1
|
Burk J, Wittenberg-Voges L, Schubert S, Horstmeier C, Brehm W, Geburek F. Treatment of Naturally Occurring Tendon Disease with Allogeneic Multipotent Mesenchymal Stromal Cells: A Randomized, Controlled, Triple-Blinded Pilot Study in Horses. Cells 2023; 12:2513. [PMID: 37947591 PMCID: PMC10650642 DOI: 10.3390/cells12212513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023] Open
Abstract
The treatment of tendinopathies with multipotent mesenchymal stromal cells (MSCs) is a promising option in equine and human medicine. However, conclusive clinical evidence is lacking. The purpose of this study was to gain insight into clinical treatment efficacy and to identify suitable outcome measures for larger clinical studies. Fifteen horses with early naturally occurring tendon disease were assigned to intralesional treatment with allogeneic adipose-derived MSCs suspended in serum or with serum alone through block randomization (dosage adapted to lesion size). Clinicians and horse owners remained blinded to the treatment during 12 months (seven horses per group) and 18 months (seven MSC-group and five control-group horses) of follow-up including clinical examinations and diagnostic imaging. Clinical inflammation, lameness, and ultrasonography scores improved more over time in the MSC group. The lameness score difference significantly improved in the MSC group compared with the control group after 6 months. In the MSC group, five out of the seven horses were free of re-injuries and back to training until 12 and 18 months. In the control group, three out of the seven horses were free of re-injuries until 12 months. These results suggest that MSCs are effective for the treatment of early-phase tendon disease and provide a basis for a larger controlled study.
Collapse
Affiliation(s)
- Janina Burk
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Liza Wittenberg-Voges
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559 Hannover, Germany;
| | - Susanna Schubert
- Institute of Human Genetics, University of Leipzig Medical Center, Philipp-Rosenthal-Strasse 55, 04103 Leipzig, Germany;
| | - Carolin Horstmeier
- Department for Horses, Veterinary Teaching Hospital, University of Leipzig, An den Tierkliniken 21, 04103 Leipzig, Germany; (C.H.); (W.B.)
| | - Walter Brehm
- Department for Horses, Veterinary Teaching Hospital, University of Leipzig, An den Tierkliniken 21, 04103 Leipzig, Germany; (C.H.); (W.B.)
| | - Florian Geburek
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559 Hannover, Germany;
| |
Collapse
|
2
|
Evans D, Barcons AM, Basit RH, Adams C, Chari DM. Evaluating the Feasibility of Hydrogel-Based Neural Cell Sprays. J Funct Biomater 2023; 14:527. [PMID: 37888192 PMCID: PMC10607175 DOI: 10.3390/jfb14100527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Neurological injuries have poor prognoses with serious clinical sequelae. Stem cell transplantation enhances neural repair but is hampered by low graft survival (ca. 80%) and marker expression/proliferative potential of hydrogel-sprayed astrocytes was retained. Combining a cell spray format with polymer encapsulation technologies could form the basis of a non-invasive graft delivery method, offering potential advantages over current cell delivery approaches.
Collapse
Affiliation(s)
- Daisy Evans
- Keele University School of Medicine, Keele University, Staffordshire ST5 5BG, UK;
| | - Aina Mogas Barcons
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson’s Disease Centre, University of Oxford, Oxford OX1 3AZ, UK;
| | - Raja Haseeb Basit
- Department of General Surgery, Queen Elizabeth Hospital, Birmingham B15 2GW, UK;
| | - Christopher Adams
- Neural Tissue Engineering, School of Life Sciences, Keele University, Staffordshire ST5 5BG, UK;
| | - Divya Maitreyi Chari
- Neural Tissue Engineering, School of Life Sciences, Keele University, Staffordshire ST5 5BG, UK;
| |
Collapse
|
3
|
Schnabel LV, Koch DW. Use of mesenchymal stem cells for tendon healing in veterinary and human medicine: getting to the "core" of the problem through a one health approach. J Am Vet Med Assoc 2023; 261:1435-1442. [PMID: 37643722 PMCID: PMC11027114 DOI: 10.2460/javma.23.07.0388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
The purpose of this manuscript, which is part of the Currents in One Health series, is to take a comparative approach to stem cell treatment for tendon injury and consider how the horse might inform treatment in other veterinary species and humans. There is increasing experimental and clinical evidence for the use of bone marrow-derived mesenchymal stem cells to treat tendon injuries in the horse. The same evidence does not currently exist for other species. This manuscript will review why the equine superficial digital flexor tendon core lesion might be considered optimal for stem cell delivery and stem cell interaction with the injury environment and will also introduce the concept of stem cell licensing for future evaluation. The companion Currents in One Health by Koch and Schnabel, AJVR, October 2023, addresses in detail what is known about stem cell licensing for the treatment of other diseases using rodent models and how this information can potentially be applied to tendon healing.
