1
|
Al-Saleh I, Alnuwaysir H, Al-Rouqi R, Aldhalaan H, Tulbah M. Fetal exposure to toxic metals (mercury, cadmium, lead, and arsenic) via intrauterine blood transfusions. Pediatr Res 2024:10.1038/s41390-024-03504-w. [PMID: 39215198 DOI: 10.1038/s41390-024-03504-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Intrauterine blood transfusions (IUBTs) are critical for treating fetal anemia but may expose fetuses to toxic metals. This study assessed mercury (Hg), cadmium (Cd), lead (Pb), and arsenic (As) levels in red blood cell (RBC) transfusion bags used during pregnancy, examined metal exposure in maternal and cord blood, and evaluated fetal health risks. METHODS Thirty pregnant women who underwent intrauterine blood IUBTs were enrolled in this study. Metal concentrations were measured in one to nine transfusion bags for each participant. These bags contained 8-103 mL volumes and were administered between gestational weeks 18 and 35. We also tested the mothers' blood for metal levels in the final stages of pregnancy and the umbilical cord blood at birth. The assessment utilized the intravenous reference dose (IVRfD) and the hazard index (HI) to evaluate the non-carcinogenic health risks these metals might pose to the fetus. RESULTS Metals were detectable in almost all transfusion bags. The IVRfD was exceeded for Hg in 16 fetuses, Cd in 8 fetuses, Pb in 30 fetuses, and As in 1 fetus. Significant correlations were found between the concentrations of Hg, Cd, and As in transfused RBCs and cord blood. No correlations were observed between these concentrations and maternal blood levels, except for Cd. The influence of multiple IUBTs was positively associated only with Cd levels in the cord (ß = 0.529, 95% confidence intervals (CI) between 0.180 and 0.879). The HI exceeded 1, indicating significant health risks, predominantly from Pb, followed by Hg and Cd. CONCLUSION The findings of this study highlight the significant risk of fetal exposure to toxic metals, mainly Pb, through IUBTs. This underscores the critical need for prescreening blood donors for toxic metals to minimize the potential for long-term adverse effects on the fetus. The research stresses the necessity of balancing the immediate benefits of IUBTs against the risks of toxic metal exposure, underscoring the importance of safeguarding fetal health through improved screening practices. IMPACT This study highlights the risk of toxic metal exposure through IUBTs, a treatment for fetal anemia. Hg, Cd, Pb, and As levels were measured in transfusion bags and linked to fetal exposure through maternal and umbilical cord blood analysis. The HI indicates significant Pb exposure risks, underscoring the need for mandatory blood donor screening. Recommendations include shifting toward safer practices in managing fetal anemia to protect fetal health.
Collapse
Affiliation(s)
- Iman Al-Saleh
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia.
