Switzerland; School of Medicine, University of Nottingham, Nottingham NG5 1PB, UK
| | - Estela Paz-Artal
- Department of Immunology and imas12 Research Institute, University Hospital 12 de Octubre, Madrid, Spain
| | - Sui Phin Kon
- King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Daniel Serón
- Hospital Universitario Vall d'Hebrón, Passeig de la Vall d'Hebron, 119-129, 08035 Barcelona, Spain
| | - Manish D Sinha
- Evelina London Children's Hospital, Westminster Bridge Rd, Lambeth, London SE1 7EH, UK; Guy's and St Thomas' NHS Foundation Trust, Great Maze Pond, London SE1 9RT, UK; King's Health Partners, Guy's Hospital, London SE1 9RT, UK
| | - Beatriz Tucker
- King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Ondrej Viklický
- Transplantační laboratoř, Institut klinické a experimentální medicíny (IKEM), Vídeňská 1958/9, 140 21 Praha 4, Czech Republic
| | - Daniel Stahl
- Biostatistics and Health Informatics Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK
| | - Robert I Lechler
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, UK; King's Health Partners, Guy's Hospital, London SE1 9RT, UK
| | - Graham M Lord
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, UK; NIHR Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, Great Maze Pond, London SE1 9RT, UK; Guy's and St Thomas' NHS Foundation Trust, Great Maze Pond, London SE1 9RT, UK
| | - Maria P Hernandez-Fuentes
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, UK; King's Health Partners, Guy's Hospital, London SE1 9RT, UK
| |
Collapse
|
24
|
Salehi S, Shahi A, Afzali S, Keshtkar AA, Farashi Bonab S, Soleymanian T, Ansaripour B, Amirzargar AA. Transitional immature regulatory B cells and regulatory cytokines can discriminate chronic antibody-mediated rejection from stable graft function. Int Immunopharmacol 2020; 86:106750. [PMID: 32652501 DOI: 10.1016/j.intimp.2020.106750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The balance between inflammatory and anti-inflammatory responses of the immune system has been demonstrated to determine the fate of transplanted allografts. Here we analyzed CD19+CD24hiCD38hi immature transitional regulatory B (TRB) cells, as well as the gene and protein levels of interleukin (IL)-10 and transforming growth factor (TGF)-β in the three separate groups, include of stable transplanted subjects, chronic antibody-mediated rejection (cAMR) patients, and healthy individuals. METHOD Peripheral blood mononuclear cells (PBMCs) from stable subjects (n = 36), cAMR patients (n = 36) and healthy controls (n = 18) were isolated. Flowcytometry was performed for CD19, CD24, and CD38 surface markers. ELISA and quantitative real-time PCR were performed for IL-10 and TGF-β cytokines. RESULT The percentages of immature TRB cells were significantly decrease in cAMR patients (0.98%) versus stable recipients (2.81%) and healthy subjects (4.03%) (P = 0.001 and P < 0.001, respectively). Total lymphocytes, circulating B cells, memory and mature subsets of B cells did not show any significant difference between the groups. TGF-β mRNA was 3-fold upregulated in the cAMR group compared to stable patients (P < 0.001.), but without significant alteration at the protein level. Also, long-term survival renal transplant recipients had a higher protein but not mRNA levels of IL-10 than short-term survival renal transplant recipients. CONCLUSION It seems that immature TRB cell subpopulation might be a crucial regulator of immune system response and plays an important role in determining the transplantation outcome. Furthermore, immunosuppressive IL-10 and TGF-β cytokines might act as a double sword and can exhibit either pathogenic or protective effects against allograft.
Collapse
Affiliation(s)
- Saeedeh Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Science, Tehran, Iran; Student's Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Shahi
- Department of Immunology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Shima Afzali
- Department of Immunology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Abbas Ali Keshtkar
- Department of Health Sciences Education Development, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Samad Farashi Bonab
- Department of Immunology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Tayebeh Soleymanian
- Nephrology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bita Ansaripour
- Department of Immunology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Ali Akbar Amirzargar
- Department of Immunology, School of Medicine, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
25
|
Xu H, Mehta AK, Gao Q, Lee HJ, Ghali A, Guasch A, Kirk AD. B cell reconstitution following alemtuzumab induction under a belatacept-based maintenance regimen. Am J Transplant 2020; 20:653-662. [PMID: 31596034 PMCID: PMC7202689 DOI: 10.1111/ajt.15639] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 09/06/2019] [Accepted: 09/24/2019] [Indexed: 01/25/2023]
Abstract
Lymphocyte depletion has been shown to control costimulation blockade-resistant rejection but, in some settings, to exacerbate antibody-mediated rejection (AMR). We have used alemtuzumab, which depletes T and B cells, combined with belatacept and rapamycin and previously reported control of both costimulation blockade-resistant rejection and AMR. To evaluate this regimen's effect on B cell signatures, we investigated 40 patients undergoing this therapy. B cell counts and phenotypes were interrogated using flow cytometry, and serum was analyzed for total IgG, IgM, and donor-specific alloantibody (DSA). Alemtuzumab induction produced pan-lymphocyte depletion; B cells repopulated faster and more completely than T cells. Reconstituting B cells were predominantly naïve, and memory B cells were significantly reduced (P = .001) post repopulation. Two B cell populations with potential immunomodulatory effects-regulatory (CD38hi CD24hi IgMhi CD20hi ) and transitional B cells (CD19+ CD27- IgD+ CD38hi )-were enriched posttransplant (P = .001). Total serum IgG decreased from baseline (P = .016) while IgM levels remained stable. Five patients developed DSAs within 36 months posttransplant, but none developed AMR. Baseline IgG levels in these patients were significantly higher than those in patients without DSAs. These findings suggest that belatacept and rapamycin together limit homeostatic B cell activation following B cell depletion and may lessen the risk of AMR. This regimen warrants prospective, comparative study. ClinicalTrials.gov NCT00565773.