Collapse
Affiliation(s)
- Lauren V. Schnabel
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC
| | - Drew W. Koch
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC
| |
Collapse
|
4
|
Awonusi O, Harbin ZJ, Brookes S, Zhang L, Kaefer S, Morrison RA, Newman S, Voytik-Harbin S, Halum S. Impact of Needle Selection on Survival of Muscle-Derived Cells When Used for Laryngeal Injections. JOURNAL OF CELL SCIENCE & THERAPY 2022; 14:377. [PMID: 37250272 PMCID: PMC10217785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Objective To describe how differing injector needles and delivery vehicles impact Autologous Muscle-Derived Cell (AMDC) viability when used for laryngeal injection. Methods In this study, adult porcine muscle tissue was harvested and used to create AMDC populations. While controlling cell concentration (1 × 107 cells/ml), AMDCs including Muscle Progenitor Cells (MPCs) or Motor Endplate Expressing Cells (MEEs) were suspended in either phosphate-buffered saline or polymerizable (in-situ scaffold forming) type I oligomeric collagen solution. Cell suspensions were then injected through 23- and 27-gauge needles of different lengths at the same rate (2 ml/min) using a syringe pump. Cell viability was measured immediately after injection and 24- and 48-hours post-injection, and then compared to baseline cell viability prior to injection. Results The viability of cells post-injection was not impacted by needle length or needle gauge but was significantly impacted by the delivery vehicle. Overall, injection of cells using collagen as a delivery vehicle maintained the highest cell viability. Conclusion Needle gauge, needle length, and delivery vehicle are important factors that can affect the viability of injected cell populations. These factors should be considered and adapted to improve injectable MDC therapy outcomes when used for laryngeal applications.
Collapse
Affiliation(s)
- Oluwaseyi Awonusi
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA
| | - Zachary J. Harbin
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Sarah Brookes
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Lujuan Zhang
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA
| | - Samuel Kaefer
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA
| | - Rachel A. Morrison
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Sharlé Newman
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA
| | - Sherry Voytik-Harbin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, USA
| | - Stacey Halum
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA
| |
Collapse
|
5
|
de Souza JB, Rosa GDS, Rossi MC, Stievani FDC, Pfeifer JPH, Krieck AMT, Bovolato ALDC, Fonseca-Alves CE, Borrás VA, Alves ALG. In Vitro Biological Performance of Alginate Hydrogel Capsules for Stem Cell Delivery. Front Bioeng Biotechnol 2021; 9:674581. [PMID: 34513806 PMCID: PMC8429506 DOI: 10.3389/fbioe.2021.674581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/16/2021] [Indexed: 11/23/2022] Open
Abstract
Encapsulation of biological components in hydrogels is a well described method for controlled drug delivery of proteins, tissue engineering and intestinal colonization with beneficial bacteria. Given the potential of tissue engineering in clinical practice, this study aimed to evaluate the feasibility of encapsulation of adipose tissue-derived mesenchymal stem cells (MSCs) of mules in sodium alginate. We evaluated capsule morphology and cell viability, immunophenotype and release after encapsulation. Circular and irregular pores were observed on the hydrogel surface, in which MSCs were present and alive. Capsules demonstrated good capacity of absorption of liquid and cell viability was consistently high through the time points, indicating proper nutrient diffusion. Flow cytometry showed stability of stem cell surface markers, whereas immunohistochemistry revealed the expression of CD44 and absence of MHC-II through 7 days of culture. Stem cell encapsulation in sodium alginate hydrogel is a feasible technique that does not compromise cell viability and preserves their undifferentiated status, becoming a relevant option to further studies of tridimensional culture systems and in vivo bioactive agents delivery.