| | - Hissah Alnuwaysir
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Reem Al-Rouqi
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Hesham Aldhalaan
- Center for Autism Research, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Maha Tulbah
- Maternal-Fetal Medicine, Obstetrics & Gynecology Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| |
Collapse
|
2
|
D'Alessandro A, Hod EA. Red Blood Cell Storage: From Genome to Exposome Towards Personalized Transfusion Medicine. Transfus Med Rev 2023; 37:150750. [PMID: 37574398 PMCID: PMC10834861 DOI: 10.1016/j.tmrv.2023.150750] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 08/15/2023]
Abstract
Over the last decade, the introduction of omics technologies-especially high-throughput genomics and metabolomics-has contributed significantly to our understanding of the role of donor genetics and nongenetic determinants of red blood cell storage biology. Here we briefly review the main advances in these areas, to the extent these contributed to the appreciation of the impact of donor sex, age, ethnicity, but also processing strategies and donor environmental, dietary or other exposures - the so-called exposome-to the onset and severity of the storage lesion. We review recent advances on the role of genetically encoded polymorphisms on red cell storage biology, and relate these findings with parameters of storage quality and post-transfusion efficacy, such as hemolysis, post-transfusion intra- and extravascular hemolysis and hemoglobin increments. Finally, we suggest that the combination of these novel technologies have the potential to drive further developments towards personalized (or precision) transfusion medicine approaches.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Eldad A Hod
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
3
|
Wang J, Wang Y, Zhou W, Huang Y, Yang J. Impacts of cigarette smoking on blood circulation: do we need a new approach to blood donor selection? JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2023; 42:62. [PMID: 37408051 DOI: 10.1186/s41043-023-00405-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
Smoking is a major public health problem and is considered the leading cause of preventable death worldwide. Gas-phase smoke carries bioactive substances and toxic compounds, affecting human health and reducing life spans. The negative effects of smoking on red blood cell (RBC) quality include destroying RBCs and increasing carboxy hemoglobin (COHb). Smoking increases the concentrations of heavy metals such as cadmium (Cd) and lead (Pb) in the blood. Moreover, tobacco smoking has been found to be associated with heightened platelet (PLT)-dependent thrombin level which will induce a prothrombotic state. Smoking may affect the blood circulation of donors, and subsequently the blood components, and ultimately the recipients of transfusion. Nevertheless, there are no restrictions on smoking for volunteer blood donor screenings currently. We reviewed the articles about the influence of smoking on smokers' blood circulation as well as the impact of donated blood products on transfusion when these smokers act as blood donors. We aim to attract blood collection centers' attention to strengthen the management of blood donors who smoke, avoiding their use in massive transfusion protocol and susceptible recipients, especially pediatric ones.
Collapse
Affiliation(s)
- Jie Wang
- Department of Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, People's Republic of China
| | - Yuhan Wang
- Department of Laboratory Medicine, Luzhou Longmatan District People's Hospital, Luzhou, 625000, Sichuan Province, People's Republic of China
| | - Weixin Zhou
- Department of Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, People's Republic of China
| | - Yuanshuai Huang
- Department of Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, People's Republic of China
| | - Jianbo Yang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, People's Republic of China.
| |
Collapse
|
4
|
Al-Saleh I, Al-Rouqi R, Alnuwaysir H, Aldhalaan H, Alismail E, Binmanee A, Hawari A, Alhazzani F, Bin Jabr M. Exposure of preterm neonates to toxic metals during their stay in the Neonatal Intensive Care Unit and its impact on neurodevelopment at 2 months of age. J Trace Elem Med Biol 2023; 78:127173. [PMID: 37060676 DOI: 10.1016/j.jtemb.2023.127173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/27/2022] [Accepted: 04/04/2023] [Indexed: 04/17/2023]
Abstract
BACKGROUND Premature neonates might be exposed to toxic metals during their stay in the neonatal intensive care unit (NICU), which could adversely affect neurodevelopment; however, limited evidence is available. The present study was therefore designed to assess the exposure to mercury, lead, cadmium, arsenic, and manganese of preterm neonates who received total parenteral nutrition (TPN) and/or red blood cell (RBC) transfusions during their NICU stay and the risk of neurodevelopment delay at the age of 2 months. METHODS We recruited 33 preterm neonates who required TPN during their NICU admission. Blood samples were collected for metal analysis at two different time points (admission and before discharge). Metals in the daily TPN received by preterm neonates were analyzed. Neurodevelopment was assessed using the Ages and Stages Questionnaire Edition 3 (ASQ-3). RESULTS All samples of TPN had metal contamination: 96% exceeded the critical arsenic limit (0.3 μg/kg body weight/day); daily manganese intake from TPN for preterm neonates exceeded the recommended dose (1 µg/kg body weight) as it was added intentionally to TPN solutions, raising potential safety concerns. All samples of RBC transfusions exceeded the estimated intravenous reference dose for lead (0.19 µg/kg body weight). Levels of mercury, lead and manganese in preterm neonates at discharge decreased 0.867 µg/L (95% CI, 0.76, 0.988), 0.831 (95%CI, 0.779, 0.886) and 0.847 µg/L (95% CI, 0.775, 0.926), respectively. A decrease in ASQ-3-problem solving scores was associated with higher levels of blood lead in preterm neonates taken at admission (ß = -0.405, 95%CI = -0.655, -0.014), and with plasma manganese (ß = -0.562, 95%CI = -0.995, -0.172). We also observed an association between decreased personal social domain scores with higher blood lead levels of preterm neonates before discharge (ß = -0.537, 95%CI = -0.905, -0.045). CONCLUSION Our findings provide evidence to suggest negative impacts on the neurodevelopment at 2 months of preterm infants exposed to certain metals, possibly related to TPN intake and/or blood transfusions received during their NICU stay. Preterm neonates may be exposed to levels of metals in utero.
