1
|
Céré C, Curcio V, Dorez H, Debreuque M, Franconi F, Rousseau D. Quantitative MRI for brain lesion diagnosis in dogs and cats: A comprehensive overview. Vet Radiol Ultrasound 2024; 65:849-864. [PMID: 39329277 DOI: 10.1111/vru.13434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/26/2024] [Accepted: 09/08/2024] [Indexed: 09/28/2024] Open
Abstract
MRI is widely used for the detection and characterization of brain lesions. There is a growing interest in the potential benefits of quantitative MRI (qMRI) in veterinary brain lesion diagnosis. Yet, the use of data processing tools in the veterinary field is not as democratized as for the diagnosis of human brain pathologies. Several reviews have addressed the characterization of brain lesions in cats and dogs. None of them is specifically focused on quantitative MRI data processing techniques for the diagnosis of brain lesions in the veterinary field. This paper aims to provide an overview of the evolution of qMRI on cats and dogs both in the clinical and preclinical fields. We analyze the achievements in the field as well as the remaining challenges in the diffusion of data processing tools for veterinary brain lesions characterization.
Collapse
Affiliation(s)
- Cassandra Céré
- Hawkcell, Lyon, France
- Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), University of Angers, Angers, France
| | | | | | - Maud Debreuque
- Neurology Department, Veterinary Hospital Center Saint Martin, Allonzier-la-Caille, France
| | - Florence Franconi
- Plateforme de Recherche en Imagerie et Spectroscopie Multimodales (PRISM), University of Angers, Angers, France
- Micro et Nanomédecines Translationnelles (MINT), Inserm, CNRS, SFR ICAT, University of Angers, Angers, France
| | - David Rousseau
- Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), University of Angers, Angers, France
| |
Collapse
|
2
|
Inglis FM, Taylor PA, Andrews EF, Pascalau R, Voss HU, Glen DR, Johnson PJ. A diffusion tensor imaging white matter atlas of the domestic canine brain. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:1-21. [PMID: 39301427 PMCID: PMC11409835 DOI: 10.1162/imag_a_00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/02/2024] [Accepted: 07/23/2024] [Indexed: 09/22/2024]
Abstract
There is increasing reliance on magnetic resonance imaging (MRI) techniques in both research and clinical settings. However, few standardized methods exist to permit comparative studies of brain pathology and function. To help facilitate these studies, we have created a detailed, MRI-based white matter atlas of the canine brain using diffusion tensor imaging. This technique, which relies on the movement properties of water, permits the creation of a three-dimensional diffusivity map of white matter brain regions that can be used to predict major axonal tracts. To generate an atlas of white matter tracts, thirty neurologically and clinically normal dogs underwent MRI imaging under anesthesia. High-resolution, three-dimensional T1-weighted sequences were collected and averaged to create a population average template. Diffusion-weighted imaging sequences were collected and used to generate diffusivity maps, which were then registered to the T1-weighted template. Using these diffusivity maps, individual white matter tracts-including association, projection, commissural, brainstem, olfactory, and cerebellar tracts-were identified with reference to previous canine brain atlas sources. To enable the use of this atlas, we created downloadable overlay files for each white matter tract identified using manual segmentation software. In addition, using diffusion tensor imaging tractography, we created tract files to delineate major projection pathways. This comprehensive white matter atlas serves as a standard reference to aid in the interpretation of quantitative changes in brain structure and function in clinical and research settings.
Collapse
Affiliation(s)
- Fiona M Inglis
- Cornell College of Veterinary Medicine, Department of Clinical Sciences, Cornell University, Ithaca, NY, United States
| | - Paul A Taylor
- Scientific and Statistical Computing Core, National Institute of Mental Health, Bethesda, MD, United States
| | - Erica F Andrews
- Cornell College of Veterinary Medicine, Department of Clinical Sciences, Cornell University, Ithaca, NY, United States
| | - Raluca Pascalau
- Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Henning U Voss
- Cornell Magnetic Resonance Imaging Facility, College of Human Ecology, Cornell University, Cornell, Ithaca, NY, United States
| | - Daniel R Glen
- Scientific and Statistical Computing Core, National Institute of Mental Health, Bethesda, MD, United States
| | - Philippa J Johnson
- Cornell College of Veterinary Medicine, Department of Clinical Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
3
|
Roy D, Subramaniam B, Chong WC, Bornhorst M, Packer RJ, Nazarian J. Zebrafish-A Suitable Model for Rapid Translation of Effective Therapies for Pediatric Cancers. Cancers (Basel) 2024; 16:1361. [PMID: 38611039 PMCID: PMC11010887 DOI: 10.3390/cancers16071361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Pediatric cancers are the leading cause of disease-related deaths in children and adolescents. Most of these tumors are difficult to treat and have poor overall survival. Concerns have also been raised about drug toxicity and long-term detrimental side effects of therapies. In this review, we discuss the advantages and unique attributes of zebrafish as pediatric cancer models and their importance in targeted drug discovery and toxicity assays. We have also placed a special focus on zebrafish models of pediatric brain cancers-the most common and difficult solid tumor to treat.
Collapse
Affiliation(s)
- Debasish Roy
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Bavani Subramaniam
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Wai Chin Chong
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Miriam Bornhorst
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Roger J. Packer
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Javad Nazarian
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
- DIPG/DMG Research Center Zurich, Children’s Research Center, Department of Pediatrics, University Children’s Hospital Zürich, 8032 Zurich, Switzerland
| |
Collapse
|
4
|
Mandara MT, Tognoloni A, Giglia G, Baroni M, Falzone C, Calò P, Chiaradia E. Cytotoxicity on low-grade canine meningioma with the use of somatostatin analog (octreotide): An in vitro study. Neurooncol Adv 2024; 6:vdae111. [PMID: 39055601 PMCID: PMC11272066 DOI: 10.1093/noajnl/vdae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Background Meningioma is the most common tumor of the central nervous system of dogs. For this tumor, surgery remains the treatment of choice, either alone or in combination with radiotherapy. Unfortunately, chemotherapeutic strategies are practically absent in dogs and palliative therapies are the only option to surgery. Somatostatin receptor subtype 2 (SSTR2) is expressed in canine meningioma. Since the potent cell-proliferation inhibiting effect of somatostatin (SST), the aim of this study was to investigate in vitro the effects of octreotide, as SST analog, in the viability of canine meningioma. Methods Four surgical canine meningiomas were used in this study to establish cell cultures. Expression of SSTR2 was verified with immunolabelling in FFPE samples and cell cultures. The effects of octreotide on cell viability were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT). After 24 hours they were exposed to different concentrations of octreotide (0.1 nM, 1 nM, 10 nM, 100 nM) for 24 and 48 hours. Results All meningiomas consisted of grade I tumors. The cultured neoplastic cells expressed SSTR2 from 80% to 100%. Octreotide significantly increased cell death after 48 hours of continuous exposure, with 10 and 100 nM octreotide doses. The percentage of cell viability was 80.92 ± 4.9 and 80.49 ± 3.61, compared to the control, respectively, consistent with decreased cell viability of about 20% for both doses. Conclusions Octreotide reduced the alive neoplastic cultured cells of low-grade canine meningioma in a dose-dependent pattern with continuous exposition for 48 hours. These results support an alternative systemic treatment of meningioma with octreotide in the dog.
Collapse
Affiliation(s)
| | - Alessia Tognoloni
- Department of Veterinary Medicine, University of Perugia, Perugia (IT)
| | - Giuseppe Giglia
- Department of Veterinary Medicine, University of Perugia, Perugia (IT)
| | | | - Cristian Falzone
- Clinica Veterinaria Pedrani - Diagnostica Piccoli Animali, Zugliano (IT)
| | - Pietro Calò
- Polo Neurologico Veterinario, San Marino (RSM)
| | | |
Collapse
|
5
|
Tomanelli M, Florio T, Vargas GC, Pagano A, Modesto P. Domestic Animal Models of Central Nervous System Tumors: Focus on Meningiomas. Life (Basel) 2023; 13:2284. [PMID: 38137885 PMCID: PMC10744527 DOI: 10.3390/life13122284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/09/2023] [Indexed: 12/24/2023] Open
Abstract
Intracranial primary tumors (IPTs) are aggressive forms of malignancies that cause high mortality in both humans and domestic animals. Meningiomas are frequent adult IPTs in humans, dogs, and cats, and both benign and malignant forms cause a decrease in life quality and survival. Surgery is the primary therapeutic approach to treat meningiomas, but, in many cases, it is not resolutive. The chemotherapy and targeted therapy used to treat meningiomas also display low efficacy and many side effects. Therefore, it is essential to find novel pharmacological approaches to increase the spectrum of therapeutic options for meningiomas. This review analyzes the similarities between human and domestic animal (dogs and cats) meningiomas by evaluating the molecular and histological characteristics, diagnosis criteria, and treatment options and highlighting possible research areas to identify novel targets and pharmacological approaches, which are useful for the diagnosis and therapy of this neoplasia to be used in human and veterinary medicine.
Collapse
Affiliation(s)
- Michele Tomanelli
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (G.C.V.); (A.P.)
| | - Tullio Florio
- Pharmacology Section, Department of Internal Medicine (DIMI), University of Genova, 16126 Genova, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Gabriela Coronel Vargas
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (G.C.V.); (A.P.)
| | - Aldo Pagano
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (G.C.V.); (A.P.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Paola Modesto
- National Reference Center for Veterinary and Comparative Oncology, Veterinary Medical Research Institute for Piemonte, Liguria and Valle d’Aosta, 10154 Torino, Italy
| |
Collapse
|
6
|
Osteopontin and Ki-67 expression in World Health Organization graded canine meningioma. J Comp Pathol 2023; 201:41-48. [PMID: 36706466 DOI: 10.1016/j.jcpa.2022.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/20/2022] [Accepted: 12/22/2022] [Indexed: 01/26/2023]
Abstract
Osteopontin (OPN) is a matrix protein involved in tumour initiation and progression. In human meningioma, OPN has been correlated with World Health Organization (WHO) grade, brain invasion and recurrence. The aim of this study was to investigate OPN as a possible malignancy marker in canine meningioma by correlating its expression to WHO grade and proliferative activity as measured by the Ki-67 labelling index (LI). Thirty-five formalin-fixed, paraffin-embedded canine meningioma samples were classified according to the current human WHO classification. Evaluation of OPN expression was performed by immunohistochemical (IHC) labelling and calculation of the OPN intensity score (IS), OPN IHC score and Allred score. The scores were compared with WHO grades, Ki-67 LI, location and invasiveness. Nineteen meningiomas were graded as WHO grade I (54.3%), nine as grade II (25.7%) and seven as grade III (20.0%). Twenty-six tumours were located intracranially, four were retrobulbar and five were spinal meningiomas. In all specimens OPN expression was detected in moderate to high degrees. Neither the OPN scores nor the Ki-67 LIs were correlated with WHO grades. However, the OPN IS and OPN IHC score were significantly higher in WHO grade I samples compared with grade II samples (P <0.05). The OPN IS and OPN IHC score were significantly lower in meningioma samples that invaded surrounding tissues (P = 0.01 and 0.019, respectively). The results indicate a generally high expression of OPN in canine meningioma independent of WHO grade. Further research into the role of OPN as a possible therapeutic target or predictor of recurrence is warranted.
Collapse
|
7
|
Frederico SC, Zhang X, Hu B, Kohanbash G. Pre-clinical models for evaluating glioma targeted immunotherapies. Front Immunol 2023; 13:1092399. [PMID: 36700223 PMCID: PMC9870312 DOI: 10.3389/fimmu.2022.1092399] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Gliomas have an extremely poor prognosis in both adult and pediatric patient populations as these tumors are known to grow aggressively and respond poorly to standard of care treatment. Currently, treatment for gliomas involves surgical resection followed by chemoradiation therapy. However, some gliomas, such as diffuse midline glioma, have more limited treatment options such as radiotherapy alone. Even with these interventions, the prognosis for those diagnosed with a glioma remains poor. Immunotherapy is highly effective for some cancers and there is great interest in the development of effective immunotherapies for the treatment of gliomas. Clinical trials evaluating the efficacy of immunotherapies targeted to gliomas have largely failed to date, and we believe this is partially due to the poor choice in pre-clinical mouse models that are used to evaluate these immunotherapies. A key consideration in evaluating new immunotherapies is the selection of pre-clinical models that mimic the glioma-immune response in humans. Multiple pre-clinical options are currently available, each one with their own benefits and limitations. Informed selection of pre-clinical models for testing can facilitate translation of more promising immunotherapies in the clinical setting. In this review we plan to present glioma cell lines and mouse models, as well as alternatives to mouse models, that are available for pre-clinical glioma immunotherapy studies. We plan to discuss considerations of model selection that should be made for future studies as we hope this review can serve as a guide for investigators as they choose which model is best suited for their study.