Collapse
Affiliation(s)
- Jaqueline Brandão de Souza
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu, Brazil
| | - Gustavo Dos Santos Rosa
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu, Brazil
| | - Mariana Correa Rossi
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu, Brazil
| | - Fernanda de Castro Stievani
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu, Brazil
| | - João Pedro Hübbe Pfeifer
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu, Brazil
| | - André Massahiro Teramoto Krieck
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu, Brazil
| | - Ana Lívia de Carvalho Bovolato
- Cell Engineering Lab, Blood Transfusion Center, Botucatu Medical School, São Paulo State University, UNESP, Botucatu, Brazil
| | - Carlos Eduardo Fonseca-Alves
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu, Brazil.,Institute of Health Sciences, Paulista University-UNIP Bauru, Bauru, Brazil
| | - Vicente Amigó Borrás
- Institut de Tecnologia de Materials, Universitat Politècnica de València, València, Spain
| | - Ana Liz Garcia Alves
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu, Brazil
| |
Collapse
|
6
|
Novel Techniques to Improve Precise Cell Injection. Int J Mol Sci 2021; 22:ijms22126367. [PMID: 34198683 PMCID: PMC8232276 DOI: 10.3390/ijms22126367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 12/11/2022] Open
Abstract
We noted recently that the injection of cells with a needle through a cystoscope in the urethral sphincter muscle of pigs failed to deposit them nearby or at the intended target position in about 50% of all animals investigated (n > 100). Increasing the chance for precise cell injection by shotgun approaches employing several circumferential injections into the sphincter muscle bears the risk of tissue injury. In this study, we developed and tested a novel needle-free technique to precisely inject cells in the urethral sphincter tissue, or other tissues, using a water-jet system. This system was designed to fit in the working channels of endoscopes and cystoscopes, allowing a wide range of minimally invasive applications. We analyze key features, including the physical parameters of the injector design, pressure ranges applicable for tissue penetration and cell injections and biochemical parameters, such as different compositions of injection media. Our results present settings that enable the high viability of cells post-injection. Lastly, the method is suitable to inject cells in the superficial tissue layer and in deeper layers, required when the submucosa or the sphincter muscle of the urethra is targeted.
Collapse
|
7
|
François I, Lepage OM, Carpenter E, Desjardins I, De Guio C, Benedetti ICC, Maddens S, Saulnier N, Grant BD. Mesenchymal stem cell transplantation into the spinal cord of healthy adult horses undergoing cervical ventral interbody fusion. Vet Surg 2021; 50:1107-1116. [PMID: 33709467 DOI: 10.1111/vsu.13611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 01/24/2021] [Accepted: 01/31/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To determine the feasibility of umbilical cord-derived mesenchymal stem cell (UC-MSC) transplantation into the cervical spinal cord of horses by using fluoroscopy with or without endoscopic guidance and to evaluate the neurological signs and tissue reaction after injection. STUDY DESIGN Experimental study. ANIMALS Eight healthy adult horses with no clinical signs of neurological disease. METHODS After cervical ventral interbody fusion (CVIF), ten million fluorescently labeled allogeneic UC-MSC were injected into the spinal cord under endoscopic and fluoroscopic guidance (n = 5) or fluoroscopic guidance only (n = 3). Postoperative neurological examinations were performed, and horses were humanely killed 48 hours (n = 4) or 14 days (n = 4) postoperatively. Spinal tissues were examined after gross dissection and with bright field and fluorescent microscopy. RESULTS Needle endoscopy of the cervical canal by ventral approach was associated with intraoperative spinal cord puncture (2/5) and postoperative ataxia (3/5). No intraoperative complications occurred, and one (1/3) horse developed ataxia with cell transplantation under fluoroscopy alone. Umbilical cord-derived MSC were associated with small vessels and detected up to 14 days in the spinal cord. Demyelination was observed in six of eight cases. CONCLUSION Fluoroscopically guided intramedullary UC-MSC transplantation during CVIF avoids spinal cord trauma and decreases risk of ataxia from endoscopy. Umbilical cord-derived MSC persist in the spinal cord for up to 14 days. Cell injection promotes angiogenesis and induces demyelination of the spinal tissue. CLINICAL SIGNIFICANCE Umbilical cord-derived MSC transplantation into the spinal cord during CVIF without endoscopy is recommended for future evaluation of cell therapy in horses affected by cervical vertebral compressive myelopathy.