Collapse
Affiliation(s)
- Iman Al-Saleh
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, P.O. Box: 3354, Riyadh 11211, Saudi Arabia.
| | - Reem Al-Rouqi
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, P.O. Box: 3354, Riyadh 11211, Saudi Arabia
| | - Hissah Alnuwaysir
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, P.O. Box: 3354, Riyadh 11211, Saudi Arabia
| | - Hesham Aldhalaan
- Center for Autism Research, King Faisal Specialist Hospital and Research Centre, P.O. Box: 3354, Riyadh 11211, Saudi Arabia
| | - Eiman Alismail
- Center for Autism Research, King Faisal Specialist Hospital and Research Centre, P.O. Box: 3354, Riyadh 11211, Saudi Arabia
| | - Abdulaziz Binmanee
- Neonatal Critical Care Section, Department of Pediatrics, King Faisal Specialist Hospital and Research Centre, P.O. Box: 3354, Riyadh 11211, Saudi Arabia
| | - Amal Hawari
- Neonatal Critical Care Section, Department of Pediatrics, King Faisal Specialist Hospital and Research Centre, P.O. Box: 3354, Riyadh 11211, Saudi Arabia
| | - Fahad Alhazzani
- Neonatal Critical Care Section, Department of Pediatrics, King Faisal Specialist Hospital and Research Centre, P.O. Box: 3354, Riyadh 11211, Saudi Arabia
| | - Mohammad Bin Jabr
- Neonatal Critical Care Section, Department of Pediatrics, King Faisal Specialist Hospital and Research Centre, P.O. Box: 3354, Riyadh 11211, Saudi Arabia
| |
Collapse
|
5
|
Astarini DE, Jusman SWA, Chunaeini S. Erythrocyte Membrane Resistance Of Actively Smoking Donors In Leukoreduced Packed Red Blood Cells During Storage: Focus On Oxidative Stress. RUSSIAN OPEN MEDICAL JOURNAL 2022. [DOI: 10.15275/rusomj.2022.0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background — Leukoreduced (with removed white blood cells) packed red blood cells (PRC) are commonly for blood transfusions to reduce post-transfusion effects. The number of active smokers in Indonesia is relatively high; consequently, many of them could be blood donors since no regulations are set to rule them out. However, leukoreduced PRC in active smokers are highly risky as they may undergo erythrocyte membrane damage caused by oxidative stress, which hinders fighting the free radicals generated by smoking. Objective — Our study examined the impact of oxidative stress on membrane resistance of leukoreduced PRC, produced from actively smoking donors, during its storage. Material and Methods − The study was descriptive and cross-sectional in its design. It examined 12 nonsmoking (NS), 12 lightly smoking (LS), and 12 moderately smoking (MS) donors. Leukoreduced PRC produced from donors was separated into three groups: NS, LS, and MS. We performed assessments of malondialdehyde (MDA), superoxide dismutase enzyme (SOD) activity, and osmotic fragility test (OFT) on days 0 through day 35 of storage (D0-D35). We used nonparametric statistical tests (Kruskal-Wallis and Mann-Whitney). We assumed that p<0.05 implied statistically significant difference. Results — The Kruskal-Wallis test demonstrated differences on D0, D7, D14, D21, D28, and D35 between all three groups in MDA, SOD, and OFT, with p < 0.05. This study showed that leukoreduced PRC storage increased oxidative stress. The highest oxidative stress occurred in the MS group. Conclusion — Erythrocyte membrane fragility and resistance correlated with oxidative stress. Blood components of leukoreduced PRC produced from moderate smokers should be banned for repeated transfusions.