Collapse
Affiliation(s)
- He Xu
- Department of Surgery, Duke University School of Medicine, Durham, NC,,Corresponding author: He Xu, M.D., Mailing Address: Department of Surgery, Duke University Medical Center, Edwin Jones Building, Room 368, Durham, NC 27710, Telephone: (919) 681-4853, Fax Number: (919) 681-2779,
| | - Aneesh K. Mehta
- Emory Transplant Center, Emory University, Atlanta, GA, United States
| | - Qimeng Gao
- Department of Surgery, Duke University School of Medicine, Durham, NC
| | - Hui-Jie Lee
- Department of Biostatistics & Bioinformatics, Duke University School of Medicine, Durham, NC
| | - Ada Ghali
- Emory Transplant Center, Emory University, Atlanta, GA, United States
| | - Antonio Guasch
- Emory Transplant Center, Emory University, Atlanta, GA, United States
| | - Allan D. Kirk
- Department of Surgery, Duke University School of Medicine, Durham, NC
| |
Collapse
|
26
|
Zhuang Q, Li H, Yu M, Peng B, Liu S, Luo M, Stefano GB, Kream RM, Ming Y. Profiles of B-cell subsets in immunologically stable renal allograft recipients and end-stage renal disease patients. Transpl Immunol 2020; 58:101249. [DOI: 10.1016/j.trim.2019.101249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 12/27/2022]
|
27
|
Brosseau C, Danger R, Durand M, Durand E, Foureau A, Lacoste P, Tissot A, Roux A, Reynaud-Gaubert M, Kessler R, Mussot S, Dromer C, Brugière O, Mornex JF, Guillemain R, Claustre J, Magnan A, Brouard S, Velly J, Rozé H, Blanchard E, Antoine M, Cappello M, Ruiz M, Sokolow Y, Vanden Eynden F, Van Nooten G, Barvais L, Berré J, Brimioulle S, De Backer D, Créteur J, Engelman E, Huybrechts I, Ickx B, Preiser T, Tuna T, Van Obberghe L, Vancutsem N, Vincent J, De Vuyst P, Etienne I, Féry F, Jacobs F, Knoop C, Vachiéry J, Van den Borne P, Wellemans I, Amand G, Collignon L, Giroux M, Angelescu D, Chavanon O, Hacini R, Martin C, Pirvu A, Porcu P, Albaladejo P, Allègre C, Bataillard A, Bedague D, Briot E, Casez‐Brasseur M, Colas D, Dessertaine G, Francony G, Hebrard A, Marino M, Protar D, Rehm D, Robin S, Rossi‐Blancher M, Augier C, Bedouch P, Boignard A, Bouvaist H, Briault A, Camara B, Chanoine S, Dubuc M, Quétant S, Maurizi J, Pavèse P, Pison C, Saint‐Raymond C, Wion N, Chérion C, Grima R, Jegaden O, Maury J, Tronc F, Flamens C, Paulus S, Philit F, Senechal A, Glérant J, Turquier S, Gamondes D, Chalabresse L, Thivolet‐Bejui F, Barnel C, Dubois C, Tiberghien A, Pimpec‐Barthes F, Bel A, Mordant P, Achouh P, Boussaud V, Méléard D, Bricourt M, Cholley B, Pezella V, Brioude G, D'Journo X, Doddoli C, Thomas P, Trousse D, Dizier S, Leone M, Papazian L, Bregeon F, Coltey B, Dufeu N, Dutau H, Garcia S, Gaubert J, Gomez C, Laroumagne S, Mouton G, Nieves A, Picard C, Rolain J, Sampol E, Secq V, Perigaud C, Roussel J, Senage T, Mugniot A, Danner I, Haloun A, Abbes S, Bry C, Blanc F, Lepoivre T, Botturi‐Cavaillès K, Loy J, Bernard M, Godard E, Royer P, Henrio K, Dartevelle P, Fabre D, Fadel E, Mercier O, Stephan F, Viard P, Cerrina J, Dorfmuller P, Feuillet S, Ghigna M, Hervén P, Le Roy Ladurie F, Le Pavec J, Thomas de Montpreville V, Lamrani L, Castier Y, Mordant P, Cerceau P, Augustin P, Jean‐Baptiste S, Boudinet S, Montravers P, Dauriat G, Jébrak G, Mal H, Marceau A, Métivier A, Thabut G, Lhuillier E, Dupin C, Bunel V, Falcoz P, Massard G, Santelmo N, Ajob G, Collange O, Helms O, Hentz J, Roche A, Bakouboula B, Degot T, Dory A, Hirschi S, Ohlmann‐Caillard S, Kessler L, Schuller A, Bennedif K, Vargas S, Bonnette P, Chapelier A, Puyo P, Sage E, Bresson J, Caille V, Cerf C, Devaquet J, Dumans‐Nizard V, Felten M, Fischler M, Si Larbi A, Leguen M, Ley L, Liu N, Trebbia G, De Miranda S, Douvry B, Gonin F, Grenet D, Hamid A, Neveu H, Parquin F, Picard C, Stern M, Bouillioud F, Cahen P, Colombat M, Dautricourt C, Delahousse M, D'Urso B, Gravisse J, Guth A, Hillaire S, Honderlick P, Lequintrec M, Longchampt E, Mellot F, Scherrer A, Temagoult L, Tricot L, Vasse M, Veyrie C, Zemoura L, Dahan M, Murris M, Benahoua H, Berjaud J, Le Borgne Krams A, Crognier L, Brouchet L, Mathe O, Didier A, Krueger T, Ris H, Gonzalez M, Aubert J, Nicod L, Marsland B, Berutto T, Rochat T, Soccal P, Jolliet P, Koutsokera A, Marcucci C, Manuel O, Bernasconi E, Chollet M, Gronchi F, Courbon C, Hillinger S, Inci I, Kestenholz P, Weder W, Schuepbach R, Zalunardo M, Benden C, Buergi U, Huber L, Isenring B, Schuurmans M, Gaspert A, Holzmann D, Müller N, Schmid C, Vrugt B, Rechsteiner T, Fritz A, Maier D, Deplanche K, Koubi D, Ernst F, Paprotka T, Schmitt M, Wahl B, Boissel J, Olivera‐Botello G, Trocmé C, Toussaint B, Bourgoin‐Voillard S, Séve M, Benmerad M, Siroux V, Slama R, Auffray C, Charron D, Lefaudeux D, Pellet J. Blood CD9 + B cell, a biomarker of bronchiolitis obliterans syndrome after lung transplantation. Am J Transplant 2019; 19:3162-3175. [PMID: 31305014 DOI: 10.1111/ajt.15532] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/12/2019] [Accepted: 07/07/2019] [Indexed: 01/25/2023]
Abstract