Collapse
Affiliation(s)
- Isé François
- University of Lyon, VetAgro Sup, Veterinary Campus of Lyon, GREMERES-ICE Lyon Equine Research Center, France
| | - Olivier M Lepage
- University of Lyon, VetAgro Sup, Veterinary Campus of Lyon, GREMERES-ICE Lyon Equine Research Center, France
| | - Elaine Carpenter
- Cave Creek Equine Surgical and Diagnostic Imaging Center, Phoenix, Arizona, United States
| | - Isabelle Desjardins
- University of Lyon, VetAgro Sup, Veterinary Campus of Lyon, GREMERES-ICE Lyon Equine Research Center, France
| | - Cécile De Guio
- University of Lyon, VetAgro Sup, Veterinary Campus of Lyon, GREMERES-ICE Lyon Equine Research Center, France
| | | | | | | | | |
Collapse
|
8
|
Evaluation of Allogeneic Bone-Marrow-Derived and Umbilical Cord Blood-Derived Mesenchymal Stem Cells to Prevent the Development of Osteoarthritis in An Equine Model. Int J Mol Sci 2021; 22:ijms22052499. [PMID: 33801461 PMCID: PMC7958841 DOI: 10.3390/ijms22052499] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is a significant cause of pain in both humans and horses with a high socio-economic impact. The horse is recognized as a pertinent model for human OA. In both species, regenerative therapy with allogeneic mesenchymal stem cells (MSCs) appears to be a promising treatment but, to date, no in vivo studies have attempted to compare the effects of different cell sources on the same individuals. The objective of this study is to evaluate the ability of a single blinded intra-articular injection of allogeneic bone-marrow (BM) derived MSCs and umbilical cord blood (UCB) derived MSC to limit the development of OA-associated pathological changes compared to placebo in a post-traumatic OA model applied to all four fetlock joints of eight horses. The effect of the tissue source (BM vs. UCB) is also assessed on the same individuals. Observations were carried out using clinical, radiographic, ultrasonographic, and magnetic resonance imaging methods as well as biochemical analysis of synovial fluid and postmortem microscopic and macroscopic evaluations of the joints until Week 12. A significant reduction in the progression of OA-associated changes measured with imaging techniques, especially radiography, was observed after injection of bone-marrow derived mesenchymal stem cells (BM-MSCs) compared to contralateral placebo injections. These results indicate that allogeneic BM-MSCs are a promising treatment for OA in horses and reinforce the importance of continuing research to validate these results and find innovative strategies that will optimize the therapeutic potential of these cells. However, they should be considered with caution given the low number of units per group.