Collapse
|
6
|
Anastasiadi AT, Arvaniti VZ, Paronis EC, Kostomitsopoulos NG, Stamoulis K, Papassideri IS, D’Alessandro A, Kriebardis AG, Tzounakas VL, Antonelou MH. Corpuscular Fragility and Metabolic Aspects of Freshly Drawn Beta-Thalassemia Minor RBCs Impact Their Physiology and Performance Post Transfusion: A Triangular Correlation Analysis In Vitro and In Vivo. Biomedicines 2022; 10:biomedicines10030530. [PMID: 35327331 PMCID: PMC8945797 DOI: 10.3390/biomedicines10030530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/03/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
The clarification of donor variation effects upon red blood cell (RBC) storage lesion and transfusion efficacy may open new ways for donor–recipient matching optimization. We hereby propose a “triangular” strategy for studying the links comprising the transfusion chain—donor, blood product, recipient—as exemplified in two cohorts of control and beta-thalassemia minor (βThal+) donors (n = 18 each). It was unraveled that RBC osmotic fragility and caspase-like proteasomal activity can link both donor cohorts to post-storage states. In the case of heterozygotes, the geometry, size and intrinsic low RBC fragility might be lying behind their higher post-storage resistance to lysis and recovery in mice. Moreover, energy-related molecules (e.g., phosphocreatine) and purine metabolism factors (IMP, hypoxanthine) were specifically linked to lower post-storage hemolysis and phosphatidylserine exposure. The latter was also ameliorated by antioxidants, such as urate. Finally, higher proteasomal conservation across the transfusion chain was observed in heterozygotes compared to control donors. The proposed “triangularity model” can be (a) expanded to additional donor/recipient backgrounds, (b) enriched by big data, especially in the post-transfusion state and (c) fuel targeted experiments in order to discover new quality biomarkers and design more personalized transfusion medicine schemes.
Collapse
Affiliation(s)
- Alkmini T. Anastasiadi
- Department of Biology, Section of Cell Biology and Biophysics, School of Science, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece; (A.T.A.); (V.-Z.A.); (I.S.P.)
| | - Vasiliki-Zoi Arvaniti
- Department of Biology, Section of Cell Biology and Biophysics, School of Science, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece; (A.T.A.); (V.-Z.A.); (I.S.P.)
| | - Efthymios C. Paronis
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens (BRFAA), 11527 Athens, Greece; (E.C.P.); (N.G.K.)
| | - Nikolaos G. Kostomitsopoulos
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens (BRFAA), 11527 Athens, Greece; (E.C.P.); (N.G.K.)
| | | | - Issidora S. Papassideri
- Department of Biology, Section of Cell Biology and Biophysics, School of Science, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece; (A.T.A.); (V.-Z.A.); (I.S.P.)
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA;
| | - Anastasios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Welfare Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece;
| | - Vassilis L. Tzounakas
- Department of Biology, Section of Cell Biology and Biophysics, School of Science, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece; (A.T.A.); (V.-Z.A.); (I.S.P.)
- Correspondence: (V.L.T.); (M.H.A.)
| | - Marianna H. Antonelou
- Department of Biology, Section of Cell Biology and Biophysics, School of Science, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece; (A.T.A.); (V.-Z.A.); (I.S.P.)