Collapse
Affiliation(s)
- Stephen C. Frederico
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States,Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Xiaoran Zhang
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Baoli Hu
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States,*Correspondence: Gary Kohanbash,
| |
Collapse
|
8
|
Ammons DT, Guth A, Rozental AJ, Kurihara J, Marolf AJ, Chow L, Griffin JF, Makii R, MacQuiddy B, Boss MK, Regan DP, Frank C, McGrath S, Packer RA, Dow S. Reprogramming the Canine Glioma Microenvironment with Tumor Vaccination plus Oral Losartan and Propranolol Induces Objective Responses. CANCER RESEARCH COMMUNICATIONS 2022; 2:1657-1667. [PMID: 36644324 PMCID: PMC9835010 DOI: 10.1158/2767-9764.crc-22-0388] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
Purpose Malignant gliomas have a highly immune suppressive tumor microenvironment (TME) which renders them largely unresponsive to conventional therapeutics. Therefore, the present study evaluated a therapeutic protocol designed overcome the immune barrier by combining myeloid cell targeted immunotherapy with tumor vaccination. Experimental Design We utilized a spontaneously occurring canine glioma model to investigate an oral TME modifying immunotherapy in conjunction with cancer stem cell (CSC) vaccination. Dogs were treated daily with losartan (monocyte migration inhibitor) and propranolol (myeloid-derived suppressor cell depleting agent) plus anti-CSC vaccination on a bi-weekly then monthly schedule. Tumor volume was monitored by MRI and correlated with patient immune responses. Results Ten dogs with histologically confirmed gliomas were enrolled into a prospective, open-label clinical trial to evaluate the immunotherapy protocol. Partial tumor regression was observed in 2 dogs, while 6 dogs experienced stable disease, for an overall clinical benefit rate of 80%. Overall survival times (median = 351 days) and progression-free intervals (median = 163 days) were comparable to prior studies evaluating surgical debulking followed by immunotherapy. Dogs with detectable anti-CSC antibody responses had an increased overall survival time relative to dogs that did not generate antibody responses (vaccine responder MST = 500 days; vaccine non-responder MST = 218 days; p = 0.02). Conclusions These findings suggest that combining myeloid cell targeted oral immunotherapy with tumor vaccination can generate objective tumor responses, even in the absence of conventional therapy. Overall, this approach has promise as a readily implemented therapeutic strategy for use in brain cancer patients.
Collapse
Affiliation(s)
- Dylan T. Ammons
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Amanda Guth
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado
| | - Aaron J. Rozental
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado
| | - Jade Kurihara
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado
| | - Angela J. Marolf
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Lyndah Chow
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado
| | - John F. Griffin
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, Texas
| | - Rebecca Makii
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Brittany MacQuiddy
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado
| | - Mary-Keara Boss
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Daniel P. Regan
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Chad Frank
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Stephanie McGrath
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado
| | - Rebecca A. Packer
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado
| | - Steven Dow
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
9
|
Pinard CJ, Lagree A, Lu FI, Klein J, Oblak ML, Salgado R, Cardenas JCP, Brunetti B, Muscatello LV, Sarli G, Foschini MP, Hardas A, Castillo SP, AbdulJabbar K, Yuan Y, Moore DA, Tran WT. Comparative Evaluation of Tumor-Infiltrating Lymphocytes in Companion Animals: Immuno-Oncology as a Relevant Translational Model for Cancer Therapy. Cancers (Basel) 2022; 14:5008. [PMID: 36291791 PMCID: PMC9599753 DOI: 10.3390/cancers14205008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/04/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Despite the important role of preclinical experiments to characterize tumor biology and molecular pathways, there are ongoing challenges to model the tumor microenvironment, specifically the dynamic interactions between tumor cells and immune infiltrates. Comprehensive models of host-tumor immune interactions will enhance the development of emerging treatment strategies, such as immunotherapies. Although in vitro and murine models are important for the early modelling of cancer and treatment-response mechanisms, comparative research studies involving veterinary oncology may bridge the translational pathway to human studies. The natural progression of several malignancies in animals exhibits similar pathogenesis to human cancers, and previous studies have shown a relevant and evaluable immune system. Veterinary oncologists working alongside oncologists and cancer researchers have the potential to advance discovery. Understanding the host-tumor-immune interactions can accelerate drug and biomarker discovery in a clinically relevant setting. This review presents discoveries in comparative immuno-oncology and implications to cancer therapy.
Collapse
Affiliation(s)
- Christopher J. Pinard
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
- Odette Cancer Program, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Radiogenomics Laboratory, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Andrew Lagree
- Odette Cancer Program, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Radiogenomics Laboratory, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Fang-I Lu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jonathan Klein
- Department of Radiation Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Michelle L. Oblak
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Roberto Salgado
- Division of Research, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Department of Pathology, GZA-ZNA Hospitals, 2610 Antwerp, Belgium
| | | | - Barbara Brunetti
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Luisa Vera Muscatello
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Giuseppe Sarli
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Maria Pia Foschini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40127 Bologna, Italy
| | - Alexandros Hardas
- Department of Pathobiology & Population Sciences, The Royal Veterinary College, Hertfordshire AL9 7TA, UK
| | - Simon P. Castillo
- Centre for Evolution and Cancer, The Institute of Cancer Research, London SM2 5NG, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK
| | - Khalid AbdulJabbar
- Centre for Evolution and Cancer, The Institute of Cancer Research, London SM2 5NG, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK
| | - Yinyin Yuan
- Centre for Evolution and Cancer, The Institute of Cancer Research, London SM2 5NG, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK
| | - David A. Moore
- Department of Pathology, UCL Cancer Institute, London WC1E 6DD, UK
- University College Hospitals NHS Trust, London NW1 2PG, UK
| | - William T. Tran
- Odette Cancer Program, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Radiogenomics Laboratory, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Temerty Centre for AI Research and Education in Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
10
|
Survival Time after Surgical Debulking and Temozolomide Adjuvant Chemotherapy in Canine Intracranial Gliomas. Vet Sci 2022; 9:vetsci9080427. [PMID: 36006342 PMCID: PMC9414206 DOI: 10.3390/vetsci9080427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/03/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Infiltrative brain tumours are common in dogs. Although different treatments have been used, such as surgery, radiotherapy, chemotherapy, or combinations, guidelines for the most effective management are lacking. In this study, we report the effect of combining surgery and chemotherapy on the survival of 14 dogs with infiltrative gliomas. Four dogs were operated on two or three times to remove the tumors, and only one of these dogs died shortly after the second surgery. All tolerated the surgery with minimal or no deterioration, and all were euthanized between 6 months to 2 years after diagnosis due to tumour progression. To conclude, surgery and chemotherapy, although not curative, can prolong survival in dogs with infiltrative brain tumours. This information may help future research into the most appropriate treatment for this debilitating condition. Abstract Intracranial gliomas are associated with a poor prognosis, and the most appropriate treatment is yet to be defined. The objectives of this retrospective study are to report the time to progression and survival times of a group of dogs with histologically confirmed intracranial gliomas treated with surgical debulking and adjuvant temozolomide chemotherapy. All cases treated in a single referral veterinary hospital from 2014 to 2021 were reviewed. Inclusion criteria comprised a histopathological diagnosis of intracranial glioma, adjunctive chemotherapy, and follow-up until death. Cases were excluded if the owner declined chemotherapy or there was insufficient follow-up information in the clinical records. Fourteen client-owned dogs were included with a median time to progression (MTP) of 156 days (95% CI 133–320 days) and median survival time (MST) of 240 days (95% CI 149–465 days). Temozolomide was the first-line adjuvant chemotherapy but changed to another chemotherapy agent (lomustine, toceranib phosphate, or melphalan) when tumour relapse was either suspected by clinical signs or confirmed by advanced imaging. Of the fourteen dogs, three underwent two surgical resections and one, three surgeries. Survival times (ST) were 241, 428, and 468 days for three dogs treated twice surgically and 780 days for the dog treated surgically three times. Survival times for dogs operated once was 181 days. One case was euthanized after developing aspiration pneumonia, and all other cases after progression of clinical signs due to suspected or confirmed tumour relapse. In conclusion, the results of this study suggest that debulking surgery and adjuvant chemotherapy are well-tolerated options in dogs with intracranial gliomas in which surgery is a possibility and should be considered a potential treatment option. Repeated surgery may be considered for selected cases.
Collapse
|
11
|
Johnson PJ, Rivard BC, Wood JH, DiRubio ML, Henry JG, Miller AD. Relationship between histological tumor margins and magnetic resonance imaging signal intensities in brain neoplasia of dogs. J Vet Intern Med 2022; 36:1039-1048. [PMID: 35488504 PMCID: PMC9151476 DOI: 10.1111/jvim.16431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/04/2022] [Accepted: 04/12/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Intracranial neoplasia is relatively common in dogs and stereotactic radiotherapy, surgical debulking, or both, are the most successful treatment approaches. A key component of treatment planning involves delineating tumor margin on magnetic resonance imaging (MRI) examinations. How MRI signal intensity alterations relate to histological tumor margins is unknown. OBJECTIVES Directly compare histological brain sections to MRI sequence images and determine which sequence alteration best correlates with tumor margins. ANIMALS Five dogs with glioma, 4 dogs with histiocytic sarcoma, and 3 dogs with meningioma. METHODS Retrospective cohort study. Histological brain sections were registered to in vivo MRI scan images obtained within 7 days of necropsy. Margins of signal intensity alterations (T2-weighted, fluid-attenuating inversion recovery [FLAIR], T1-weighted and contrast enhancement) were compared directly to solid tumor and surgical margins identified on histology. Jacquard similarity metrics (JSM) and cross-sectional areas were calculated. RESULTS In glioma cases, margins drawn around T2-weighted hyperintensity were most similar to surgical margins (JSM, 0.66 ± 0.17) when compared to other sequences. In both meningioma (JSM, 0.57 ± 0.21) and histiocytic sarcoma (JSM, 0.75 ± 0.11) margins of contrast enhancement were most similar to surgical margins. CONCLUSIONS AND CLINICAL IMPORTANCE Signal intensities correspond to tumor margins for different tumor types and facilitate surgical and radiation therapy planning using MRI images.
Collapse
Affiliation(s)
- Philippa J Johnson
- Department of Clinical Sciences, Cornell College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Benjamin C Rivard
- Department of Clinical Sciences, Cornell College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Jonathan H Wood
- Department of Clinical Sciences, Cornell College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Mattisen L DiRubio
- Department of Clinical Sciences, Cornell College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Joshua G Henry
- Department of Clinical Sciences, Cornell College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Andrew D Miller
- Department of Biomedical Sciences, Section of Anatomic Pathology, Cornell College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
12
|
Canine Intracranial Venous System: A Review. FOLIA VETERINARIA 2022. [DOI: 10.2478/fv-2022-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The intracranial venous system (ICVS) represents in mammals a complex three-dimensional structure, which provides not only for adequate brain perfusion, but has also a significant impact on: cerebrospinal fluid (CSF) resorption, maintaining of the intracranial pressure (ICP), and brain thermoregulation. An intimate understanding of the anatomy and physiology of ICVS is fundamental for neurological diagnostics, selection of therapeutic options, and success of neurosurgical procedures in human and veterinary medicine. Since the intracranial interventions in dogs are recently performed more frequently than twenty or thirty years ago, the authors decided to review and report on the basic knowledge regarding the complex topic of morphology and function of the canine ICVS. The research strategy involved an NCBI/NLM, PubMed/MED-LINE, and Clarivate Analytics Web of Science search from January 1, 1960, to December 31, 2021, using the terms “canine dural venous sinuses” and “intracranial venous system in dogs” in the English language literature; also references from selected papers were scanned and relevant articles included.
Collapse
|
13
|
Quader S, Kataoka K, Cabral H. Nanomedicine for brain cancer. Adv Drug Deliv Rev 2022; 182:114115. [PMID: 35077821 DOI: 10.1016/j.addr.2022.114115] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/18/2021] [Accepted: 01/12/2022] [Indexed: 02/06/2023]
Abstract
CNS tumors remain among the deadliest forms of cancer, resisting conventional and new treatment approaches, with mortality rates staying practically unchanged over the past 30 years. One of the primary hurdles for treating these cancers is delivering drugs to the brain tumor site in therapeutic concentration, evading the blood-brain (tumor) barrier (BBB/BBTB). Supramolecular nanomedicines (NMs) are increasingly demonstrating noteworthy prospects for addressing these challenges utilizing their unique characteristics, such as improving the bioavailability of the payloadsviacontrolled pharmacokinetics and pharmacodynamics, BBB/BBTB crossing functions, superior distribution in the brain tumor site, and tumor-specific drug activation profiles. Here, we review NM-based brain tumor targeting approaches to demonstrate their applicability and translation potential from different perspectives. To this end, we provide a general overview of brain tumor and their treatments, the incidence of the BBB and BBTB, and their role on NM targeting, as well as the potential of NMs for promoting superior therapeutic effects. Additionally, we discuss critical issues of NMs and their clinical trials, aiming to bolster the potential clinical applications of NMs in treating these life-threatening diseases.