Collapse
|
9
|
Delco ML, Goodale M, Talts JF, Pownder SL, Koff MF, Miller AD, Nixon B, Bonassar LJ, Lundgren-Åkerlund E, Fortier LA. Integrin α10β1-Selected Mesenchymal Stem Cells Mitigate the Progression of Osteoarthritis in an Equine Talar Impact Model. Am J Sports Med 2020; 48:612-623. [PMID: 32004077 DOI: 10.1177/0363546519899087] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Early intervention with mesenchymal stem cells (MSCs) after articular trauma has the potential to limit progression of focal lesions and prevent ongoing cartilage degeneration by modulating the joint environment and/or contributing to repair. Integrin α10β1 is the main collagen type II binding receptor on chondrocytes, and MSCs that are selected for high expression of the α10 subunit have improved chondrogenic potential. The ability of α10β1-selected (integrin α10high) MSCs to protect cartilage after injury has not been investigated. PURPOSE To investigate integrin α10high MSCs to prevent posttraumatic osteoarthritis in an equine model of impact-induced talar injury. STUDY DESIGN Controlled laboratory study. METHODS Focal cartilage injuries were created on the tali of horses (2-5 years, n = 8) by using an impacting device equipped to measure impact stress. Joints were treated with 20 × 106 allogenic adipose-derived α10high MSCs or saline vehicle (control) 4 days after injury. Synovial fluid was collected serially and analyzed for protein content, cell counts, markers of inflammation (prostaglandin E2, tumor necrosis factor α) and collagen homeostasis (procollagen II C-propeptide, collagen type II cleavage product), and glycosaminoglycan content. Second-look arthroscopy was performed at 6 weeks, and horses were euthanized at 6 months. Joints were imaged with radiographs and quantitative 3-T magnetic resonance imaging. Postmortem examinations were performed, and India ink was applied to the talar articular surface to identify areas of cartilage fibrillation. Synovial membrane and osteochondral histology was performed, and immunohistochemistry was used to assess type I and II collagen and lubricin. A mixed effect model with Tukey post hoc and linear contrasts or paired t tests were used, as appropriate. RESULTS Integrin α10high MSC-treated joints had less subchondral bone sclerosis on radiographs (P = .04) and histology (P = .006) and less cartilage fibrillation (P = .04) as compared with control joints. On gross pathology, less India ink adhered to impact sites in treated joints than in controls, which may be explained by the finding of more prominent lubricin immunostaining in treated joints. Prostaglandin E2 concentration in synovial fluid and mononuclear cell synovial infiltrate were increased in treated joints, suggesting possible immunomodulation by integrin α10high MSCs. CONCLUSION Intra-articular administration of integrin α10high MSCs is safe, and evidence suggests that the cells mitigate the effects of joint trauma. CLINICAL RELEVANCE This preclinical study indicates that intra-articular therapy with integrin α10high MSCs after joint trauma may be protective against posttraumatic osteoarthritis.
Collapse
|
10
|
Gugjoo MB, Amarpal, Fazili MUR, Shah RA, Saleem Mir M, Sharma GT. Goat mesenchymal stem cell basic research and potential applications. Small Rumin Res 2020. [DOI: 10.1016/j.smallrumres.2019.106045] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Magri C, Schramme M, Febre M, Cauvin E, Labadie F, Saulnier N, François I, Lechartier A, Aebischer D, Moncelet AS, Maddens S. Comparison of efficacy and safety of single versus repeated intra-articular injection of allogeneic neonatal mesenchymal stem cells for treatment of osteoarthritis of the metacarpophalangeal/metatarsophalangeal joint in horses: A clinical pilot study. PLoS One 2019; 14:e0221317. [PMID: 31465445 PMCID: PMC6715221 DOI: 10.1371/journal.pone.0221317] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/02/2019] [Indexed: 12/29/2022] Open
Abstract
The purpose of this prospective study was to evaluate the effects of single and repeated intra-articular administration of allogeneic, umbilical cord-derived, neonatal mesenchymal stem cells (MSC) in horses with lameness due to osteoarthritis (OA) of a metacarpophalangeal joint (MPJ). Twenty-eight horses were included. Horses were divided into two groups. Horses in group MSC1 received an MSC injection at M0 and a placebo injection at M1 (1 month after M0). Horses in group MSC2 received MSC injections at M0 and at M1. Joint injections were performed with a blinded syringe. Clinical assessment was performed by the treating veterinarian at M1, M2 and M6 (2 and 6 months after M0), including lameness evaluation, palpation and flexion of the joint. Radiographic examination of the treated joints was performed at inclusion and repeated at M6. Radiographs were anonymized and assessed by 2 ECVDI LA associate members. Short term safety assessment was performed by owner survey. A 2-month rehabilitation program was recommended to veterinarians. There was a significant improvement of the total clinical score for horses in both groups. There was no significant difference in the total clinical score between groups MSC1 and MSC2 at any time point in the study. There was no significant difference in the total radiographic OA score, osteophyte score, joint space width score and subchondral bone score between inclusion and M6. Owner-detected adverse effects to MSC injection were recorded in 18% of the horses. Lameness caused by OA improved significantly over the 6-month duration of the study after treatment with allogeneic neonatal umbilical cord-derived MSCs combined with 8 weeks rest and rehabilitation. There is no apparent clinical benefit of repeated intra-articular administration of MSCs at a 1-month interval in horses with MPJ OA when compared to the effect of a single injection.