Bronchiolitis obliterans syndrome is the main limitation for long-term survival after lung transplantation. Some specific B cell populations are associated with long-term graft acceptance. We aimed to monitor the B cell profile during early development of bronchiolitis obliterans syndrome after lung transplantation. The B cell longitudinal profile was analyzed in peripheral blood mononuclear cells from patients with bronchiolitis obliterans syndrome and patients who remained stable over 3 years of follow-up. CD24hi CD38hi transitional B cells were increased in stable patients only, and reached a peak 24 months after transplantation, whereas they remained unchanged in patients who developed a bronchiolitis obliterans syndrome. These CD24hi CD38hi transitional B cells specifically secrete IL-10 and express CD9. Thus, patients with a total CD9+ B cell frequency below 6.6% displayed significantly higher incidence of bronchiolitis obliterans syndrome (AUC = 0.836, PPV = 0.75, NPV = 1). These data are the first to associate IL-10-secreting CD24hi CD38hi transitional B cells expressing CD9 with better allograft outcome in lung transplant recipients. CD9-expressing B cells appear as a contributor to a favorable environment essential for the maintenance of long-term stable graft function and as a new predictive biomarker of bronchiolitis obliterans syndrome-free survival.
Collapse
Affiliation(s)
- Carole Brosseau
- Centre de Recherche en Transplantation et Immunologie, UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,Institut du thorax, Inserm UMR 1087, CNRS, UMR 6291, Université de Nantes, Nantes, France.,Institut du thorax, CHU de Nantes, Nantes, France
| | - Richard Danger
- Centre de Recherche en Transplantation et Immunologie, UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Maxim Durand
- Centre de Recherche en Transplantation et Immunologie, UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France
| | - Eugénie Durand
- Centre de Recherche en Transplantation et Immunologie, UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Aurore Foureau
- Institut du thorax, Inserm UMR 1087, CNRS, UMR 6291, Université de Nantes, Nantes, France.,Institut du thorax, CHU de Nantes, Nantes, France
| | - Philippe Lacoste
- Institut du thorax, Inserm UMR 1087, CNRS, UMR 6291, Université de Nantes, Nantes, France.,Institut du thorax, CHU de Nantes, Nantes, France
| | - Adrien Tissot
- Centre de Recherche en Transplantation et Immunologie, UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,Institut du thorax, Inserm UMR 1087, CNRS, UMR 6291, Université de Nantes, Nantes, France.,Institut du thorax, CHU de Nantes, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France
| | - Antoine Roux
- Hôpital Foch, Suresnes, France.,Université Versailles Saint-Quentin-en-Yvelines, UPRES EA220, Versailles, France
| | | | | | - Sacha Mussot
- Centre Chirurgical Marie Lannelongue, Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardiopulmonaire, Le Plessis Robinson, France
| | | | - Olivier Brugière
- Hôpital Bichat, Service de Pneumologie et Transplantation Pulmonaire, Paris, France
| | | | | | - Johanna Claustre
- Clinique Universitaire Pneumologie, Pôle Thorax et Vaisseaux, CHU Grenoble Alpes, Université Grenoble Alpes, Inserm U1055, Grenoble, France
| | - Antoine Magnan
- Institut du thorax, Inserm UMR 1087, CNRS, UMR 6291, Université de Nantes, Nantes, France.,Institut du thorax, CHU de Nantes, Nantes, France
| | - Sophie Brouard
- Centre de Recherche en Transplantation et Immunologie, UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,Centre d'Investigation Clinique (CIC) Biothérapie, CHU Nantes, Nantes, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Regulatory B cells (Bregs) are potent inhibitors of the immune system with the capacity to suppress autoimmune and alloimmune responses. Murine transplant models showing that Bregs can promote allograft tolerance are now supported by clinical data showing that patients who develop operational tolerance have higher frequency of Bregs. Breg function has been widely studied resulting in improved understanding of their biology and effector mechanisms. However, our overall understanding of Bregs remains poor due the lack of specific marker, limited knowledge of how and where they act in vivo, and whether different Breg subpopulations exhibit different functions. RECENT FINDINGS In this review we detail murine and human phenotypic markers used to identify Bregs, their induction, maintenance, and mechanisms of immune suppression. We highlight recent advances in the field including their use as biomarkers to predict allograft rejection, in-vitro expansion of Bregs, and the effects of commonly used immunosuppressive drugs on their induction and frequency. SUMMARY Clinical data continue to emerge in support of Bregs playing an important role in preventing transplant rejection. Hence, it is necessary for the transplant field to better comprehend the mechanisms of Breg induction and approaches to preserve or even enhance their activity to improve long-term transplant outcomes.