Collapse
Affiliation(s)
- Sabina Quader
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 212-0821, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 212-0821, Japan.
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
14
|
European Mistletoe ( Viscum album) Extract Is Cytotoxic to Canine High-Grade Astrocytoma Cells In Vitro and Has Additive Effects with Mebendazole. Vet Sci 2022; 9:vetsci9010031. [PMID: 35051115 PMCID: PMC8782024 DOI: 10.3390/vetsci9010031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Malignant gliomas are associated with extremely poor clinical outcomes in both humans and dogs, and novel therapies are needed. Glioma-bearing canine patients may serve as promising preclinical models for human therapies, including complementary medicine. The objective of this study was to evaluate the effects of mistletoe extract (Viscum album) alone and in combination with mebendazole in an in vitro model of canine high-grade astrocytoma using the cell line SDT-3G. SDT-3G cells were exposed to a range of concentrations of mistletoe extract alone to obtain an IC50. In separate experiments, cells were exposed to mebendazole at a previously determined IC50 (0.03 µM) alone or in conjunction with varying concentrations of mistletoe extract to determine the additive effects. The IC50 for mistletoe alone was 5.644 ± 0.09 SD μg/mL. The addition of mistletoe at 5 μg/mL to mebendazole at 0.03 µM led to increased cell death compared to what would be expected for each drug separately. The cytotoxicity of mistletoe in vitro and its additive effect with mebendazole support future expanded in vitro and in vivo studies in dogs and supply early evidence that this may be a useful adjunct therapeutic agent for use in glioma-bearing dogs. To the authors’ knowledge, this is the first published report of Viscum album extract in canine glioma.
Collapse
|
15
|
Saeb S, Assche JV, Loustau T, Rohr O, Wallet C, Schwartz C. Suicide gene therapy in cancer and HIV-1 infection: An alternative to conventional treatments. Biochem Pharmacol 2021; 197:114893. [PMID: 34968484 DOI: 10.1016/j.bcp.2021.114893] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022]
Abstract
Suicide Gene Therapy (SGT) aims to introduce a gene encoding either a toxin or an enzyme making the targeted cell more sensitive to chemotherapy. SGT represents an alternative approach to combat pathologies where conventional treatments fail such as pancreatic cancer or the high-grade glioblastoma which are still desperately lethal. We review the possibility to use SGT to treat these cancers which have shown promising results in vitro and in preclinical trials. However, SGT has so far failed in phase III clinical trials thus further improvements are awaited. We can now take advantages of the many advances made in SGT for treating cancer to combat other pathologies such as HIV-1 infection. In the review we also discuss the feasibility to add SGT to the therapeutic arsenal used to cure HIV-1-infected patients. Indeed, preliminary results suggest that both productive and latently infected cells are targeted by the SGT. In the last section, we address the limitations of this approach and how we might improve it.
Collapse
Affiliation(s)
- Sepideh Saeb
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Jeanne Van Assche
- University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Thomas Loustau
- University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Olivier Rohr
- University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Clémentine Wallet
- University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Christian Schwartz
- University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France.
| |
Collapse
|
16
|
Cognitive dysfunction severity evaluation in dogs with naturally-occurring Cushing´s syndrome: A matched case-control study. J Vet Behav 2021. [DOI: 10.1016/j.jveb.2021.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Tresch NS, Fuchs D, Morandi L, Tonon C, Rohrer Bley C, Nytko KJ. Temozolomide is additive with cytotoxic effect of irradiation in canine glioma cell lines. Vet Med Sci 2021; 7:2124-2134. [PMID: 34477324 PMCID: PMC8604143 DOI: 10.1002/vms3.620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Similar to human glioblastoma patients, glial tumours in dogs have high treatment resistance and a guarded prognosis. In human medicine, the addition of temozolomide to radiotherapy leads to a favourable outcome in vivo as well as a higher antiproliferative effect on tumour cells in vitro. OBJECTIVES The aim of the study was to determine the radio- and temozolomide-sensitivity of three canine glial tumour cell lines and to investigate a potential additive cytotoxic effect in combined treatment. Additionally, we wanted to detect the level of MGMT promoter methylation in these cell lines and to investigate a potential association between MGMT promoter methylation and treatment resistance. METHODS Cells were treated with various concentrations of temozolomide and/or irradiated with 4 and 8 Gy. Radiosensitization by temozolomide was evaluated using proliferation assay and clonogenic assay, and MGMT DNA methylation was investigated using bisulfite next-generation sequencing. RESULTS In all tested canine cell lines, clonogenicity was inhibited significantly in combined treatment compared to radiation alone. All canine glial cell lines tested in this study were found to have high methylation levels of MGMT promoter. CONCLUSIONS Hence, an additive effect of combined treatment in MGMT negative canine glial tumour cell lines in vitro was detected. This motivates to further investigate the association between treatment resistance and MGMT, such as MGMT promoter methylation status.
Collapse
Affiliation(s)
- Nina Simona Tresch
- Division of Radiation OncologyVetsuisse Faculty University of ZurichZurichSwitzerland
- Center for Clinical Studies at the Vetsuisse Faculty of the University of ZurichZurichSwitzerland
| | - Daniel Fuchs
- Division of Radiation OncologyVetsuisse Faculty University of ZurichZurichSwitzerland
- Center for Clinical Studies at the Vetsuisse Faculty of the University of ZurichZurichSwitzerland
| | - Luca Morandi
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
- Functional and Molecular Neuroimaging UnitIRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
| | - Caterina Tonon
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
- Functional and Molecular Neuroimaging UnitIRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
| | - Carla Rohrer Bley
- Division of Radiation OncologyVetsuisse Faculty University of ZurichZurichSwitzerland
- Center for Clinical Studies at the Vetsuisse Faculty of the University of ZurichZurichSwitzerland
| | - Katarzyna J. Nytko
- Division of Radiation OncologyVetsuisse Faculty University of ZurichZurichSwitzerland
- Center for Clinical Studies at the Vetsuisse Faculty of the University of ZurichZurichSwitzerland
| |
Collapse
|
18
|
Tonogai EJ, Huang S, Botham RC, Berry MR, Joslyn SK, Daniel GB, Chen Z, Rao J, Zhang X, Basuli F, Rossmeisl JH, Riggins GJ, LeBlanc AK, Fan TM, Hergenrother PJ. Evaluation of a procaspase-3 activator with hydroxyurea or temozolomide against high-grade meningioma in cell culture and canine cancer patients. Neuro Oncol 2021; 23:1723-1735. [PMID: 34216463 PMCID: PMC8485451 DOI: 10.1093/neuonc/noab161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND High-grade meningioma is an aggressive type of brain cancer that is often recalcitrant to surgery and radiotherapy, leading to poor overall survival. Currently, there are no FDA-approved drugs for meningioma, highlighting the need for new therapeutic options, but development is challenging due to the lack of predictive preclinical models. METHODS To leverage the known overexpression of procaspase-3 in meningioma, PAC-1, a blood-brain barrier penetrant procaspase-3 activator, was evaluated for its ability to induce apoptosis in meningioma cells. To enhance the effects of PAC-1, combinations with either hydroxyurea or temozolomide were explored in cell culture. Both combinations were further investigated in small groups of canine meningioma patients and assessed by MRI, and the novel apoptosis tracer, [18F]C-SNAT4, was evaluated in patients treated with PAC-1 + HU. RESULTS In meningioma cell lines in culture, PAC-1 + HU are synergistic while PAC-1 + TMZ show additive-to-synergistic effects. In canine meningioma patients, PAC-1 + HU led to stabilization of disease and no change in apoptosis within the tumor, whereas PAC-1 + TMZ reduced tumor burden in all three canine patients treated. CONCLUSIONS Our results suggest PAC-1 + TMZ as a potentially efficacious combination for the treatment of human meningioma, and also demonstrate the utility of including pet dogs with meningioma as a means to assess anticancer strategies for this common brain tumor.
Collapse
Affiliation(s)
- Emily J Tonogai
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Shan Huang
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Rachel C Botham
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Matthew R Berry
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | - Gregory B Daniel
- Radiology, Department of Small Animal Clinical Sciences, Virgina-Maryland College of Veterinary Medicine, Blacksburg, Virginia, USA
| | - Zixin Chen
- Departments of Radiology and Chemistry, Stanford Medicine, Stanford, California, USA
| | - Jianghong Rao
- Departments of Radiology and Chemistry, Stanford Medicine, Stanford, California, USA
| | - Xiang Zhang
- Chemistry and Synthesis Center, NHLBI, NIH, Bethesda, Maryland, USA
| | - Falguni Basuli
- Chemistry and Synthesis Center, NHLBI, NIH, Bethesda, Maryland, USA
| | - John H Rossmeisl
- Neurology and Neurosurgery, Department of Small Animal Clinical Sciences, Virgina-Maryland College of Veterinary Medicine, Blacksburg, Virginia, USA
| | - Gregory J Riggins
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Amy K LeBlanc
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Timothy M Fan
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Paul J Hergenrother
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
19
|
Foiani G, Guelfi G, Mandara MT. MicroRNA Dysregulation in Canine Meningioma: RT-qPCR Analysis of Formalin-Fixed Paraffin-Embedded Samples. J Neuropathol Exp Neurol 2021; 80:769-775. [PMID: 34272938 DOI: 10.1093/jnen/nlab057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play key roles in tumorigenesis as modulators of cell signaling pathways. miRNA expression has been found to be dysregulated in several human and canine tumors, but data are not yet available on canine meningioma. In this study, we analyzed the expression of 12 miRNAs (i.e. miR-335, miR-200a, miR-98, miR-96, miR-190a, miR-29c, miR-219-5p, miR-155, miR-146a, miR-145, miR-136, miR-451) by RT-qPCR in a series of 41 formalin-fixed, paraffin-embedded canine meningiomas, and normal arachnoid samples. We identified 8 dysregulated miRNAs that might be involved in canine meningioma pathogenesis. Five miRNAs (i.e. miR-96, miR-145, miR-335, miR-200a, miR-29c), were downregulated in tumor samples and 3 (i.e. miR-136, miR-155, miR-146a) were upregulated. Moreover, miR-200a was overexpressed in grade III compared to grade I and grade II meningiomas, suggesting that it might have a dual role in tumor initiation and progression. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses suggest that dysregulated miRNAs might influence cellular processes and pathways mainly involved in tumor cell migration, extracellular matrix interactions, cell proliferation, and inflammatory responses. The characterization of miRNA functions in canine meningiomas is needed to assess their potential clinical utility, also in view of the relevance of the dog as a potential spontaneous animal model of human disease.
Collapse
Affiliation(s)
- Greta Foiani
- From the Department of Veterinary Medicine, University of Perugia, Perugia, Italy (GF, GG, MTM)
| | - Gabriella Guelfi
- From the Department of Veterinary Medicine, University of Perugia, Perugia, Italy (GF, GG, MTM)
| | - Maria Teresa Mandara
- From the Department of Veterinary Medicine, University of Perugia, Perugia, Italy (GF, GG, MTM)
| |
Collapse
|
20
|
Lee S, Choi SH, Cho HR, Koh J, Park CK, Ichikawa T. Multiparametric magnetic resonance imaging features of a canine glioblastoma model. PLoS One 2021; 16:e0254448. [PMID: 34242365 PMCID: PMC8270200 DOI: 10.1371/journal.pone.0254448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/27/2021] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To assess glioblastoma multiforme (GBM) formation with similar imaging characteristics to human GBM using multiparametric magnetic resonance imaging (MRI) in an orthotopic xenograft canine GBM model. MATERIALS AND METHODS The canine GBM cell line J3T1 was subcutaneously injected into 6-week-old female BALB/c nude mice to obtain tumour fragments. Tumour fragments were implanted into adult male mongrel dog brains through surgery. Multiparametric MRI was performed with conventional MRI, diffusion-weighted imaging, and dynamic susceptibility contrast-enhanced perfusion-weighted imaging at one week and two weeks after surgery in a total of 15 surgical success cases. The presence of tumour cells, the necrotic area fraction, and the microvessel density (MVD) of the tumour on the histologic specimen were assessed. Tumour volume, diffusion, and perfusion parameters were compared at each time point using Wilcoxon signed-rank tests, and the differences between tumour and normal parenchyma were compared using unpaired t-tests. Spearman correlation analysis was performed between the imaging and histologic parameters. RESULTS All animals showed a peripheral enhancing lesion on MRI and confirmed the presence of a tumour through histologic analysis (92.3%). The normalized perfusion values did not show significant decreases through at least 2 weeks after the surgery (P > 0.05). There was greater cerebral blood volume and flow in the GBM than in the normal-appearing white matter (1.46 ± 0.25 vs. 1.13 ± 0.16 and 1.30 ± 0.22 vs. 1.02 ± 0.14; P < 0.001 and P < 0.001, respectively). The MVD in the histologic specimens was correlated with the cerebral blood volume in the GBM tissue (r = 0.850, P = 0.004). CONCLUSION Our results suggest that the canine GBM model showed perfusion imaging characteristics similar to those of humans, and it might have potential as a model to assess novel technical developments for GBM treatment.