Collapse
Affiliation(s)
- Carmelo Magri
- Clinéquine, VetAgro Sup, Campus Vétérinaire de Lyon, Marcy l’Etoile, France
- * E-mail:
| | - Michael Schramme
- Clinéquine, VetAgro Sup, Campus Vétérinaire de Lyon, Marcy l’Etoile, France
| | - Marine Febre
- Vetbiobank SAS, Campus Vétérinaire de Lyon, Marcy l’Etoile, France
| | | | - Fabrice Labadie
- Vetbiobank SAS, Campus Vétérinaire de Lyon, Marcy l’Etoile, France
| | | | - Isé François
- Clinéquine, VetAgro Sup, Campus Vétérinaire de Lyon, Marcy l’Etoile, France
| | | | | | | | - Stéphane Maddens
- Vetbiobank SAS, Campus Vétérinaire de Lyon, Marcy l’Etoile, France
| |
Collapse
|
12
|
Intra-Articular Injection of 2 Different Dosages of Autologous and Allogeneic Bone Marrow- and Umbilical Cord-Derived Mesenchymal Stem Cells Triggers a Variable Inflammatory Response of the Fetlock Joint on 12 Sound Experimental Horses. Stem Cells Int 2019; 2019:9431894. [PMID: 31191689 PMCID: PMC6525957 DOI: 10.1155/2019/9431894] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/16/2018] [Accepted: 03/11/2019] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis is a significant and costly cause of pain for both humans and horses. The horse has been identified as a suitable model for human osteoarthritis. Regenerative therapy with allogeneic mesenchymal stem cells (MSCs) is a promising treatment, but the safety of this procedure continues to be debated. The aim of this study is to evaluate the safety of intra-articular injections of allogeneic MSCs on healthy joints by comparing two different dosages and two different tissue sources, namely, bone marrow and umbilical cord blood, with a placebo treatment on the same individuals. We also assessed the influence of autologous versus allogeneic cells for bone marrow-derived MSC treatment. Twelve clinically sound horses were subjected to injections in their 4 fetlock joints. Each of the three fetlocks was administered a different MSC type, and the remaining fetlock was injected with phosphate-buffered saline as a control. Six horses received 10 million cells per joint, and the 6 other horses received 20 million cells per joint. Clinical and ultrasound monitoring revealed that allogeneic bone marrow-derived MSCs induced significantly more synovial effusion compared to umbilical cord blood-derived MSCs but no significant difference was noted within the synovial fluid parameters. The administration of 10 million cells in horses triggered significantly more inflammatory signs than the administration of 20 million cells. Mesenchymal stem cell injections induced mild to moderate local inflammatory signs compared to the placebo, with individual variability in the sensitivity to the same line of MSCs. Understanding the behavior of stem cells when injected alone is a step towards the safer use of new strategies in stem cell therapy, where the use of either MSC secretome or MSCs combined with biomaterials could enhance their viability and metabolic activity.