Collapse
|
29
|
Erpicum P, Weekers L, Detry O, Bonvoisin C, Delbouille MH, Grégoire C, Baudoux E, Briquet A, Lechanteur C, Maggipinto G, Somja J, Pottel H, Baron F, Jouret F, Beguin Y. Infusion of third-party mesenchymal stromal cells after kidney transplantation: a phase I-II, open-label, clinical study. Kidney Int 2019; 95:693-707. [DOI: 10.1016/j.kint.2018.08.046] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/25/2018] [Accepted: 08/23/2018] [Indexed: 02/08/2023]
|
30
|
Leibler C, Thiolat A, Elsner RA, El Karoui K, Samson C, Grimbert P. Costimulatory blockade molecules and B-cell-mediated immune response: current knowledge and perspectives. Kidney Int 2019; 95:774-786. [PMID: 30711200 DOI: 10.1016/j.kint.2018.10.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/17/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022]
Abstract
There is an urgent need for therapeutic agents that target humoral alloimmunity in solid organ transplantation. This includes sensitized patients with preformed donor-specific human leukocyte antigen antibodies and patients who develop de novo donor-specific antibodies, both of which are associated with acute and chronic antibody-mediated rejection and allograft loss. In the last decade, both experimental and clinical studies highlighted the major impact of costimulation molecules in the control of immune responses both in the field of transplantation and autoimmune disease. Although these molecules have been initially developed to control the early steps of T-cell activation, recent evidence also supports their influence at several steps of the humoral response. In this review, we aim to provide an overview of the current knowledge of the effects of costimulatory blockade agents on humoral responses in both autoimmune and allogeneic contexts. We first present the effects of costimulatory molecules on the different steps of alloantibody production. We then summarize mechanisms and clinical results observed using cytotoxic T lymphocyte antigen-4 (CTLA4)-Ig molecules both in transplantation and autoimmunity. Finally, we present the potential interest and implications of other costimulatory family members as therapeutic targets, with emphasis on combinatorial approaches, for the optimal control of the alloantigen-specific humoral response.
Collapse
Affiliation(s)
- Claire Leibler
- Service de Néphrologie et Transplantation, Pôle Cancérologie-Immunité-Transplantation-Infectiologie, Paris-Est Creteil, France; Institut National de la Santé et de la Recherch Médicale, U955, Equipe 21 and Université Paris-Est, Créteil, France; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Allan Thiolat
- Institut National de la Santé et de la Recherch Médicale, U955, Equipe 21 and Université Paris-Est, Créteil, France
| | - Rebecca A Elsner
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Khalil El Karoui
- Service de Néphrologie et Transplantation, Pôle Cancérologie-Immunité-Transplantation-Infectiologie, Paris-Est Creteil, France; Institut National de la Santé et de la Recherch Médicale, U955, Equipe 21 and Université Paris-Est, Créteil, France
| | - Chloe Samson
- Institut National de la Santé et de la Recherch Médicale, U955, Equipe 21 and Université Paris-Est, Créteil, France
| | - Philippe Grimbert
- Service de Néphrologie et Transplantation, Pôle Cancérologie-Immunité-Transplantation-Infectiologie, Paris-Est Creteil, France; Institut National de la Santé et de la Recherch Médicale, U955, Equipe 21 and Université Paris-Est, Créteil, France.
| |
Collapse
|
31
|
Sieńko J, Kotowski M, Paczkowska E, Sobuś A, Tejchman K, Piątek J, Pilichowska E, Kędzierska-Kapuza K, Ostrowski M. Correlation Between Stem and Progenitor Cells Number and Immune Response in Patients After Allogeneic Kidney Transplant. Ann Transplant 2018; 23:874-878. [PMID: 30573723 PMCID: PMC6319141 DOI: 10.12659/aot.912686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background Stem and progenitor cells are of great interest in all medical procedures involving tissue regeneration. There is a consensus that the use of stem cells after solid organ transplantation may play a role in tissue repair and in immunosuppression. The aim of this study was to determine possible relations between stem cell count and the immune response in a group of patients after kidney transplantation. Material/Methods The study was conducted on a group of 100 patients who underwent kidney transplantation. The following phenotypic markers of the studied cell subpopulations were adopted: Treg cells (CD3+CD4+CD25high), circulating hematopoietic cells (CD34+CD133+CD45+CD38−), and non-hematopoietic cells (Lin−CXCR4+CD133−CD45−). Cell subpopulations were assessed using LSRII flow cytometer (BD Biosciences, San Jose, CA, USA). Results Positive correlation was observed between non-hematopoietic stem cells percentage and recipient’s platelets count (P=0.04). Moreover, a higher percentage of non-hematopoietic cells was accompanied by lower numbers of B lymphocytes (P=0.03) and Treg cells (P=0.02). Conclusions Our study revealed significant associations between the intensity of ongoing immune response processes and tissue damage, and the release of stem and progenitor cells into circulation. These findings suggest their role in the stimulation of protective processes in terms of graft regeneration.