Collapse
Affiliation(s)
- Seunghyun Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Hong Choi
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science, Seoul, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Hye Rim Cho
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jaemoon Koh
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tomotsugu Ichikawa
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
21
|
Audrey G, Claire LC, Joel E. Effect of the NFL-TBS.40-63 peptide on canine glioblastoma cells. Int J Pharm 2021; 605:120811. [PMID: 34144141 DOI: 10.1016/j.ijpharm.2021.120811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/17/2021] [Accepted: 06/12/2021] [Indexed: 12/21/2022]
Abstract
Glioblastomas are the most frequent and aggressive cancer of the nervous system. The standard treatment is composed of neurosurgery followed by radiotherapy and chemotherapy, but the median survival remains very low. The NFL-TBS.40-63 peptide, also known as NFL-peptide, is capable to specifically penetrating all glioblastoma cell lines tested so far (rat, mouse and human), where it alters their microtubule network. Consequently, the peptide inhibits selectively the in vitro cell division of glioblastoma cells and their tumor development in vivo. When lipid nanocapsules are functionalized with the NFL-peptide, their uptake is targeted into glioblastoma cells both in vitro and in vivo. Here, we evaluated the impact of the NFL-peptide on J3T cells derived from a canine spontaneous glioblastoma, and its activity when functionalized to nanocapsules. Both flow cytometry and confocal microscopy experiments indicate that the NFL-peptide interacts with these cells and affects their biology, but it cannot enter in cells. By functionalizing lipid nanoparticles with the NFL-peptide, their uptake is also increased, while the peptide stays outside. This investigation reveals similarities and major differences between these canine cells and other glioblastoma cells, which are important aspects to consider when using this type of drug delivery system or performing pre-clinical studies with this animal model.
Collapse
Affiliation(s)
- Griveau Audrey
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Lépinoux-Chambaud Claire
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France; GlioCure, F-49000 Angers, France
| | - Eyer Joel
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France.
| |
Collapse
|
22
|
Pain B, Baquerre C, Coulpier M. Cerebral organoids and their potential for studies of brain diseases in domestic animals. Vet Res 2021; 52:65. [PMID: 33941270 PMCID: PMC8090903 DOI: 10.1186/s13567-021-00931-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/07/2021] [Indexed: 12/11/2022] Open
Abstract
The brain is a complex organ and any model for studying it in its normal and pathological aspects becomes a tool of choice for neuroscientists. The mastering and dissemination of protocols allowing brain organoids development have paved the way for a whole range of new studies in the field of brain development, modeling of neurodegenerative or neurodevelopmental diseases, understanding tumors as well as infectious diseases that affect the brain. While studies are so far limited to the use of human cerebral organoids, there is a growing interest in having similar models in other species. This review presents what is currently developed in this field, with a particular focus on the potential of cerebral organoids for studying neuro-infectious diseases in human and domestic animals.
Collapse
Affiliation(s)
- Bertrand Pain
- Univ Lyon, Université Lyon 1, INSERM, INRAE, Stem Cell and Brain Research Institute, U1208, USC1361, Bron, France.
| | - Camille Baquerre
- Univ Lyon, Université Lyon 1, INSERM, INRAE, Stem Cell and Brain Research Institute, U1208, USC1361, Bron, France
| | - Muriel Coulpier
- UMR1161 Virologie, Anses, INRAE, École Nationale Vétérinaire D'Alfort, Université Paris-Est, Maisons-Alfort, France
| |
Collapse
|
23
|
Akter F, Simon B, de Boer NL, Redjal N, Wakimoto H, Shah K. Pre-clinical tumor models of primary brain tumors: Challenges and opportunities. Biochim Biophys Acta Rev Cancer 2021; 1875:188458. [PMID: 33148506 PMCID: PMC7856042 DOI: 10.1016/j.bbcan.2020.188458] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 02/09/2023]
Abstract
Primary brain tumors are a heterogeneous group of malignancies that originate in cells of the central nervous system. A variety of models tractable for preclinical studies have been developed to recapitulate human brain tumors, allowing us to understand the underlying pathobiology and explore potential treatments. However, many promising therapeutic strategies identified using preclinical models have shown limited efficacy or failed at the clinical trial stage. The inability to develop therapeutic strategies that significantly improve survival rates in patients highlight the compelling need to revisit the design of currently available animal models and explore the use of new models that allow us to bridge the gap between promising preclinical findings and clinical translation. In this review, we discuss current strategies used to model glioblastoma, the most malignant brain tumor in adults and highlight the shortcomings of specific models that must be circumvented for the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Farhana Akter
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Brennan Simon
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Nadine Leonie de Boer
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Navid Redjal
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Hiroaki Wakimoto
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America; Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, United States of America.
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, United States of America.
| |
Collapse
|
24
|
Harman RM, Das SP, Bartlett AP, Rauner G, Donahue LR, Van de Walle GR. Beyond tradition and convention: benefits of non-traditional model organisms in cancer research. Cancer Metastasis Rev 2020; 40:47-69. [PMID: 33111160 DOI: 10.1007/s10555-020-09930-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Abstract
Traditional laboratory model organisms are indispensable for cancer research and have provided insight into numerous mechanisms that contribute to cancer development and progression in humans. However, these models do have some limitations, most notably related to successful drug translation, because traditional model organisms are often short-lived, small-bodied, genetically homogeneous, often immunocompromised, are not exposed to natural environments shared with humans, and usually do not develop cancer spontaneously. We propose that assimilating information from a variety of long-lived, large, genetically diverse, and immunocompetent species that live in natural environments and do develop cancer spontaneously (or do not develop cancer at all) will lead to a more comprehensive understanding of human cancers. These non-traditional model organisms can also serve as sentinels for environmental risk factors that contribute to human cancers. Ultimately, expanding the range of animal models that can be used to study cancer will lead to improved insights into cancer development, progression and metastasis, tumor microenvironment, as well as improved therapies and diagnostics, and will consequently reduce the negative impacts of the wide variety of cancers afflicting humans overall.
Collapse
Affiliation(s)
- Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Sanjna P Das
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Arianna P Bartlett
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gat Rauner
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Leanne R Donahue
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
25
|
Danielyan L, Schwab M, Siegel G, Brawek B, Garaschuk O, Asavapanumas N, Buadze M, Lourhmati A, Wendel HP, Avci-Adali M, Krueger MA, Calaminus C, Naumann U, Winter S, Schaeffeler E, Spogis A, Beer-Hammer S, Neher JJ, Spohn G, Kretschmer A, Krämer-Albers EM, Barth K, Lee HJ, Kim SU, Frey WH, Claussen CD, Hermann DM, Doeppner TR, Seifried E, Gleiter CH, Northoff H, Schäfer R. Cell motility and migration as determinants of stem cell efficacy. EBioMedicine 2020; 60:102989. [PMID: 32920368 PMCID: PMC7494685 DOI: 10.1016/j.ebiom.2020.102989] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Stem cells` (SC) functional heterogeneity and its poorly understood aetiology impedes clinical development of cell-based therapies in regenerative medicine and oncology. Recent studies suggest a strong correlation between the SC migration potential and their therapeutic efficacy in humans. Designating SC migration as a denominator of functional SC heterogeneity, we sought to identify highly migrating subpopulations within different SC classes and evaluate their therapeutic properties in comparison to the parental non-selected cells. METHODS We selected highly migrating subpopulations from mesenchymal and neural SC (sMSC and sNSC), characterized their features including but not limited to migratory potential, trophic factor release and transcriptomic signature. To assess lesion-targeted migration and therapeutic properties of isolated subpopulations in vivo, surgical transplantation and intranasal administration of MSCs in mouse models of glioblastoma and Alzheimer's disease respectively were performed. FINDINGS Comparison of parental non-selected cells with isolated subpopulations revealed superior motility and migratory potential of sMSC and sNSC in vitro. We identified podoplanin as a major regulator of migratory features of sMSC/sNSC. Podoplanin engineering improved oncovirolytic activity of virus-loaded NSC on distantly located glioblastoma cells. Finally, sMSC displayed more targeted migration to the tumour site in a mouse glioblastoma model and remarkably higher potency to reduce pathological hallmarks and memory deficits in transgenic Alzheimer's disease mice. INTERPRETATION Functional heterogeneity of SC is associated with their motility and migration potential which can serve as predictors of SC therapeutic efficacy. FUNDING This work was supported in part by the Robert Bosch Stiftung (Stuttgart, Germany) and by the IZEPHA grant.
Collapse
Affiliation(s)
- Lusine Danielyan
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany; Neuroscience Laboratory and Departments of Biochemistry and Clinical Pharmacology, Yerevan State Medical University, Yerevan, Armenia.
| | - Matthias Schwab
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany; Neuroscience Laboratory and Departments of Biochemistry and Clinical Pharmacology, Yerevan State Medical University, Yerevan, Armenia; Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany and University of Tübingen, Tübingen, Germany; Department of Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany
| | - Georg Siegel
- Institute of Clinical and Experimental Transfusion Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Bianca Brawek
- Institute of Physiology, Department of Neurophysiology, University of Tübingen, Tübingen, Germany
| | - Olga Garaschuk
- Institute of Physiology, Department of Neurophysiology, University of Tübingen, Tübingen, Germany
| | - Nithi Asavapanumas
- Institute of Physiology, Department of Neurophysiology, University of Tübingen, Tübingen, Germany
| | - Marine Buadze
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
| | - Ali Lourhmati
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
| | - Hans-Peter Wendel
- Department of Thoracic, Cardiac and Vascular Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Meltem Avci-Adali
- Department of Thoracic, Cardiac and Vascular Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Marcel A Krueger
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
| | - Carsten Calaminus
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
| | - Ulrike Naumann
- Hertie Institute for Clinical Brain Research and Center Neurology, Department of Vascular Neurology, Tübingen Neuro-Campus (TNC), University of Tübingen, Tübingen, Germany
| | - Stefan Winter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany and University of Tübingen, Tübingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany and University of Tübingen, Tübingen, Germany
| | - Annett Spogis
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
| | - Sandra Beer-Hammer
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomic, and ICePhA, University Hospital Tübingen, Tübingen, Germany
| | - Jonas J Neher
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Tübingen, Germany
| | - Gabriele Spohn
- Institute for Transfusion Medicine and Immunohematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe-University Hospital, Frankfurt am Main, Germany
| | - Anja Kretschmer
- Institute for Transfusion Medicine and Immunohematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe-University Hospital, Frankfurt am Main, Germany
| | - Eva-Maria Krämer-Albers
- Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kerstin Barth
- Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Hong Jun Lee
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea; Research Institute eBiogen Inc., Seoul, Republic of Korea
| | - Seung U Kim
- Division of Neurology, Department of Medicine, UBC Hospital, University of British Columbia, Vancouver, BC, Canada
| | - William H Frey
- HealthPartners Center for Memory and Aging, HealthPartners Neurosciences, St. Paul, MN, U.S.A
| | - Claus D Claussen
- Department of Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Dirk M Hermann
- Department of Neurology, University of Duisburg-Essen, Essen, Germany
| | - Thorsten R Doeppner
- Department of Neurology, University of Duisburg-Essen, Essen, Germany; Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Erhard Seifried
- Institute for Transfusion Medicine and Immunohematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe-University Hospital, Frankfurt am Main, Germany
| | - Christoph H Gleiter
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
| | - Hinnak Northoff
- Institute of Clinical and Experimental Transfusion Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Richard Schäfer
- Institute of Clinical and Experimental Transfusion Medicine, University Hospital Tübingen, Tübingen, Germany; Institute for Transfusion Medicine and Immunohematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe-University Hospital, Frankfurt am Main, Germany.
| |
Collapse
|
26
|
Zucko D, Boris-Lawrie K. Circular RNAs Are Regulators of Diverse Animal Transcriptomes: One Health Perspective. Front Genet 2020; 11:999. [PMID: 33193584 PMCID: PMC7531264 DOI: 10.3389/fgene.2020.00999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022] Open
Abstract
Derived from linear (parental) precursor mRNA, circRNA are recycled exons and introns whose ends are ligated. By titrating microRNAs and RNA binding proteins, circRNA interconnect networks of competing endogenous RNAs. Without altering chromosomal DNA, circRNA regulates skeletal muscle development and proliferation, lactation, ovulation, brain development, and responses to infections and metabolic stress. This review integrates emerging knowledge of circRNA activity coming from genome-wide characterizations in many clades of animals. circRNA research addresses one of the main pillars of the One Health vision – to improve the health and productivity of food animals and generate translational knowledge in animal species.