- Correspondence: (V.L.T.); (M.H.A.)
| |
Collapse
|
7
|
Tzounakas VL, Anastasiadi AT, Valsami SI, Stamoulis KE, Papageorgiou EG, Politou M, Papassideri IS, Kriebardis AG, Antonelou MH. Osmotic hemolysis is a donor-specific feature of red blood cells under various storage conditions and genetic backgrounds. Transfusion 2021; 61:2538-2544. [PMID: 34146350 DOI: 10.1111/trf.16558] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/23/2021] [Accepted: 05/20/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Transfusion research has recently focused on the discovery of red blood cell (RBC) storage capacity biomarkers and the elucidation of donor variation effects. This shift of focus can further strengthen personalization of transfusion therapy, by revealing probable links between donor biology, RBC storage lesion profile, and posttransfusion performance. STUDY DESIGN AND METHODS We performed a paired correlation analysis of osmotic fragility in freshly drawn RBCs and during cold storage in different preservative solutions at weekly intervals until unit's expiration date (n = 231), or following 24 h reconstitution in allogeneic plasma (n = 32) from healthy controls or transfusion-dependent beta-thalassemia patients. RESULTS We observed exceptional correlation profiles (r > 0.700, p < 10-5 in most cases) of RBC osmotic fragility in the ensemble of samples, as well as in subgroups characterized by distinct genetic backgrounds (sex, beta-thalassemia traits, glucose-6-phosphate dehydrogenase deficiency) and storage strategies (additive solutions, whole blood, RBC concentrates). The mean corpuscular fragility (MCF) of fresh and stored RBCs at each storage time significantly correlated with the MCF of stored RBCs measured at all subsequent time points of the storage period (e.g., MCF values of storage day 21 correlated with those of storage days 28, 35 and 42). A similar correlation profile was also observed between the osmotic hemolysis of fresh/stored RBCs before and following in vitro reconstitution in plasma from healthy controls or beta-thalassemia patients. CONCLUSION Our findings highlighted the potential of osmotic fragility to serve as a donor-signature on RBCs at every step of any individual transfusion chain (donor, blood product, and probably, recipient).
Collapse
Affiliation(s)
- Vassilis L Tzounakas
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Alkmini T Anastasiadi
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Serena I Valsami
- Blood Bank and Hematology Laboratory, Aretaieion Hospital, School of Medicine, NKUA, Athens, Greece
| | | | - Effie G Papageorgiou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece
| | - Marianna Politou
- Blood Bank and Hematology Laboratory, Aretaieion Hospital, School of Medicine, NKUA, Athens, Greece
| | - Issidora S Papassideri
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Anastasios G Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece
| | - Marianna H Antonelou
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| |
Collapse
|
8
|
Kozlova E, Chernysh A, Kozlov A, Sergunova V, Sherstyukova E. Assessment of carboxyhemoglobin content in the blood with high accuracy: wavelength range optimization for nonlinear curve fitting of optical spectra. Heliyon 2020; 6:e04622. [PMID: 32793833 PMCID: PMC7415840 DOI: 10.1016/j.heliyon.2020.e04622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/09/2020] [Accepted: 07/30/2020] [Indexed: 11/24/2022] Open
Abstract
The impact of carbon monoxide (CO) gas on the human organism is very dangerous. The affinity of CO to hemoglobin is considerably higher than that of oxygen. Thus, the interaction of CO with the blood results in a higher content of carboxyhemoglobin (HbCO) in red blood cells (RBCs) and correspondingly in tissue hypoxia. The disruption in the organism depends on the HbCO content in the blood. To assess any complications in the body at a given moment due to CO exposure and predict future consequences, it is necessary to measure the dynamics of hemoglobin derivative concentrations simultaneously. However, measuring HbCO and other derivatives in RBCs without hemolysis accurately is complicated due to the strong intercollinearity between the molar absorptivities of hemoglobin derivatives and superposition of absorption and scattering spectra. In the present study, to quantitatively assess the contents of the hemoglobin derivatives in the blood after exposure to CO, improved accuracy is achieved by optimizing the wavelength range used for the nonlinear curve fitting of optical spectra. Experimental spectra were measured in the wavelength range Δλ=500−700nm. For each experimental curve, it was established the value of optimal interval Δλopt for which the correlation coefficient between experimental data and corresponding points of the theoretical fitting curve was the maximum in the wavelength range Δλtyp=535−580nm, which contains the typical absorption peaks for HbO2, Hb, and HbCO. The concentrations obtained based on such fitting curves were considered to be highly accurate. The quantitative assessment enabled the determination of theHbCO nonlinear increase with the time of CO exposure in the in vitro experiment and the study of the dynamics of hemoglobin derivative transformations during blood incubation.