Collapse
Affiliation(s)
- Jerzy Sieńko
- Department of General Surgery and Transplantation, Pomeranian Medical University, Szczecin, Poland
| | - Maciej Kotowski
- Department of General Surgery and Transplantation, Pomeranian Medical University, Szczecin, Poland.,Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Edyta Paczkowska
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Anna Sobuś
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Karol Tejchman
- Department of General Surgery and Transplantation, Pomeranian Medical University, Szczecin, Poland
| | - Jarosław Piątek
- Department of Forensic Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Ewa Pilichowska
- Department of General Surgery and Transplantation, Pomeranian Medical University, Szczecin, Poland
| | - Karolina Kędzierska-Kapuza
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Marek Ostrowski
- Department of General Surgery and Transplantation, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
32
|
Regulatory and Effector B Cells: A New Path Toward Biomarkers and Therapeutic Targets to Improve Transplant Outcomes? Clin Lab Med 2018; 39:15-29. [PMID: 30709503 DOI: 10.1016/j.cll.2018.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
B cells shape the alloimmune response through polarized subsets. These cells inhibit or promote immune responses by expressing suppressive or proinflammatory cytokines. Their summed activity dictates the influence of B cells on the alloimmune response. We review the evidence for regulatory B cells and effector B cells in mice and humans, discuss current limitations in their phenotypic identification, and discuss regulatory B cells as a signature for clinical renal allograft tolerance and predictive markers for allograft outcomes. We discuss the effects of therapeutic agents on regulatory B cells and potential approaches to augment their numbers as a therapeutic tool.
Collapse
|
33
|
Lee YH, Seo JW, Kim YG, Moon JY, Kim JS, Jeong KH, Kim BM, Kim KW, Yang CW, Kim CD, Park JB, Kim YH, Chung BH, Lee SH. Validation Study of an Operational Tolerance Signature in Korean Kidney Transplant Recipients. Immune Netw 2018; 18:e36. [PMID: 30402331 PMCID: PMC6215901 DOI: 10.4110/in.2018.18.e36] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/21/2022] Open
Abstract
Operational tolerance (OT), defined as maintaining stable graft function without immunosuppression after transplant surgery, is an ideal goal for kidney transplant recipients (KTRs). Recent investigations have demonstrated the distinctive features of B cells, T cells, and dendritic cell-related gene signatures and the distributions of circulating lymphocytes in these patients; nonetheless, substantial heterogeneities exist across studies. This study was conducted to determine whether previously reported candidate gene biomarkers and the profiles of lymphocyte subsets of OT could be applied in Korean KTRs. Peripheral blood samples were collected from 153 patients, including 7 operationally tolerant patients. Quantitative real-time PCR and flow cytometry were performed to evaluate gene expression and lymphocyte subsets, respectively. Patients with OT showed significantly higher levels of B cell-related gene signatures (IGKV1D-13 and IGKV4-1), while T cell-related genes (TOAG-1) and dendritic cell-related genes (BNC2, KLF6, and CYP1B1) were not differentially expressed across groups. Lymphocyte subset analyses also revealed a higher proportion of immature B cells in this group. In contrast, the distributions of CD4+ T cells, CD8+ T cells, mature B cells, and memory B cells showed no differences across diagnostic groups. An OT signature, generated by the integration of IGKV1D-13, IGKV4-1, and immature B cells, effectively discriminated patients with OT from those in other diagnostic groups. Finally, the OT signature was observed among 5.6% of patients who had stable graft function for more than 10 years while on immunosuppression. In conclusion, we validated an association of B cells and their related signature with OT in Korean KTRs.
Collapse
Affiliation(s)
- Yu Ho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Jung-Woo Seo
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Yang Gyun Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Ju-Young Moon
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Jin Sug Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Kyung-Hwan Jeong
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Bo-Mi Kim
- Transplant Research Center, Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Kyoung Woon Kim
- Transplant Research Center, Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Chul Woo Yang
- Transplant Research Center, Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Chan-Duck Kim
- Division of Nephrology, Department of Internal Medicine, Kyungpook National University Hospital, Daegu 41404, Korea
| | - Jae Berm Park
- Department of Surgery, Samsung Medical Center, Seoul 06351, Korea
| | - Yeong Hoon Kim
- Division of Nephrology, Department of Internal Medicine, Inje University College of Medicine, Busan 47392, Korea
| | - Byung Ha Chung
- Transplant Research Center, Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Sang-Ho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
34
|
Burton H, Dorling A. Transitional B cell subsets-a convincing predictive biomarker for allograft loss? Kidney Int 2018; 91:18-20. [PMID: 28003081 DOI: 10.1016/j.kint.2016.10.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/19/2016] [Indexed: 11/17/2022]
Abstract
In this issue, Cherukuri and colleagues describe a convincing association between the proportion of transitional B lymphocyte subsets in kidney transplant recipients and long-term outcomes, and present a biologically plausible mechanism, based on differential ability of T1 and T2 cells to regulate in vitro T cell responses to explain the link. Further work is clearly needed to validate their claim that measurement of T1/T2 ratios may represent a reliable and reproducible predictive biomarker of transplant outcomes.