Collapse
Affiliation(s)
- Dora Zucko
- Department of Veterinary and Biomedical Sciences, Veterinary Medicine Graduate Program, University of Minnesota Twin Cities, Saint Paul, MN, United States
| | - Kathleen Boris-Lawrie
- Department of Veterinary and Biomedical Sciences, Veterinary Medicine Graduate Program, University of Minnesota Twin Cities, Saint Paul, MN, United States
| |
Collapse
|
27
|
Chambers MR, Bentley RT, Crossman DK, Foote JB, Koehler JW, Markert JM, Omar NB, Platt SR, Self DM, Shores A, Sorjonen DC, Waters AM, Yanke AB, Gillespie GY. The One Health Consortium: Design of a Phase I Clinical Trial to Evaluate M032, a Genetically Engineered HSV-1 Expressing IL-12, in Combination With a Checkpoint Inhibitor in Canine Patients With Sporadic High Grade Gliomas. Front Surg 2020; 7:59. [PMID: 33005623 PMCID: PMC7484881 DOI: 10.3389/fsurg.2020.00059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/21/2020] [Indexed: 12/25/2022] Open
Abstract
As the most common and deadly of primary brain tumors, malignant gliomas have earned their place within one of the most multifaceted and heavily-funded realms of medical research. Numerous avenues of pre-clinical investigation continue to provide valuable insight, but modeling the complex evolution and behavior of these tumors within a host under simulated circumstances may pose challenges to extrapolation of data. Remarkably, certain breeds of pet dogs spontaneously and sporadically develop high grade gliomas that follow similar incidence, treatment, and outcome patterns as their human glioma counterparts. The most malignant of these tumors have been refractory to limited treatment options despite aggressive treatment; outcomes are dismal with median survivals of just over 1 year in humans and 2 months in dogs. Novel treatments are greatly needed and combination therapies appear to hold promise. This clinical protocol, a dose-escalating phase I study in dogs with sporadic malignant glioma, represents a first in comparative oncology and combination immunotherapy. The trial will evaluate M032, an Interleukin-12 expressing Herpes Simplex virus, alone and combined with a checkpoint inhibitor, Indoximod. Extensive pre-clinical work has demonstrated safety of intracranial M032 administration in mice and non-human primates. M032 is currently being tested in humans with high-grade malignant gliomas. Thus, in a novel fashion, both canine and human trials will proceed concurrently allowing a direct “head-to-head” comparison of safety and efficacy. We expect this viral oncolytic therapy to be as safe as it is in human patients and M032 to (a) infect and kill glioma cells, producing a virus and tumor cell antigen-rich debris field; (b) provide an adjuvant effect due to liberation of viral DNA, which is rich in unmethylated CpG sequences that “toggle” TLR-9 receptors; and (c) express IL-12 locally, stimulating induction of TH1 lymphocytes. The resultant immune-mediated anti-viral responses should, through cross-epitope spreading, translate into a strong response to tumor antigens. The ability to compare human and dog responses in real time affords the most stringent test of suitability of the dog as an informative model of human brain tumors. Subsequent studies will allow canine trials to properly inform the design of human trials.
Collapse
Affiliation(s)
- M R Chambers
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - R Timothy Bentley
- College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jeremy B Foote
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jey W Koehler
- College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - James M Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nidal B Omar
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Simon R Platt
- College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - D Mitchell Self
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andy Shores
- College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Donald C Sorjonen
- College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Alicia M Waters
- Division of Pediatric Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Amy B Yanke
- College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - G Yancey Gillespie
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
28
|
Pi Castro D, José-López R, Fernández Flores F, Rabanal Prados RM, Mandara MT, Arús C, Pumarola Batlle M. Expression of FOXP3 in Canine Gliomas: Immunohistochemical Study of Tumor-Infiltrating Regulatory Lymphocytes. J Neuropathol Exp Neurol 2020; 79:184-193. [PMID: 31846038 DOI: 10.1093/jnen/nlz120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/15/2019] [Accepted: 11/06/2019] [Indexed: 12/19/2022] Open
Abstract
Dogs develop gliomas with similar histopathological features to human gliomas and share with them the limited success of current therapeutic regimens such as surgery and radiation. The tumor microenvironment in gliomas is influenced by immune cell infiltrates. The present study aims to immunohistochemically characterize the tumor-infiltrating lymphocyte (TIL) population of naturally occurring canine gliomas, focusing on the expression of Forkhead box P3-positive (FOXP3+) regulatory T-cells (Tregs). Forty-three canine gliomas were evaluated immunohistochemically for the presence of CD3+, FOXP3+, and CD20+ TILs. In low-grade gliomas, CD3+ TILs were found exclusively within the tumor tissue. In high-grade gliomas, they were present in significantly higher numbers throughout the tumor and in the brain-tumor junction. CD20+ TILs were rarely found in comparison to CD3+ TILs. FOXP3+ TILs shared a similar distribution with CD3+ TILs. The accumulation of FOXP3+ Tregs within the tumor was more pronounced in astrocytic gliomas than in tumors of oligodendroglial lineage and the difference in expression was significant when comparing low-grade oligodendrogliomas and high-grade astrocytomas. Only high-grade astrocytomas presented FOXP3+ cells with tumoral morphology. In spontaneous canine gliomas, TILs display similar characteristics (density and distribution) as described for human gliomas, supporting the use of the dog as an animal model for translational immunotherapeutic studies.
Collapse
Affiliation(s)
- Dolors Pi Castro
- From the Unit of Murine and Comparative Pathology (UPMiC), Department of Animal Medicine and Surgery, Veterinary Faculty, Universitat Autónoma de Barcelona, Barcelona, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Roberto José-López
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Francisco Fernández Flores
- Department of Veterinary Pathology and Public Health, Institute of Veterinary Science, University of Liverpool, UK
| | - Rosa M Rabanal Prados
- From the Unit of Murine and Comparative Pathology (UPMiC), Department of Animal Medicine and Surgery, Veterinary Faculty, Universitat Autónoma de Barcelona, Barcelona, Spain
| | | | - Carles Arús
- From the Unit of Murine and Comparative Pathology (UPMiC), Department of Animal Medicine and Surgery, Veterinary Faculty, Universitat Autónoma de Barcelona, Barcelona, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Martí Pumarola Batlle
- From the Unit of Murine and Comparative Pathology (UPMiC), Department of Animal Medicine and Surgery, Veterinary Faculty, Universitat Autónoma de Barcelona, Barcelona, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
29
|
Robinson KR, Kent M, Barber RM, Platt SR. Pathology in Practice. J Am Vet Med Assoc 2020; 254:685-688. [PMID: 30835170 DOI: 10.2460/javma.254.6.685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Zamboni R, Alberti T, Schied H, Bermann C, Brunner C, Venancio F, Arantes E, Sallis E, Raffi M. Meningioma microcístico com metástase pulmonar em canino: relato de caso. ARQ BRAS MED VET ZOO 2020. [DOI: 10.1590/1678-4162-11444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
RESUMO Meningiomas são os principais tumores primários do sistema nervoso central (SNC) que afetam cães e gatos. Na maioria dos casos, são neoplasias benignas, geralmente expansivas, causando compressão do SNC, e raramente fazem metástase para outros órgãos. O presente trabalho tem como objetivo relatar a ocorrência de um meningioma microcístico com metástase pulmonar em um canino de 11 anos de idade, com sinais clínicos de andar cambaleante, compressão da cabeça contra objetos, agitação, salivação e agressividade. Na necropsia, foram observadas, no encéfalo, massas bem delimitadas pardo-avermelhadas, firmes, de aspecto granular, localizadas no córtex parietal e nos núcleos da base. Inúmeras micronodulações de aspecto semelhante foram observadas no pulmão. Histologicamente observaram-se nódulos formados por células neoplásicas fusiformes, com núcleos grandes e alongados e nucléolos evidentes, dispostas de forma frouxa, formando vacúolos e microcistos. À imuno-histoquímica, o meningioma apresentou marcação fortemente positiva para citoqueratina e negativa para vimentina. Por meio da histopatologia e da imuno-histoquímica, foi possível estabelecer a classificação histológica de meningioma microcístico, bem como diferenciá-lo de outras doenças que cursam com sinais nervosos.
Collapse
|
31
|
Partridge B, Rossmeisl JH. Companion animal models of neurological disease. J Neurosci Methods 2020; 331:108484. [PMID: 31733285 PMCID: PMC6942211 DOI: 10.1016/j.jneumeth.2019.108484] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023]
Abstract
Clinical translation of novel therapeutics that improve the survival and quality of life of patients with neurological disease remains a challenge, with many investigational drug and device candidates failing in advanced stage clinical trials. Naturally occurring inherited and acquired neurological diseases, such as epilepsy, inborn errors of metabolism, brain tumors, spinal cord injury, and stroke occur frequently in companion animals, and many of these share epidemiologic, pathophysiologic and clinical features with their human counterparts. As companion animals have a relatively abbreviated lifespan and genetic background, are immunocompetent, share their environment with human caregivers, and can be clinically managed using techniques and tools similar to those used in humans, they have tremendous potential for increasing the predictive value of preclinical drug and device studies. Here, we review comparative features of spontaneous neurological diseases in companion animals with an emphasis on neuroimaging methods and features, illustrate their historical use in translational studies, and discuss inherent limitations associated with each disease model. Integration of companion animals with naturally occurring disease into preclinical studies can complement and expand the knowledge gained from studies in other animal models, accelerate or improve the manner in which research is translated to the human clinic, and ultimately generate discoveries that will benefit the health of humans and animals.
Collapse
Affiliation(s)
- Brittanie Partridge
- Veterinary and Comparative Neuro-Oncology Laboratory, Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA; Brain Tumor Center of Excellence, Wake Forest University Comprehensive Cancer Center, Medical Center Blvd, NRC 405, Winston Salem, NC, 27157, USA
| | - John H Rossmeisl
- Veterinary and Comparative Neuro-Oncology Laboratory, Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA; Brain Tumor Center of Excellence, Wake Forest University Comprehensive Cancer Center, Medical Center Blvd, NRC 405, Winston Salem, NC, 27157, USA.
| |
Collapse
|
32
|
Xiong Z, Ampudia Mesias E, Pluhar GE, Rathe SK, Largaespada DA, Sham YY, Moertel CL, Olin MR. CD200 Checkpoint Reversal: A Novel Approach to Immunotherapy. Clin Cancer Res 2020; 26:232-241. [PMID: 31624103 DOI: 10.1158/1078-0432.ccr-19-2234] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/25/2019] [Accepted: 10/14/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Advances in immunotherapy have revolutionized care for some patients with cancer. However, current checkpoint inhibitors are associated with significant toxicity and yield poor responses for patients with central nervous system tumors, calling into question whether cancer immunotherapy can be applied to glioblastoma multiforme. We determined that targeting the CD200 activation receptors (CD200AR) of the CD200 checkpoint with a peptide inhibitor (CD200AR-L) overcomes tumor-induced immunosuppression. We have shown the clinical efficacy of the CD200AR-L in a trial in companion dogs with spontaneous high-grade glioma. Addition of the peptide to autologous tumor lysate vaccines significantly increased the median overall survival to 12.7 months relative to tumor lysate vaccines alone, 6.36 months. EXPERIMENTAL DESIGN This study was developed to elucidate the mechanism of the CD200ARs and develop a humanized peptide inhibitor. We developed macrophage cell lines with each of four CD200ARs knocked out to determine their binding specificity and functional response. Using proteomics, we developed humanized CD200AR-L to explore their effects on cytokine/chemokine response, dendritic cell maturation and CMV pp65 antigen response in human CD14+ cells. GMP-grade peptide was further validated for activity. RESULTS We demonstrated that the CD200AR-L specifically targets a CD200AR complex. Moreover, we developed and validated a humanized CD200AR-L for inducing chemokine response, stimulating immature dendritic cell differentiation and significantly enhanced an antigen-specific response, and determined that the use of the CD200AR-L downregulated the expression of CD200 inhibitory and PD-1 receptors. CONCLUSIONS These results support consideration of a CD200AR-L as a novel platform for immunotherapy against multiple cancers including glioblastoma multiforme.
Collapse
Affiliation(s)
- Zhengming Xiong
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | | | - G Elizabeth Pluhar
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Susan K Rathe
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - David A Largaespada
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Yuk Y Sham
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota
- Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, Minnesota
| | - Christopher L Moertel
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Michael R Olin
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota.