Collapse
Affiliation(s)
- Elena Kozlova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031, 25 Petrovka Str., Build. 2, Moscow, Russian Federation.,Sechenov First Moscow State Medical University (Sechenov University), 119991, 2-4 Bolshaya Pirogovskaya St., Moscow, Russian Federation
| | - Aleksandr Chernysh
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031, 25 Petrovka Str., Build. 2, Moscow, Russian Federation.,Sechenov First Moscow State Medical University (Sechenov University), 119991, 2-4 Bolshaya Pirogovskaya St., Moscow, Russian Federation
| | - Aleksandr Kozlov
- Sechenov First Moscow State Medical University (Sechenov University), 119991, 2-4 Bolshaya Pirogovskaya St., Moscow, Russian Federation
| | - Viktoria Sergunova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031, 25 Petrovka Str., Build. 2, Moscow, Russian Federation
| | - Ekaterina Sherstyukova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031, 25 Petrovka Str., Build. 2, Moscow, Russian Federation.,Sechenov First Moscow State Medical University (Sechenov University), 119991, 2-4 Bolshaya Pirogovskaya St., Moscow, Russian Federation
| |
Collapse
|
9
|
Stefanoni D, Fu X, Reisz JA, Kanias T, Nemkov T, Page GP, Dumont L, Roubinian N, Stone M, Kleinman S, Busch M, Zimring JC, D'Alessandro A. Nicotine exposure increases markers of oxidant stress in stored red blood cells from healthy donor volunteers. Transfusion 2020; 60:1160-1174. [PMID: 32385854 DOI: 10.1111/trf.15812] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cigarette smoking is a frequent habit across blood donors (approx. 13% of the donor population), that could compound biologic factors and exacerbate oxidant stress to stored red blood cells (RBCs). STUDY DESIGN AND METHODS As part of the REDS-III RBC-Omics (Recipient Epidemiology Donor Evaluation Study III Red Blood Cell-Omics) study, a total of 599 samples were sterilely drawn from RBC units stored under blood bank conditions at Storage Days 10, 23, and 42 days, before testing for hemolysis parameters and metabolomics. Quantitative measurements of nicotine and its metabolites cotinine and cotinine oxide were performed against deuterium-labeled internal standards. RESULTS Donors whose blood cotinine levels exceeded 10 ng/mL (14% of the tested donors) were characterized by higher levels of early glycolytic intermediates, pentose phosphate pathway metabolites, and pyruvate-to-lactate ratios, all markers of increased basal oxidant stress. Consistently, increased glutathionylation of oxidized triose sugars and lipid aldehydes was observed in RBCs donated by nicotine-exposed donors, which were also characterized by increased fatty acid desaturation, purine salvage, and methionine oxidation and consumption via pathways involved in oxidative stress-triggered protein damage-repair mechanisms. CONCLUSION RBCs from donors with high levels of nicotine exposure are characterized by increases in basal oxidant stress and decreases in osmotic hemolysis. These findings indicate the need for future clinical studies aimed at addressing the impact of smoking and other sources of nicotine (e.g., nicotine patches, snuff, vaping, secondhand tobacco smoke) on RBC storage quality and transfusion efficacy.