Collapse
Affiliation(s)
- Hannah Burton
- King's College London, MRC Centre for Transplantation, London, UK
| | - Anthony Dorling
- King's College London, MRC Centre for Transplantation, London, UK.
| |
Collapse
|
35
|
Mahr B, Granofszky N, Muckenhuber M, Wekerle T. Transplantation Tolerance through Hematopoietic Chimerism: Progress and Challenges for Clinical Translation. Front Immunol 2017; 8:1762. [PMID: 29312303 PMCID: PMC5743750 DOI: 10.3389/fimmu.2017.01762] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023] Open
Abstract
The perception that transplantation of hematopoietic stem cells can confer tolerance to any tissue or organ from the same donor is widely accepted but it has not yet become a treatment option in clinical routine. The reasons for this are multifaceted but can generally be classified into safety and efficacy concerns that also became evident from the results of the first clinical pilot trials. In comparison to standard immunosuppressive therapies, the infection risk associated with the cytotoxic pre-conditioning necessary to allow allogeneic bone marrow engraftment and the risk of developing graft-vs.-host disease (GVHD) constitute the most prohibitive hurdles. However, several approaches have recently been developed at the experimental level to reduce or even overcome the necessity for cytoreductive conditioning, such as costimulation blockade, pro-apoptotic drugs, or Treg therapy. But even in the absence of any hazardous pretreatment, the recipients are exposed to the risk of developing GVHD as long as non-tolerant donor T cells are present. Total lymphoid irradiation and enriching the stem cell graft with facilitating cells emerged as potential strategies to reduce this peril. On the other hand, the long-lasting survival of kidney allografts, seen with transient chimerism in some clinical series, questions the need for durable chimerism for robust tolerance. From a safety point of view, loss of chimerism would indeed be favorable as it eliminates the risk of GVHD, but also complicates the assessment of tolerance. Therefore, other biomarkers are warranted to monitor tolerance and to identify those patients who can safely be weaned off immunosuppression. In addition to these safety concerns, the limited efficacy of the current pilot trials with approximately 40-60% patients becoming tolerant remains an important issue that needs to be resolved. Overall, the road ahead to clinical routine may still be rocky but the first successful long-term patients and progress in pre-clinical research provide encouraging evidence that deliberately inducing tolerance through hematopoietic chimerism might eventually make it from dream to reality.
Collapse
Affiliation(s)
- Benedikt Mahr
- Department of Surgery, Section of Transplantation Immunology, Medical University of Vienna, Vienna, Austria
| | - Nicolas Granofszky
- Department of Surgery, Section of Transplantation Immunology, Medical University of Vienna, Vienna, Austria
| | - Moritz Muckenhuber
- Department of Surgery, Section of Transplantation Immunology, Medical University of Vienna, Vienna, Austria
| | - Thomas Wekerle
- Department of Surgery, Section of Transplantation Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
36
|
de Graav GN, Hesselink DA, Dieterich M, Kraaijeveld R, Verschoor W, Roelen DL, Litjens NHR, Chong AS, Weimar W, Baan CC. Belatacept Does Not Inhibit Follicular T Cell-Dependent B-Cell Differentiation in Kidney Transplantation. Front Immunol 2017; 8:641. [PMID: 28620390 PMCID: PMC5450507 DOI: 10.3389/fimmu.2017.00641] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/16/2017] [Indexed: 12/11/2022] Open
Abstract
Humoral alloreactivity has been recognized as a common cause of kidney transplant dysfunction. B-cell activation, differentiation, and antibody production are dependent on IL-21+CXCR5+follicular T-helper (Tfh) cells. Here, we studied whether belatacept, an inhibitor of the costimulatory CD28-CD80/86-pathway, interrupts the crosstalk between Tfh- and B-cells more efficiently than the calcineurin inhibitor tacrolimus. The suppressive effects of belatacept and tacrolimus on donor antigen-driven Tfh-B-cell interaction were functionally studied in peripheral blood mononuclear cells from 40 kidney transplant patients randomized to a belatacept- or tacrolimus-based immunosuppressive regimen. No significant differences in uncultured cells or donor antigen-stimulated cells were found between belatacept- and tacrolimus-treated patients in the CXCR5+Tfh cell generation and activation (upregulation of PD-1). Belatacept and tacrolimus in vitro minimally inhibited Tfh-cell generation (by ~6-7%) and partially prevented Tfh-cell activation (by ~30-50%). The proportion of IL-21+-activated Tfh-cells was partially decreased by in vitro addition of belatacept or tacrolimus (by ~60%). Baseline expressions and proportions of activated CD86+ B-cells, plasmablasts, and transitional B-cells after donor antigen stimulation did not differ between belatacept- and tacrolimus-treated patients. Donor antigen-driven CD86 upregulation on memory B-cells was not fully prevented by adding belatacept in vitro (~35%), even in supratherapeutic doses. In contrast to tacrolimus, belatacept failed to inhibit donor antigen-driven plasmablast formation (~50% inhibition vs. no inhibition, respectively, p < 0.0001). In summary, donor antigen-driven Tfh-B-cell crosstalk is similar in cells obtained from belatacept- and tacrolimus-treated patients. Belatacept is, however, less potent in vitro than tacrolimus in inhibiting Tfh-cell-dependent plasmablast formation.