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
33
|
Meier V, Besserer J, Rohrer Bley C. Using biologically based objectives to optimize boost intensity-modulated radiation therapy planning for brainstem tumors in dogs. Vet Radiol Ultrasound 2020; 61:77-84. [PMID: 31600027 PMCID: PMC7004177 DOI: 10.1111/vru.12815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/22/2019] [Accepted: 09/07/2019] [Indexed: 12/17/2022] Open
Abstract
Irradiated brain tumors commonly progress at the primary site, generating interest in focal dose escalation. The aim of this retrospective observational study was to use biological optimization objectives for a modeling exercise with simultaneously-integrated boost IMRT (SIB-IMRT) to generate a dose-escalated protocol with acceptable late radiation toxicity risk estimate and improve tumor control for brainstem tumors in dogs safely. We re-planned 20 dog brainstem tumor datasets with SIB-IMRT, prescribing 20 × 2.81 Gy to the gross tumor volume (GTV) and 20 × 2.5 Gy to the planning target volume. During the optimization process, we used biologically equivalent generalized equivalent uniform doses (gEUD) as planning aids. These were derived from human data, calculated to adhere to normal tissue complication probability (NTCP) ≤5%, and converted to the herein used fractionation schedule. We extracted the absolute organ at risk dose-volume histograms to calculate NTCP of each individual plan. For planning optimization, gEUD(a = 4) = 39.8 Gy for brain and gEUD(a = 6.3) = 43.8 Gy for brainstem were applied. Mean brain NTCP was low with 0.43% (SD ±0.49%, range 0.01-2.04%); mean brainstem NTCP was higher with 7.18% (SD ±4.29%, range 2.87-20.72%). Nevertheless, NTCP of < 10% in brainstem was achievable in 80% (16/20) of dogs. Spearman's correlation between relative GTV and NTCP was high (ρ = 0.798, P < .001), emphasizing increased risk with relative size even with subvolume-boost. Including biologically based gEUD values into optimization allowed estimating NTCP during the planning process. In conclusion, gEUD-based SIB-IMRT planning resulted in dose-escalated treatment plans with acceptable risk estimate of NTCP < 10% in the majority of dogs with brainstem tumors. Risk was correlated with relative tumor size.
Collapse
Affiliation(s)
- Valeria Meier
- Division of Radiation Oncology, Small Animal Department, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
- Department of PhysicsUniversity of ZurichZurichSwitzerland
| | - Jürgen Besserer
- Division of Radiation Oncology, Small Animal Department, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
- Department of PhysicsUniversity of ZurichZurichSwitzerland
- Radiation OncologyHirslanden ClinicZurichSwitzerland
| | - Carla Rohrer Bley
- Division of Radiation Oncology, Small Animal Department, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
34
|
Boudreau MW, Peh J, Hergenrother PJ. Procaspase-3 Overexpression in Cancer: A Paradoxical Observation with Therapeutic Potential. ACS Chem Biol 2019; 14:2335-2348. [PMID: 31260254 PMCID: PMC6858495 DOI: 10.1021/acschembio.9b00338] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many anticancer strategies rely on the promotion of apoptosis in cancer cells as a means to shrink tumors. Crucial for apoptotic function are executioner caspases, most notably caspase-3, that proteolyze a variety of proteins, inducing cell death. Paradoxically, overexpression of procaspase-3 (PC-3), the low-activity zymogen precursor to caspase-3, has been reported in a variety of cancer types. Until recently, this counterintuitive overexpression of a pro-apoptotic protein in cancer has been puzzling. Recent studies suggest subapoptotic caspase-3 activity may promote oncogenic transformation, a possible explanation for the enigmatic overexpression of PC-3. Herein, the overexpression of PC-3 in cancer and its mechanistic basis is reviewed; collectively, the data suggest the potential for exploitation of PC-3 overexpression with PC-3 activators as a targeted anticancer strategy.
Collapse
Affiliation(s)
- Matthew W. Boudreau
- Department of Chemistry and Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois, United States
| | - Jessie Peh
- Department of Chemistry and Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois, United States
| | - Paul J. Hergenrother
- Department of Chemistry and Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois, United States
| |
Collapse
|
35
|
Demeter EA, Frank C, Rissi DR, Porter BF, Miller AD. Microtubule-Associated Protein 2 Expression in Canine Glioma. Front Vet Sci 2019; 6:395. [PMID: 31803765 PMCID: PMC6872496 DOI: 10.3389/fvets.2019.00395] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 10/24/2019] [Indexed: 12/22/2022] Open
Abstract
Canine glioma is considered a potential model for human glioma, with recent studies of occurrence, therapy, and reclassification supporting the value of the canine model. The current diagnosis of canine glioma is based on morphologic criteria and immunohistochemistry (IHC), including oligodendrocyte transcription factor 2 (Olig2), glial fibrillary acidic protein (GFAP), and 2′, 3′ cyclic nucleotide phosphatase (CNPase). Microtubule-associated protein 2 (MAP2) is a proven marker of human glioma and is used to complement the diagnosis and its specific immunoreactivity pattern contributes to the differentiation of astrocytomas from other glial tumors. The objective of this study was to evaluate whether canine gliomas express MAP2 and to explore differences in the pattern of immunolabeling between different gliomas. Seventy-eight cases of canine glioma were evaluated for MAP2 expression by immunohistochemistry. A glial origin was supported by Olig2 IHC in all cases. MAP2 immunolabeling was evaluated on a semi-quantitative basis, including the percentage of immunolabeled neoplastic cells, as well as the signal intensity, distribution, and pattern of immunolabeling. MAP2 was expressed in all cases, with significant correlation between diagnosis and signal intensity (P = 0.04). MAP2 immunolabeling distribution was dominated by diffuse (34/78; 44%), followed by patchy (20/78; 26%), multifocal to coalescing (16/78; 21%), and scattered (8/78; 10%). All oligodendrogliomas (53/53; 100%) and undefined gliomas (12/12; 100%) revealed a combination of perinuclear and cytoplasmic immunolabeling, and all but 3 astrocytomas had a combination of perinuclear and cytoplasmic processes immunolabeling (10/13; 77%). Significant correlation between immunolabeling pattern and diagnosis was obtained (P = 0.001). The study demonstrates that MAP2 is expressed in canine gliomas and the pattern of expression can also be applied to help distinguish astrocytomas from oligodendrogliomas and undefined gliomas.
Collapse
Affiliation(s)
- Elena Alina Demeter
- Department of Biomedical Sciences, Section of Anatomic Pathology, Cornell University College of Veterinary Medicine, Ithaca, NY, United States
| | - Chad Frank
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Daniel R Rissi
- Athens Veterinary Diagnostic Laboratory and Department of Pathology, University of Georgia College of Veterinary Medicine, Athens, GA, United States
| | - Brian F Porter
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Andrew D Miller
- Department of Biomedical Sciences, Section of Anatomic Pathology, Cornell University College of Veterinary Medicine, Ithaca, NY, United States
| |
Collapse
|
36
|
Overgaard NH, Fan TM, Schachtschneider KM, Principe DR, Schook LB, Jungersen G. Of Mice, Dogs, Pigs, and Men: Choosing the Appropriate Model for Immuno-Oncology Research. ILAR J 2019; 59:247-262. [PMID: 30476148 DOI: 10.1093/ilar/ily014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 07/30/2018] [Indexed: 02/06/2023] Open
Abstract
The immune system plays dual roles in response to cancer. The host immune system protects against tumor formation via immunosurveillance; however, recognition of the tumor by immune cells also induces sculpting mechanisms leading to a Darwinian selection of tumor cell variants with reduced immunogenicity. Cancer immunoediting is the concept used to describe the complex interplay between tumor cells and the immune system. This concept, commonly referred to as the three E's, is encompassed by 3 distinct phases of elimination, equilibrium, and escape. Despite impressive results in the clinic, cancer immunotherapy still has room for improvement as many patients remain unresponsive to therapy. Moreover, many of the preclinical results obtained in the widely used mouse models of cancer are lost in translation to human patients. To improve the success rate of immuno-oncology research and preclinical testing of immune-based anticancer therapies, using alternative animal models more closely related to humans is a promising approach. Here, we describe 2 of the major alternative model systems: canine (spontaneous) and porcine (experimental) cancer models. Although dogs display a high rate of spontaneous tumor formation, an increased number of genetically modified porcine models exist. We suggest that the optimal immuno-oncology model may depend on the stage of cancer immunoediting in question. In particular, the spontaneous canine tumor models provide a unique platform for evaluating therapies aimed at the escape phase of cancer, while genetically engineered swine allow for elucidation of tumor-immune cell interactions especially during the phases of elimination and equilibrium.
Collapse
Affiliation(s)
- Nana H Overgaard
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Timothy M Fan
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana-Champaign, Illinois
| | | | - Daniel R Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, Illinois
| | - Lawrence B Schook
- Department of Radiology, University of Illinois, Chicago, Illinois.,Department of Animal Sciences, University of Illinois, Urbana-Champaign, Illinois
| | - Gregers Jungersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
37
|
Mitchell D, Chintala S, Fetcko K, Henriquez M, Tewari BN, Ahmed A, Bentley RT, Dey M. Common Molecular Alterations in Canine Oligodendroglioma and Human Malignant Gliomas and Potential Novel Therapeutic Targets. Front Oncol 2019; 9:780. [PMID: 31475119 PMCID: PMC6702544 DOI: 10.3389/fonc.2019.00780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/31/2019] [Indexed: 01/05/2023] Open
Abstract
Spontaneous canine (Canis lupus) oligodendroglioma (ODG) holds tremendous potential as an immunocompetent large animal model of human malignant gliomas (MG). However, the feasibility of utilizing this model in pre-clinical studies depends on a thorough understanding of the similarities and differences of the molecular pathways associated with gliomas between the two species. We have previously shown that canine ODG has an immune landscape and expression pattern of commonly described oncogenes similar to that of human MG. In the current study, we performed a comprehensive analysis of canine ODG RNAseq data from 4 dogs with ODG and 2 normal controls to identify highly dysregulated genes in canine tumors. We then evaluated the expression of these genes in human MG using Xena Browser, a publicly available database. STRING-database inquiry was used in order to determine the suggested protein associations of these differentially expressed genes as well as the dysregulated pathways commonly enriched by the protein products of these genes in both canine ODG and human MG. Our results revealed that 3,712 (23%) of the 15,895 differentially expressed genes demonstrated significant up- or downregulation (log2-fold change > 2.0). Of the 3,712 altered genes, ~50% were upregulated (n = 1858) and ~50% were downregulated (n = 1854). Most of these genes were also found to have altered expression in human MG. Protein association and pathway analysis revealed common pathways enriched by members of the up- and downregulated gene categories in both species. In summary, we demonstrate that a similar pattern of gene dysregulation characterizes both human MG and canine ODG and provide additional support for the use of the canine model in order to therapeutically target these common genes. The results of such therapeutic targeting in the canine model can serve to more accurately predict the efficacy of anti-glioma therapies in human patients.
Collapse
Affiliation(s)
- Dana Mitchell
- Department of Neurosurgery, Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sreenivasulu Chintala
- Department of Neurosurgery, Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kaleigh Fetcko
- Department of Neurosurgery, Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Mario Henriquez
- Department of Neurosurgery, Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Brij N Tewari
- Department of Neurosurgery, Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Atique Ahmed
- Department of Neurological Surgery, Northwestern University, Chicago, IL, United States
| | - R Timothy Bentley
- Department of Veterinary Clinical Sciences, Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Mahua Dey
- Department of Neurosurgery, Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
38
|
DeLong RK, Cheng YH, Pearson P, Lin Z, Coffee C, Mathew EN, Hoffman A, Wouda RM, Higginbotham ML. Translating Nanomedicine to Comparative Oncology-the Case for Combining Zinc Oxide Nanomaterials with Nucleic Acid Therapeutic and Protein Delivery for Treating Metastatic Cancer. J Pharmacol Exp Ther 2019; 370:671-681. [PMID: 31040175 DOI: 10.1124/jpet.118.256230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/04/2019] [Indexed: 01/16/2023] Open
Abstract
The unique anticancer, biochemical, and immunologic properties of nanomaterials are becoming a new tool in biomedical research. Their translation into the clinic promises a new wave of targeted therapies. One nanomaterial of particular interest are zinc oxide (ZnO) nanoparticles (NPs), which has distinct mechanisms of anticancer activity including unique surface, induction of reactive oxygen species, lipid oxidation, pH, and also ionic gradients within cancer cells and the tumor microenvironment. It is recognized that ZnO NPs can serve as a direct enzyme inhibitor. Significantly, ZnO NPs inhibit extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) associated with melanoma progression, drug resistance, and metastasis. Indeed, direct intratumoral injection of ZnO NPs or a complex of ZnO with RNA significantly suppresses ERK and AKT phosphorylation. These data suggest ZnO NPs and their complexes or conjugates with nucleic acid therapeutic or anticancer protein may represent a potential new strategy for the treatment of metastatic melanoma, and potentially other cancers. This review focuses on the anticancer mechanisms of ZnO NPs and what is currently known about its biochemical effects on melanoma, biologic activity, and pharmacokinetics in rodents and its potential for translation into large animal, spontaneously developing models of melanoma and other cancers, which represent models of comparative oncology.