Collapse
Affiliation(s)
- Davide Stefanoni
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado
| | - Xiaoyun Fu
- BloodWorks Northwest, Seattle, Washington
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado
| | - Tamir Kanias
- Vitalant Research Institute, Denver, Colorado.,University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado
| | | | | | | | - Mars Stone
- Vitalant Research Institute, San Francisco, California
| | - Steve Kleinman
- University of British Columbia, Victoria, British Columbia, Canada
| | - Michael Busch
- Vitalant Research Institute, San Francisco, California
| | | | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado.,Vitalant Research Institute, Denver, Colorado
| | | |
Collapse
|
10
|
D'Alessandro A, Fu X, Reisz JA, Stone M, Kleinman S, Zimring JC, Busch M. Ethyl glucuronide, a marker of alcohol consumption, correlates with metabolic markers of oxidant stress but not with hemolysis in stored red blood cells from healthy blood donors. Transfusion 2020; 60:1183-1196. [PMID: 32385922 DOI: 10.1111/trf.15811] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Red blood cell (RBC) storage in the blood bank is associated with the progressive accumulation of oxidant stress. While the mature erythrocyte is well equipped to cope with such stress, recreative habits like alcohol consumption may further exacerbate the basal level of oxidant stress and contribute to the progress of the storage lesion. STUDY DESIGN AND METHODS RBC levels of ethyl glucuronide, a marker of alcohol consumption, were measured via ultra-high-pressure liquid chromatography coupled with high-resolution mass spectrometry. Analyses were performed on 599 samples from the recalled donor population at Storage Days 10, 23, and 42 (n = 250), as part of the REDS-III RBC-Omics (Recipient Epidemiology Donor Evaluation Study III Red Blood Cell-Omics) study. This cohort consisted of the 5th and 95th percentile of donors with extreme hemolytic propensity out of the original cohort of 13,403 subjects enrolled in the REDS-III RBC Omics study. Ehtyl glucuronide levels were thus correlated to global metabolomics and lipidomics analyses and RBC hemolytic propensity. RESULTS Ethyl glucuronide levels were positively associated with oxidant stress markers, including glutathione consumption and turnover, methionine oxidation, S-adenosylhomocysteine accumulation, purine oxidation, and transamination markers. Decreases in glycolysis and energy metabolism, the pentose phosphate pathway and ascorbate system were observed in those subjects with the highest levels of ethyl glucuronide, though hemolysis values were comparable between groups. CONCLUSION Though preliminary, this study is suggestive that markers of alcohol consumption are associated with increases in oxidant stress and decreases in energy metabolism with no significant impact on hemolytic parameters in stored RBCs from healthy donor volunteers.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado.,Vita lant Research Institute, Denver, Colorado
| | - Xiaoyun Fu
- BloodWorks Northwest, Seattle, Washington
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado
| | - Mars Stone
- Vitalant Research Institute, San Francisco, California
| | - Steve Kleinman
- University of British Columbia, Victoria, British Columbia, Canada
| | | | - Michael Busch
- Vitalant Research Institute, San Francisco, California
| | | |
Collapse
|
11
|
DeSimone RA, Plimier C, Lee C, Kanias T, Cushing MM, Sachais BS, Kleinman S, Busch MP, Roubinian NH. Additive effects of blood donor smoking and gamma irradiation on outcome measures of red blood cell transfusion. Transfusion 2020; 60:1175-1182. [DOI: 10.1111/trf.15833] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022]
Affiliation(s)
| | - Colleen Plimier
- Kaiser Permanente Northern California Division of Research Oakland California USA
| | - Catherine Lee
- Kaiser Permanente Northern California Division of Research Oakland California USA
| | | | | | | | | | - Michael P. Busch
- Vitalant Research Institute San Francisco California USA
- University of California San Francisco California USA
| | - Nareg H. Roubinian
- Kaiser Permanente Northern California Division of Research Oakland California USA
- Vitalant Research Institute San Francisco California USA
- University of California San Francisco California USA
| |
Collapse
|