Collapse
Affiliation(s)
- Gretchen N de Graav
- Department of Internal Medicine, Section Transplantation and Nephrology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Dennis A Hesselink
- Department of Internal Medicine, Section Transplantation and Nephrology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Marjolein Dieterich
- Department of Internal Medicine, Section Transplantation and Nephrology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Rens Kraaijeveld
- Department of Internal Medicine, Section Transplantation and Nephrology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Wenda Verschoor
- Department of Internal Medicine, Section Transplantation and Nephrology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Dave L Roelen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Nicolle H R Litjens
- Department of Internal Medicine, Section Transplantation and Nephrology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Anita S Chong
- Department of Surgery, The University of Chicago, Chicago, IL, United States
| | - Willem Weimar
- Department of Internal Medicine, Section Transplantation and Nephrology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Carla C Baan
- Department of Internal Medicine, Section Transplantation and Nephrology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
37
|
Zhu F, Bai X, Chen X. B lymphocytes in renal interstitial fibrosis. J Cell Commun Signal 2017; 11:213-218. [PMID: 28210941 DOI: 10.1007/s12079-017-0382-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/07/2017] [Indexed: 12/11/2022] Open
Abstract
Fibrosis is defined as an excessive deposition of extracellular matrix (ECM), which leads to the destruction of organ structure and impairment of organ function. Fibrosis occurs not only in kidney but also in lung, liver, heart, and skin. Common pathways of fibrosis are thought to exist. Renal interstitial fibrosis is a complex process that involves multiple molecular signaling and multiple cellular components, in which B cells appear to be one of the emerging important players. B cells may affect fibrosis through cytokine production and through interaction with other cells including fibroblasts, macrophages and T cells. This review summarizes recent research findings of B cells in fibrosis and provides an insight of how the future therapeutics of fibrosis could be developed from a B-cell point of view.
Collapse
Affiliation(s)
- Fengge Zhu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Xueyuan Bai
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China.
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China.
| |
Collapse
|
38
|
Schlößer HA, Thelen M, Dieplinger G, von Bergwelt-Baildon A, Garcia-Marquez M, Reuter S, Shimabukuro-Vornhagen A, Wennhold K, Haustein N, Buchner D, Heiermann N, Kleinert R, Wahba R, Ditt V, Kurschat C, Cingöz T, Becker J, Stippel DL, von Bergwelt-Baildon M. Prospective Analyses of Circulating B Cell Subsets in ABO-Compatible and ABO-Incompatible Kidney Transplant Recipients. Am J Transplant 2017; 17:542-550. [PMID: 27529836 DOI: 10.1111/ajt.14013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/24/2016] [Accepted: 08/09/2016] [Indexed: 01/25/2023]
Abstract
Immunosuppressive strategies applied in renal transplantation traditionally focus on T cell inhibition. B cells were mainly examined in the context of antibody-mediated rejection, whereas the impact of antibody-independent B cell functions has only recently entered the field of transplantation. Similar to T cells, distinct B cell subsets can enhance or inhibit immune responses. In this study, we prospectively analyzed the evolution of B cell subsets in the peripheral blood of AB0-compatible (n = 27) and AB0-incompatible (n = 10) renal transplant recipients. Activated B cells were transiently decreased and plasmablasts were permanently decreased in patients without signs of rejection throughout the first year. In patients with histologically confirmed renal allograft rejection, activated B cells and plasmablasts were significantly elevated on day 365. Rituximab treatment in AB0-incompatible patients resulted in long-lasting B cell depletion and in a naïve phenotype of repopulating B cells 1 year following transplantation. Acute allograft rejection was correlated with an increase of activated B cells and plasmablasts and with a significant reduction of regulatory B cell subsets. Our study demonstrates the remarkable effects of standard immunosuppression on circulating B cell subsets. Furthermore, the B cell compartment was significantly altered in rejecting patients. A specific targeting of deleterious B cell subsets could be of clinical benefit in renal transplantation.