Collapse
Affiliation(s)
- R K DeLong
- Department of Anatomy and Physiology, Nanotechnology Innovation Center (R.K.D., P.P., E.N.M., A.H.), Department of Anatomy and Physiology, Institute for Computational Comparative Medicine (Y.-H.C., Z.L.), and Department of Clinical Sciences (C.C., R.M.W., M.L.H.), College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Yi-Hsien Cheng
- Department of Anatomy and Physiology, Nanotechnology Innovation Center (R.K.D., P.P., E.N.M., A.H.), Department of Anatomy and Physiology, Institute for Computational Comparative Medicine (Y.-H.C., Z.L.), and Department of Clinical Sciences (C.C., R.M.W., M.L.H.), College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Paige Pearson
- Department of Anatomy and Physiology, Nanotechnology Innovation Center (R.K.D., P.P., E.N.M., A.H.), Department of Anatomy and Physiology, Institute for Computational Comparative Medicine (Y.-H.C., Z.L.), and Department of Clinical Sciences (C.C., R.M.W., M.L.H.), College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Zhoumeng Lin
- Department of Anatomy and Physiology, Nanotechnology Innovation Center (R.K.D., P.P., E.N.M., A.H.), Department of Anatomy and Physiology, Institute for Computational Comparative Medicine (Y.-H.C., Z.L.), and Department of Clinical Sciences (C.C., R.M.W., M.L.H.), College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Calli Coffee
- Department of Anatomy and Physiology, Nanotechnology Innovation Center (R.K.D., P.P., E.N.M., A.H.), Department of Anatomy and Physiology, Institute for Computational Comparative Medicine (Y.-H.C., Z.L.), and Department of Clinical Sciences (C.C., R.M.W., M.L.H.), College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Elza Neelima Mathew
- Department of Anatomy and Physiology, Nanotechnology Innovation Center (R.K.D., P.P., E.N.M., A.H.), Department of Anatomy and Physiology, Institute for Computational Comparative Medicine (Y.-H.C., Z.L.), and Department of Clinical Sciences (C.C., R.M.W., M.L.H.), College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Amanda Hoffman
- Department of Anatomy and Physiology, Nanotechnology Innovation Center (R.K.D., P.P., E.N.M., A.H.), Department of Anatomy and Physiology, Institute for Computational Comparative Medicine (Y.-H.C., Z.L.), and Department of Clinical Sciences (C.C., R.M.W., M.L.H.), College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Raelene M Wouda
- Department of Anatomy and Physiology, Nanotechnology Innovation Center (R.K.D., P.P., E.N.M., A.H.), Department of Anatomy and Physiology, Institute for Computational Comparative Medicine (Y.-H.C., Z.L.), and Department of Clinical Sciences (C.C., R.M.W., M.L.H.), College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Mary Lynn Higginbotham
- Department of Anatomy and Physiology, Nanotechnology Innovation Center (R.K.D., P.P., E.N.M., A.H.), Department of Anatomy and Physiology, Institute for Computational Comparative Medicine (Y.-H.C., Z.L.), and Department of Clinical Sciences (C.C., R.M.W., M.L.H.), College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| |
Collapse
|
39
|
Lentiviral Vectors as Tools for the Study and Treatment of Glioblastoma. Cancers (Basel) 2019; 11:cancers11030417. [PMID: 30909628 PMCID: PMC6468594 DOI: 10.3390/cancers11030417] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/06/2019] [Accepted: 03/19/2019] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma (GBM) has the worst prognosis among brain tumors, hence basic biology, preclinical, and clinical studies are necessary to design effective strategies to defeat this disease. Gene transfer vectors derived from the most-studied lentivirus-the Human Immunodeficiency Virus type 1-have wide application in dissecting GBM specific features to identify potential therapeutic targets. Last-generation lentiviruses (LV), highly improved in safety profile and gene transfer capacity, are also largely employed as delivery systems of therapeutic molecules to be employed in gene therapy (GT) approaches. LV were initially used in GT protocols aimed at the expression of suicide factors to induce GBM cell death. Subsequently, LV were adopted to either express small noncoding RNAs to affect different aspects of GBM biology or to overcome the resistance to both chemo- and radiotherapy that easily develop in this tumor after initial therapy. Newer frontiers include adoption of LV for engineering T cells to express chimeric antigen receptors recognizing specific GBM antigens, or for transducing specific cell types that, due to their biological properties, can function as carriers of therapeutic molecules to the cancer mass. Finally, LV allow the setting up of improved animal models crucial for the validation of GBM specific therapies.
Collapse
|
40
|
Schlein LJ, Fadl-Alla B, Pondenis HC, Lezmi S, Eberhart CG, LeBlanc AK, Dickinson PJ, Hergenrother PJ, Fan TM. Immunohistochemical Characterization of Procaspase-3 Overexpression as a Druggable Target With PAC-1, a Procaspase-3 Activator, in Canine and Human Brain Cancers. Front Oncol 2019; 9:96. [PMID: 30859090 PMCID: PMC6397847 DOI: 10.3389/fonc.2019.00096] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/04/2019] [Indexed: 11/24/2022] Open
Abstract
Gliomas and meningiomas are the most common brain neoplasms affecting both humans and canines, and identifying druggable targets conserved across multiple brain cancer histologies and comparative species could broadly improve treatment outcomes. While satisfactory cure rates for low grade, non-invasive brain cancers are achievable with conventional therapies including surgery and radiation, the management of non-resectable or recurrent brain tumors remains problematic and necessitates the discovery of novel therapies that could be accelerated through a comparative approach, such as the inclusion of pet dogs with naturally-occurring brain cancers. Evidence supports procaspase-3 as a druggable brain cancer target with PAC-1, a pro-apoptotic, small molecule activator of procaspase-3 that crosses the blood-brain barrier. Procaspase-3 is frequently overexpressed in malignantly transformed tissues and provides a preferential target for inducing cancer cell apoptosis. While preliminary evidence supports procaspase-3 as a viable target in preclinical models, with PAC-1 demonstrating activity in rodent models and dogs with spontaneous brain tumors, the broader applicability of procaspase-3 as a target in human brain cancers, as well as the comparability of procaspase-3 expressions between differing species, requires further investigation. As such, a large-scale validation of procaspase-3 as a druggable target was undertaken across 651 human and canine brain tumors. Relative to normal brain tissues, procaspase-3 was overexpressed in histologically diverse cancerous brain tissues, supporting procaspase-3 as a broad and conserved therapeutic target. Additionally, procaspase-3 expressing glioma and meningioma cell lines were sensitive to the apoptotic effects of PAC-1 at biologically relevant exposures achievable in cancer patients. Importantly, the clinical relevance of procaspase-3 as a potential prognostic variable was demonstrated in human astrocytomas of variable histologic grades and associated clinical outcomes, whereby tumoral procaspase-3 expression was negatively correlated with survival; findings which suggest that PAC-1 might provide the greatest benefit for patients with the most guarded prognoses.
Collapse
Affiliation(s)
- Lisa J. Schlein
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Bahaa Fadl-Alla
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Holly C. Pondenis
- Department of Veterinary Clinical Medicine and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Stéphane Lezmi
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Charles G. Eberhart
- Department of Neuropathology and Ophthalmic Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Amy K. LeBlanc
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Peter J. Dickinson
- Department of Surgical and Radiological Sciences, University of California, Davis, Davis, CA, United States
| | - Paul J. Hergenrother
- Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Timothy M. Fan
- Department of Veterinary Clinical Medicine and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
41
|
Treatment Combining CD200 Immune Checkpoint Inhibitor and Tumor-Lysate Vaccination after Surgery for Pet Dogs with High-Grade Glioma. Cancers (Basel) 2019; 11:cancers11020137. [PMID: 30682795 PMCID: PMC6406711 DOI: 10.3390/cancers11020137] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/22/2022] Open
Abstract
Recent advances in immunotherapy have included inhibition of immune checkpoint proteins in the tumor microenvironment and tumor lysate-based vaccination strategies. We combined these approaches in pet dogs with high-grade glioma. Administration of a synthetic peptide targeting the immune checkpoint protein, CD200, enhanced the capacity of antigen-presenting cells to prime T-cells to mediate an anti-glioma response. We found that in canine spontaneous gliomas, local injection of a canine-specific, CD200-directed peptide before subcutaneous delivery of an autologous tumor lysate vaccine prolonged survival relative to a historical control treated with autologous tumor lysate alone (median survivals of 12.7 months and 6.36 months, respectively). Antigen-presenting cells and T-lymphocytes primed with this peptide suppressed their expression of the inhibitory CD200 receptor, thereby enhancing their ability to initiate immune reactions in a glioblastoma microenvironment replete with the immunosuppressive CD200 protein. These results support consideration of a CD200 ligand as a novel glioblastoma immunotherapeutic agent.
Collapse
|
42
|
Hicks J, Platt S, Stewart G, Senneca C, Holmes S, Kent M, Howerth E, Kaplan J, Kaplan E. Intratumoral temozolomide in spontaneous canine gliomas: feasibility of a novel therapy using implanted microcylinders. Vet Med Sci 2018; 5:5-18. [PMID: 30394686 PMCID: PMC6376143 DOI: 10.1002/vms3.124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Entotherapy[Link] an image‐guided drug‐eluting microcylinder platform, has the potential to bypass the limitations of systemic chemotherapy use in the treatment of canine brain tumours. Gliomas, which are common in dogs and also represent the majority of fatal brain tumours in humans, can be amenable to chemotherapy with temozolomide. Biopolymer microcylinders conjugated with temozolomide and gadolinium were implanted into partially resected tumours of four client‐owned dogs with gliomas. All four dogs presented with generalized seizures and had mild to no neurologic deficits at the time of craniotomy. All dogs underwent craniotomy for implantation of the microcylinders into partially resected gliomas (glioblastoma multiforme {n = 1} or oligodendroglioma {n = 3}). All dogs recovered well from the craniotomy and implantation procedure. This novel procedure appears to be feasible and tolerated in tumour‐bearing dogs. A future controlled clinical study can now aim to evaluate the microcylinder implantation for long‐term efficacy.
Collapse
Affiliation(s)
- Jill Hicks
- Veterinary Teaching Hospital, University of Georgia, Athens, Georgia, USA
| | - Simon Platt
- Veterinary Teaching Hospital, University of Georgia, Athens, Georgia, USA
| | - Georgina Stewart
- Veterinary Teaching Hospital, University of Georgia, Athens, Georgia, USA
| | | | - Shannon Holmes
- Veterinary Teaching Hospital, University of Georgia, Athens, Georgia, USA
| | - Marc Kent
- Veterinary Teaching Hospital, University of Georgia, Athens, Georgia, USA
| | - Elizabeth Howerth
- Veterinary Teaching Hospital, University of Georgia, Athens, Georgia, USA
| | - Jared Kaplan
- Department of Internal Medicine, Yale Medical School, New Haven, CT, USA
| | | |
Collapse
|
43
|
Jain KK. A Critical Overview of Targeted Therapies for Glioblastoma. Front Oncol 2018; 8:419. [PMID: 30374421 PMCID: PMC6196260 DOI: 10.3389/fonc.2018.00419] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/10/2018] [Indexed: 01/07/2023] Open
Abstract
Over the past century, treatment of malignant tumors of the brain has remained a challenge. Refinements in neurosurgical techniques, discovery of powerful chemotherapeutic agents, advances in radiotherapy, applications of biotechnology, and improvements in methods of targeted delivery have led to some extension of length of survival of glioblastoma patients. Refinements in surgery are mentioned because most of the patients with glioblastoma undergo surgery and many of the other innovative therapies are combined with surgery. However, cure of glioblastoma has remained elusive because it requires complete destruction of the tumor. Radical surgical ablation is not possible in the brain and even a small residual tumor leads to rapid recurrence that eventually kills the patient. Blood-brain barrier (BBB) comprising brain endothelial cells lining the cerebral microvasculature, limits delivery of drugs to the brain. Even though opening of the BBB in tumor core occurs locally, BBB limits systemic chemotherapy especially at the tumor periphery, where tumor cells invade normal brain structure comprising intact BBB. Comprehensive approaches are necessary to gain maximally from promising targeted therapies. Common methods used for critical evaluation of targeted therapies for glioblastoma include: (1) novel methods for targeted delivery of chemotherapy; (2) strategies for delivery through BBB and blood-tumor barriers; (3) innovations in radiotherapy for selective destruction of tumor; (4) techniques for local destruction of tumor; (5) tumor growth inhibitors; (6) immunotherapy; and (7) cell/gene therapies. Suggestions for improvements in glioblastoma therapy include: (1) controlled targeted delivery of anticancer therapy to glioblastoma through the BBB using nanoparticles and monoclonal antibodies; (2) direct introduction of genetically modified bacteria that selectively destroy cancer cells but spare the normal brain into the remaining tumor after resection; (3) use of better animal models for preclinical testing; and (4) personalized/precision medicine approaches to therapy in clinical trials and translation into practice of neurosurgery and neurooncology. Advances in these techniques suggest optimism for the future management of glioblastoma.