Collapse
|
13
|
Gugjoo MB, Amarpal A, Sharma GT. Mesenchymal stem cell basic research and applications in dog medicine. J Cell Physiol 2019; 234:16779-16811. [PMID: 30790282 DOI: 10.1002/jcp.28348] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/13/2022]
Abstract
The stem cells, owing to their special characteristics like self-renewal, multiplication, homing, immunomodulation, anti-inflammatory, and dedifferentiation are considered to carry an "all-in-one-solution" for diverse clinical problems. However, the limited understanding of cellular physiology currently limits their definitive therapeutic use. Among various stem cell types, currently mesenchymal stem cells are extensively studied for dog clinical applications owing to their readily available sources, easy harvesting, and ability to differentiate both into mesodermal, as well as extramesodermal tissues. The isolated, culture expanded, and characterized cells have been applied both at preclinical as well as clinical settings in dogs with variable but mostly positive results. The results, though positive, are currently inconclusive and demands further intensive research on the properties and their dependence on the applications. Further, numerous clinical conditions of dog resemble to that of human counterparts and thus, if proved rewarding in the former may act as basis of therapy for the latter. The current review throws some light on dog mesenchymal stem cell properties and their potential therapeutic applications.
Collapse
Affiliation(s)
- Mudasir Bashir Gugjoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Jammu and Kashmir, India
| | - Amarpal Amarpal
- Division of Surgery, Indian Veterinary Research Institute, Izatnagar, India
| | - Gutulla Taru Sharma
- Division of Physiology and Climatology, Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
14
|
Ortved KF. Regenerative Medicine and Rehabilitation for Tendinous and Ligamentous Injuries in Sport Horses. Vet Clin North Am Equine Pract 2018; 34:359-373. [DOI: 10.1016/j.cveq.2018.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
15
|
Barrachina L, Romero A, Zaragoza P, Rodellar C, Vázquez FJ. Practical considerations for clinical use of mesenchymal stem cells: From the laboratory to the horse. Vet J 2018; 238:49-57. [PMID: 30103915 DOI: 10.1016/j.tvjl.2018.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 02/06/2023]
Abstract
Since the clinical use of mesenchymal stem cells (MSCs) for treating musculoskeletal injuries is gaining popularity, practitioners should be aware of the factors that may affect MSCs from tissue harvesting for MSC isolation to cell delivery into the injury site. This review provides equine practitioners with up-to-date, practical knowledge for the treatment of equine patients using MSCs. A brief overview of laboratory procedures affecting MSCs is provided, but the main focus is on shipping conditions, routes of administration, injection methods, and which commonly used products can be combined with MSCs and which products should be avoided as they have deleterious effects on cells. There are still several knowledge gaps regarding MSC-based therapies in horses. Therefore, it is important to properly manage the factors which are currently known to affect MSCs, to further strengthen the evidence basis of this treatment.
Collapse
Affiliation(s)
- L Barrachina
- Laboratorio de Genética Bioquímica LAGENBIO, Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, Zaragoza, Spain; Servicio de Cirugía y Medicina Equina, Hospital Veterinario, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - A Romero
- Laboratorio de Genética Bioquímica LAGENBIO, Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, Zaragoza, Spain; Servicio de Cirugía y Medicina Equina, Hospital Veterinario, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - P Zaragoza
- Laboratorio de Genética Bioquímica LAGENBIO, Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, Zaragoza, Spain; Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-Centro de Investigación y Tecnología de Aragón (CITA), Zaragoza, Spain
| | - C Rodellar
- Laboratorio de Genética Bioquímica LAGENBIO, Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, Zaragoza, Spain; Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-Centro de Investigación y Tecnología de Aragón (CITA), Zaragoza, Spain
| | - F J Vázquez
- Laboratorio de Genética Bioquímica LAGENBIO, Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, Zaragoza, Spain; Servicio de Cirugía y Medicina Equina, Hospital Veterinario, Universidad de Zaragoza, 50013 Zaragoza, Spain.