Collapse
Affiliation(s)
- H A Schlößer
- Department of General, Visceral and Cancer Surgery, University of Cologne, Köln, Germany.,Cologne Interventional Immunology, University of Cologne, Köln, Germany.,Cologne Transplant Center, University of Cologne, Köln, Germany
| | - M Thelen
- Cologne Interventional Immunology, University of Cologne, Köln, Germany
| | - G Dieplinger
- Department of General, Visceral and Cancer Surgery, University of Cologne, Köln, Germany.,Cologne Transplant Center, University of Cologne, Köln, Germany
| | - A von Bergwelt-Baildon
- Cologne Transplant Center, University of Cologne, Köln, Germany.,Department of Internal Medicine II, University of Cologne, Köln, Germany
| | - M Garcia-Marquez
- Cologne Interventional Immunology, University of Cologne, Köln, Germany
| | - S Reuter
- Cologne Interventional Immunology, University of Cologne, Köln, Germany
| | - A Shimabukuro-Vornhagen
- Cologne Interventional Immunology, University of Cologne, Köln, Germany.,Cologne Transplant Center, University of Cologne, Köln, Germany
| | - K Wennhold
- Cologne Interventional Immunology, University of Cologne, Köln, Germany
| | - N Haustein
- Cologne Interventional Immunology, University of Cologne, Köln, Germany
| | - D Buchner
- Department of General, Visceral and Cancer Surgery, University of Cologne, Köln, Germany.,Cologne Transplant Center, University of Cologne, Köln, Germany
| | - N Heiermann
- Department of General, Visceral and Cancer Surgery, University of Cologne, Köln, Germany.,Cologne Transplant Center, University of Cologne, Köln, Germany
| | - R Kleinert
- Department of General, Visceral and Cancer Surgery, University of Cologne, Köln, Germany.,Cologne Transplant Center, University of Cologne, Köln, Germany
| | - R Wahba
- Department of General, Visceral and Cancer Surgery, University of Cologne, Köln, Germany.,Cologne Transplant Center, University of Cologne, Köln, Germany
| | - V Ditt
- Institute for Clinical Transfusion Medicine, Merheim Medical Center Cologne, Köln, Germany
| | - C Kurschat
- Cologne Transplant Center, University of Cologne, Köln, Germany.,Department of Internal Medicine II, University of Cologne, Köln, Germany
| | - T Cingöz
- Cologne Transplant Center, University of Cologne, Köln, Germany.,Department of Internal Medicine II, University of Cologne, Köln, Germany
| | - J Becker
- Cologne Transplant Center, University of Cologne, Köln, Germany.,Institute of Pathology, University of Cologne, Köln, Germany
| | - D L Stippel
- Department of General, Visceral and Cancer Surgery, University of Cologne, Köln, Germany.,Cologne Transplant Center, University of Cologne, Köln, Germany
| | - M von Bergwelt-Baildon
- Cologne Interventional Immunology, University of Cologne, Köln, Germany.,Department of Internal Medicine I, University of Cologne, Köln, Germany
| |
Collapse
|
39
|
Tolerance in Kidney Transplantation: What Is on the B Side? Mediators Inflamm 2016; 2016:8491956. [PMID: 27956762 PMCID: PMC5121468 DOI: 10.1155/2016/8491956] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/12/2016] [Indexed: 11/17/2022] Open
Abstract
Regulatory B cells (Breg) are in the spotlight for their role in immune homeostasis maintenance and tolerance achievement as in the last years the correlation with functional and increased Breg numbers in autoimmune diseases and transplantation has been extensively proven. Their study is, however, in its infancy with still little knowledge and consensus on their origin, phenotype, and mechanism of action. All this hampers the pursuit of an effective Breg induction method for therapeutic purposes. In this review we aim to summarize the studies on human Breg and their implication in kidney transplantation and to further discuss the issues surrounding therapeutic applications of this cell subset.
Collapse
|
40
|
Cherukuri A, Salama AD, Carter CR, Landsittel D, Arumugakani G, Clark B, Rothstein DM, Baker RJ. Reduced human transitional B cell T1/T2 ratio is associated with subsequent deterioration in renal allograft function. Kidney Int 2016; 91:183-195. [PMID: 28029430 DOI: 10.1016/j.kint.2016.08.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 08/25/2016] [Accepted: 08/29/2016] [Indexed: 12/31/2022]
Abstract
Human transitional B cells express relatively high IL-10 and low TNF-α levels, which correlate with B regulatory activity in vitro. Herein, we aim to further define B regulatory phenotype and determine whether B regulatory activity can serve as a prognostic marker for renal allograft dysfunction (graft loss or 2-fold fall in estimated glomerular filtration rate). Transitional B cells can be divided into T1 and T2 subsets based on surface phenotype. T1 cells express a significantly higher ratio of IL-10 to TNF-α than T2 cells or other B subsets. When analyzed in 45 kidney transplant recipients at the time of late for-cause biopsy, the T1/T2 ratio was independently associated with allograft dysfunction over the next 5 years. Next, the T1/T2 ratio was examined in an independent set of 97 clinically stable kidney transplant recipients 2 years after transplant. Again, the T1/T2 ratio was strongly and independently associated with allograft dysfunction over the ensuing 5 years. In these clinically quiescent patients, a low T1/T2 ratio identified a 41-patient subgroup in which 35% developed allograft dysfunction, with 25% losing their allografts. However, none of the 56 patients with a high ratio developed graft dysfunction. In both the initial study and validation groups, the T1/T2 ratio was a much stronger predictor of graft dysfunction than donor-specific antibodies or the estimated glomerular filtration rate. Thus, the T1/T2 ratio, a relative measure of expressing an anti-inflammatory cytokine profile, is a novel prognostic marker that might inform individualized immunosuppression.
Collapse
Affiliation(s)
- Aravind Cherukuri
- Renal Transplant Unit, University of Leeds, Leeds, UK; Thomas E. Starzl Transplant Institute, Pittsburgh, Pennsylvania, USA.
| | - Alan D Salama
- UCL Centre for Nephrology, Royal Free Hospital, London, UK
| | | | - Douglas Landsittel
- Thomas E. Starzl Transplant Institute, Pittsburgh, Pennsylvania, USA; Department of Medicine, University of Pittsburgh, Pennsylvania, USA
| | | | - Brendan Clark
- Renal Transplant Unit, University of Leeds, Leeds, UK
| | - David M Rothstein
- Thomas E. Starzl Transplant Institute, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|