Collapse
|
44
|
Hubbard ME, Arnold S, Bin Zahid A, McPheeters M, Gerard O’Sullivan M, Tabaran AF, Hunt MA, Pluhar GE. Naturally Occurring Canine Glioma as a Model for Novel Therapeutics. Cancer Invest 2018; 36:415-423. [DOI: 10.1080/07357907.2018.1514622] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Molly E. Hubbard
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
| | - Susan Arnold
- College of Veterinary Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Abdullah Bin Zahid
- Division of Neurosurgery, Hennepin County Medical Center, Minneapolis, MN, USA
| | | | - M. Gerard O’Sullivan
- College of Veterinary Medicine, University of Minnesota, Minneapolis, MN, USA
- Comparitive Pathology Shared Resource at Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Alexandru-Flaviu Tabaran
- College of Veterinary Medicine, University of Minnesota, Minneapolis, MN, USA
- Comparitive Pathology Shared Resource at Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Matthew A. Hunt
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
| | - G. Elizabeth Pluhar
- College of Veterinary Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
45
|
Hahn CN. Veterinary neurology. Pract Neurol 2018; 18:339-343. [DOI: 10.1136/practneurol-2018-001883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2018] [Indexed: 11/03/2022]
|
46
|
Young JS, Bernal G, Polster SP, Nunez L, Larsen GF, Mansour N, Podell M, Yamini B. Convection-Enhanced Delivery of Polymeric Nanoparticles Encapsulating Chemotherapy in Canines with Spontaneous Supratentorial Tumors. World Neurosurg 2018; 117:e698-e704. [PMID: 29960096 DOI: 10.1016/j.wneu.2018.06.114] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Despite aggressive multimodal treatment, survival for patients with glioblastoma remains dismal. One obstacle to improving patient outcomes is the difficulty in delivering adequate therapeutic to the central nervous system due to the presence of the blood-brain barrier. Although direct drug infusion by convection-enhanced delivery (CED) can bypass the blood-brain barrier and facilitate delivery to intracranial tumors, determining the distribution of delivered therapeutic remains problematic. Image guidance is a strategy that can optimize the accuracy of therapeutic delivery. METHODS Here we performed an open-label clinical trial in 10 pet dogs with spontaneous intracranial tumors to examine the target coverage accuracy of delivering polymeric magnetite nanoparticles (PMNPs) encapsulating temozolomide (TMZ). A modified small animal frame was applied to the head of each subject, and PMNPs were delivered stereotactically to the center of the tumor. Magnetic resonance imaging (MRI) was performed immediately postoperatively to examine PMNP distribution, and the animals were followed until death. RESULTS Nine of the 10 dogs underwent PMNP infusion without complications. No infusate backflow was observed during any procedure. In 70% of the cases, the infusion accurately targeted the tumor mass, as determined by the presence of PMNP signal in the tumor on immediate postoperative MRI. CONCLUSIONS These data suggest that CED of PMNPs carrying TMZ is safe in dogs with intracranial tumors and can lead to nanoparticle distribution in the region of the target. Image guidance is an important adjunct to CED, because distribution is unpredictable, with the potential for missed target delivery.
Collapse
Affiliation(s)
- Jacob S Young
- Pritzker School of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Giovanna Bernal
- Section of Neurosurgery, Department of Surgery, The University of Chicago, Chicago, Illinois, USA
| | - Sean P Polster
- Section of Neurosurgery, Department of Surgery, The University of Chicago, Chicago, Illinois, USA
| | - Luis Nunez
- LNK Chemsolutions LLC, Lincoln, Nebraska, USA
| | | | - Nassir Mansour
- Section of Neurosurgery, Department of Surgery, The University of Chicago, Chicago, Illinois, USA
| | - Michael Podell
- Section of Neurosurgery, Department of Surgery, The University of Chicago, Chicago, Illinois, USA; Medvet Chicago, Chicago, Illinois, USA
| | - Bakhtiar Yamini
- Section of Neurosurgery, Department of Surgery, The University of Chicago, Chicago, Illinois, USA.
| |
Collapse
|
47
|
Bentley RT, Thomovsky SA, Miller MA, Knapp DW, Cohen-Gadol AA. Canine (Pet Dog) Tumor Microsurgery and Intratumoral Concentration and Safety of Metronomic Chlorambucil for Spontaneous Glioma: A Phase I Clinical Trial. World Neurosurg 2018; 116:e534-e542. [PMID: 29775768 DOI: 10.1016/j.wneu.2018.05.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Metronomic (daily low-dose) chlorambucil requires further study before use in human patients with glioma. The aim of this study was to investigate distribution and safety of metronomic chlorambucil in naturally occurring canine glioma. METHODS Eight client-owned (pet) dogs with newly diagnosed spontaneous glioma were prospectively enrolled. Chlorambucil was administered preoperatively at 4 mg/m2 every 24 hours for ≥3 days and continued postoperatively until death or dose-limiting adverse events. Chlorambucil concentrations in the surgical glioma specimen, cerebrospinal fluid, and serum were analyzed. Dogs additionally received lomustine postoperatively. Dogs were monitored for seizures, myoclonus, cytopenias, and tumor recurrence. RESULTS Complete microsurgical resection was achieved in 7 oligodendrogliomas and 1 astrocytoma (6 high grade, 2 low grade). Median surgical glioma specimen chlorambucil concentration was 0.52 ng/g (range, 0-2.62 ng/g), or 37% (range, 0%-178%) of serum concentration. Median cerebrospinal fluid concentration was 0.1 ng/mL (range, 0-0.3 ng/mL). Chlorambucil was not associated with increase in seizure activity. Six dogs displayed prolonged seizure-free intervals. There was no myoclonus. Three dogs developed asymptomatic thrombocytopenia after 8-12 months of chlorambucil. Median progression-free survival was 253 days (range, 63-860 days). Median overall survival was 257 days (range, 64-860 days). CONCLUSIONS The presence of intratumoral chlorambucil indicated an altered blood-brain barrier that varied from case to case. Despite sporadic previous reports of neurotoxicity, prolonged seizure-free intervals supported a high safety margin at this dose in this species. Metronomic chlorambucil was well tolerated. Spontaneous canine glioma offers a robust preclinical model.
Collapse
Affiliation(s)
- R Timothy Bentley
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, Indiana, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Stephanie A Thomovsky
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Margaret A Miller
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA
| | - Deborah W Knapp
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, Indiana, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Aaron A Cohen-Gadol
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, Indiana, USA; Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| |
Collapse
|
48
|
Shao F, Liu C. Revisit the Candidacy of Brain Cell Types as the Cell(s) of Origin for Human High-Grade Glioma. Front Mol Neurosci 2018. [PMID: 29515370 PMCID: PMC5826356 DOI: 10.3389/fnmol.2018.00048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
High-grade glioma, particularly, glioblastoma, is the most aggressive cancer of the central nervous system (CNS) in adults. Due to its heterogeneous nature, glioblastoma almost inevitably relapses after surgical resection and radio-/chemotherapy, and is thus highly lethal and associated with a dismal prognosis. Identifying the cell of origin has been considered an important aspect in understanding tumor heterogeneity, thereby holding great promise in designing novel therapeutic strategies for glioblastoma. Taking advantage of genetic lineage-tracing techniques, performed mainly on genetically engineered mouse models (GEMMs), multiple cell types in the CNS have been suggested as potential cells of origin for glioblastoma, among which adult neural stem cells (NSCs) and oligodendrocyte precursor cells (OPCs) are the major candidates. However, it remains highly debated whether these cell types are equally capable of transforming in patients, given that in the human brain, some cell types divide so slowly, therefore may never have a chance to transform. With the recent advances in studying adult NSCs and OPCs, particularly from the perspective of comparative biology, we now realize that notable differences exist among mammalian species. These differences have critical impacts on shaping our understanding of the cell of origin of glioma in humans. In this perspective, we update the current progress in this field and clarify some misconceptions with inputs from important findings about the biology of adult NSCs and OPCs. We propose to re-evaluate the cellular origin candidacy of these cells, with an emphasis on comparative studies between animal models and humans.
Collapse
Affiliation(s)
- Fangjie Shao
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Chong Liu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
49
|
Grenier JK, Foureman PA, Sloma EA, Miller AD. RNA-seq transcriptome analysis of formalin fixed, paraffin-embedded canine meningioma. PLoS One 2017; 12:e0187150. [PMID: 29073243 PMCID: PMC5658167 DOI: 10.1371/journal.pone.0187150] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/14/2017] [Indexed: 12/21/2022] Open
Abstract
Meningiomas are the most commonly reported primary intracranial tumor in dogs and humans and between the two species there are similarities in histology and biologic behavior. Due to these similarities, dogs have been proposed as models for meningioma pathobiology. However, little is known about specific pathways and individual genes that are involved in the development and progression of canine meningioma. In addition, studies are lacking that utilize RNAseq to characterize gene expression in clinical cases of canine meningioma. The primary objective of this study was to develop a technique for which high quality RNA can be extracted from formalin-fixed, paraffin embedded tissue and then used for transcriptome analysis to determine patterns of gene expression. RNA was extracted from thirteen canine meningiomas-eleven from formalin fixed and two flash-frozen. These represented six grade I and seven grade II meningiomas based on the World Health Organization classification system for human meningioma. RNA was also extracted from fresh frozen leptomeninges from three control dogs for comparison. RNAseq libraries made from formalin fixed tissue were of sufficient quality to successfully identify 125 significantly differentially expressed genes, the majority of which were related to oncogenic processes. Twelve genes (AQP1, BMPER, FBLN2, FRZB, MEDAG, MYC, PAMR1, PDGFRL, PDPN, PECAM1, PERP, ZC2HC1C) were validated using qPCR. Among the differentially expressed genes were oncogenes, tumor suppressors, transcription factors, VEGF-related genes, and members of the WNT pathway. Our work demonstrates that RNA of sufficient quality can be extracted from FFPE canine meningioma samples to provide biologically relevant transcriptome analyses using a next-generation sequencing technique, such as RNA-seq.
Collapse
Affiliation(s)
- Jennifer K. Grenier
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York, United States of America
| | - Polly A. Foureman
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York, United States of America
- Division of Biological Sciences, Chandler-Gilbert Community College, Chandler, Arizona, United States of America
| | - Erica A. Sloma
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York, United States of America
| | - Andrew D. Miller
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York, United States of America
| |
Collapse
|
50
|
Joshi AD, Botham RC, Schlein LJ, Roth HS, Mangraviti A, Borodovsky A, Tyler B, Joslyn S, Looper JS, Podell M, Fan TM, Hergenrother PJ, Riggins GJ. Synergistic and targeted therapy with a procaspase-3 activator and temozolomide extends survival in glioma rodent models and is feasible for the treatment of canine malignant glioma patients. Oncotarget 2017; 8:80124-80138. [PMID: 29113289 PMCID: PMC5655184 DOI: 10.18632/oncotarget.19085] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/09/2017] [Indexed: 12/17/2022] Open
Abstract
Purpose Glioblastoma is a deadly brain cancer with a median survival time of ∼15 months. Ionizing radiation plus the DNA alkylator temozolomide (TMZ) is the current standard therapy. PAC-1, a procaspase-3 activating small molecule, is blood-brain barrier penetrant and has previously demonstrated ability to synergize with diverse pro-apoptotic chemotherapeutics. We studied if PAC-1 could enhance the activity of TMZ, and whether addition of PAC-1 to standard treatment would be feasible in spontaneous canine malignant gliomas. Experimental Design Using cell lines and online gene expression data, we identified procaspase-3 as a potential molecular target for most glioblastomas. We investigated PAC-1 as a single agent and in combination with TMZ against glioma cells in culture and in orthotopic rodent models of glioma. Three dogs with spontaneous gliomas were treated with an analogous human glioblastoma treatment protocol, with concurrent PAC-1. Results Procaspase-3 is expressed in gliomas, with higher gene expression correlating with increased tumor grade and decreased prognosis. PAC-1 is cytotoxic to glioma cells in culture and active in orthotopic rodent glioma models. PAC-1 added to TMZ treatments in cell culture increases apoptotic death, and the combination significantly increases survival in orthotopic glioma models. Addition of PAC-1 to TMZ and radiation was well-tolerated in 3 out of 3 pet dogs with spontaneous glioma, and partial to complete tumor reductions were observed. Conclusions Procaspase-3 is a clinically relevant target for treatment of glioblastoma. Synergistic activity of PAC-1/TMZ in rodent models and the demonstration of feasibility of the combined regime in canine patients suggest potential for PAC-1 in the treatment of glioblastoma.
Collapse
Affiliation(s)
- Avadhut D Joshi
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Rachel C Botham
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Lisa J Schlein
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Howard S Roth
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Antonella Mangraviti
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Alexandra Borodovsky
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Betty Tyler
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | - Jayme S Looper
- Department of Veterinary Clinical Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Michael Podell
- Department of Neurology, MedVet Chicago, Chicago, IL, USA
| | - Timothy M Fan
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Paul J Hergenrother
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Gregory J Riggins
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|