| |
Collapse
|
16
|
Bogers SH. Cell-Based Therapies for Joint Disease in Veterinary Medicine: What We Have Learned and What We Need to Know. Front Vet Sci 2018; 5:70. [PMID: 29713634 PMCID: PMC5911772 DOI: 10.3389/fvets.2018.00070] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 03/23/2018] [Indexed: 12/19/2022] Open
Abstract
Biological cell-based therapies for the treatment of joint disease in veterinary patients include autologous-conditioned serum, platelet-rich plasma, and expanded or non-expanded mesenchymal stem cell products. This narrative review outlines the processing and known mechanism of action of these therapies and reviews current preclinical and clinical efficacy in joint disease in the context of the processing type and study design. The significance of variation for biological activity and consequently regulatory approval is also discussed. There is significant variation in study outcomes for canine and equine cell-based products derived from whole blood or stem cell sources such as adipose and bone marrow. Variation can be attributed to altering bio-composition due to factors including preparation technique and source. In addition, study design factors like selection of cases with early vs. late stage osteoarthritis (OA), or with intra-articular soft tissue injury, influence outcome variation. In this under-regulated field, variation raises concerns for product safety, consistency, and efficacy. Cell-based therapies used for OA meet the Food and Drug Administration’s (FDA’s) definition of a drug; however, researchers must consider their approach to veterinary cell-based research to meet future regulatory demands. This review explains the USA’s FDA guidelines as an example pathway for cell-based therapies to demonstrate safety, effectiveness, and manufacturing consistency. An understanding of the variation in production consistency, effectiveness, and regulatory concerns is essential for practitioners and researchers to determine what products are indicated for the treatment of joint disease and tactics to improve the quality of future research.
Collapse
Affiliation(s)
- Sophie Helen Bogers
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, United States
| |
Collapse
|
17
|
Chen X, Foote A, Thibeault SL. Cell density, dimethylsulfoxide concentration and needle gauge affect hydrogel-induced bone marrow mesenchymal stromal cell viability. Cytotherapy 2017; 19:1522-1528. [PMID: 28986174 PMCID: PMC5723234 DOI: 10.1016/j.jcyt.2017.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/24/2017] [Accepted: 08/23/2017] [Indexed: 12/16/2022]
Abstract
Mesenchymal stromal cells (MSCs) have shown potential therapeutic benefits for a range of medical disorders and continue to be a focus of intense scientific investigation. Transplantation of MSCs into injured tissue can improve wound healing, tissue regeneration and functional recovery. However, implanted cells rapidly lose their viability or fail to integrate into host tissue. Hydrogel-seeded bone marrow (BM)-MSCs offer improved viability in response to mechanical forces caused by syringe needles, cell density and dimethylsulfoxide (DMSO) concentration, which in turn, will help to clarify which factors are important for enhancing biomaterial-induced cell transplantation efficiency and provide much needed guidance for clinical trials. In this study, under the control of cell density (<2 × 107 cells/mL) and final DMSO concentration (<0.5%), hydrogel-induced BM-MSC viability remained >82% following syringe needle passage by 25- or 27-gauge needles, providing improved cell therapeutic approaches for regenerative medicine.
Collapse
Affiliation(s)
- Xia Chen
- Division of Otolaryngology – Head and Neck Surgery, University of Wisconsin – Madison, 5105 WIMR, 1111 Highland Ave, Madison, Wisconsin 53705-2275, Phone 6082654316,
| | - Alexander Foote
- Division of Otolaryngology – Head and Neck Surgery, University of Wisconsin -- Madison, 5118 WIMR, 1111 Highland Ave, Madison, Wisconsin 53705-2275,
| | - Susan L. Thibeault
- Division of Otolaryngology – Head and Neck Surgery, University of Wisconsin -- Madison, 5107 WIMR, 1111 Highland Ave, Madison, Wisconsin 53705-2275, Phone 6082636751,
| |
Collapse
|