1
|
Roohi TF, Faizan S, Shaikh MF, Krishna KL, Mehdi S, Kinattingal N, Arulsamy A. Beyond drug discovery: Exploring the physiological and methodological dimensions of zebrafish in diabetes research. Exp Physiol 2024; 109:847-872. [PMID: 38279951 PMCID: PMC11140176 DOI: 10.1113/ep091587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/02/2024] [Indexed: 01/29/2024]
Abstract
Diabetes mellitus is a chronic disease that is now considered a global epidemic. Chronic diabetes conditions include type 1 and type 2 diabetes, both of which are normally irreversible. As a result of long-term uncontrolled high levels of glucose, diabetes can progress to hyperglycaemic pathologies, such as cardiovascular diseases, retinopathy, nephropathy and neuropathy, among many other complications. The complete mechanism underlying diabetes remains unclear due to its complexity. In this scenario, zebrafish (Danio rerio) have arisen as a versatile and promising animal model due to their good reproducibility, simplicity, and time- and cost-effectiveness. The Zebrafish model allows us to make progress in the investigation and comprehension of the root cause of diabetes, which in turn would aid in the development of pharmacological and surgical approaches for its management. The current review provides valuable reference information on zebrafish models, from the first zebrafish diabetes models using genetic, disease induction and chemical approaches, to the newest ones that further allow for drug screening and testing. This review aims to update our knowledge related to diabetes mellitus by gathering the most authoritative studies on zebrafish as a chemical, dietary and insulin induction, and genetic model for diabetes research.
Collapse
Affiliation(s)
- Tamsheel Fatima Roohi
- Department of PharmacologyJSS College of PharmacyJSS Academy of Higher Education and ResearchMysuruKarnatakaIndia
| | - Syed Faizan
- Department of Pharmaceutical ChemistryJSS College of PharmacyJSS Academy of Higher Education and ResearchMysuruKarnatakaIndia
| | - Mohd. Farooq Shaikh
- School of Dentistry and Medical SciencesCharles Sturt UniversityOrangeNew South WalesAustralia
| | - Kamsagara Linganna Krishna
- Department of PharmacologyJSS College of PharmacyJSS Academy of Higher Education and ResearchMysuruKarnatakaIndia
| | - Seema Mehdi
- Department of PharmacologyJSS College of PharmacyJSS Academy of Higher Education and ResearchMysuruKarnatakaIndia
| | - Nabeel Kinattingal
- Department of PharmacologyJSS College of PharmacyJSS Academy of Higher Education and ResearchMysuruKarnatakaIndia
| | - Alina Arulsamy
- Neuropharmacology Research LaboratoryJeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaBandar SunwaySelangorMalaysia
| |
Collapse
|
2
|
Research Progress on the Construction and Application of a Diabetic Zebrafish Model. Int J Mol Sci 2023; 24:ijms24065195. [PMID: 36982274 PMCID: PMC10048833 DOI: 10.3390/ijms24065195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Diabetes is a metabolic disease characterized by high blood glucose levels. With economic development and lifestyle changes, the prevalence of diabetes is increasing yearly. Thus, it has become an increasingly serious public health problem in countries around the world. The etiology of diabetes is complex, and its pathogenic mechanisms are not completely clear. The use of diabetic animal models is helpful in the study of the pathogenesis of diabetes and the development of drugs. The emerging vertebrate model of zebrafish has many advantages, such as its small size, large number of eggs, short growth cycle, simple cultivation of adult fish, and effective improvement of experimental efficiency. Thus, this model is highly suitable for research as an animal model of diabetes. This review not only summarizes the advantages of zebrafish as a diabetes model, but also summarizes the construction methods and challenges of zebrafish models of type 1 diabetes, type 2 diabetes, and diabetes complications. This study provides valuable reference information for further study of the pathological mechanisms of diabetes and the research and development of new related therapeutic drugs.
Collapse
|
3
|
Lin B, Ma J, Fang Y, Lei P, Wang L, Qu L, Wu W, Jin L, Sun D. Advances in Zebrafish for Diabetes Mellitus with Wound Model. Bioengineering (Basel) 2023; 10:bioengineering10030330. [PMID: 36978721 PMCID: PMC10044998 DOI: 10.3390/bioengineering10030330] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
Diabetic foot ulcers cause great suffering and are costly for the healthcare system. Normal wound healing involves hemostasis, inflammation, proliferation, and remodeling. However, the negative factors associated with diabetes, such as bacterial biofilms, persistent inflammation, impaired angiogenesis, inhibited cell proliferation, and pathological scarring, greatly interfere with the smooth progress of the entire healing process. It is this impaired wound healing that leads to diabetic foot ulcers and even amputations. Therefore, drug screening is challenging due to the complexity of damaged healing mechanisms. The establishment of a scientific and reasonable animal experimental model contributes significantly to the in-depth research of diabetic wound pathology, prevention, diagnosis, and treatment. In addition to the low cost and transparency of the embryo (for imaging transgene applications), zebrafish have a discrete wound healing process for the separate study of each stage, resulting in their potential as the ideal model animal for diabetic wound healing in the future. In this review, we examine the reasons behind the delayed healing of diabetic wounds, systematically review various studies using zebrafish as a diabetic wound model by different induction methods, as well as summarize the challenges and improvement strategies which provide references for establishing a more reasonable diabetic wound zebrafish model.
Collapse
Affiliation(s)
- Bangchang Lin
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310000, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Pengyu Lei
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Lei Wang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Linkai Qu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
- Correspondence: (W.W.); (L.J.); (D.S.)
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
- Wenzhou City and WenZhouOuTai Medical Laboratory Co., Ltd. Joint Doctoral Innovation Station, Wenzhou Association for Science and Technology, Wenzhou 325000, China
- Correspondence: (W.W.); (L.J.); (D.S.)
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
- Correspondence: (W.W.); (L.J.); (D.S.)
| |
Collapse
|
4
|
Chen C, Liu D. Establishment of Zebrafish Models for Diabetes Mellitus and Its Microvascular Complications. J Vasc Res 2022; 59:251-260. [PMID: 35378543 DOI: 10.1159/000522471] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/31/2022] [Indexed: 11/19/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease known to cause several microvascular complications, including diabetic retinopathy, diabetic nephropathy, and diabetic neuropathy. Hyperglycemia plays a key role in inducing diabetic microvascular complications. A cohort of diabetic animal models has been established to study diabetes-related vascular diseases. However, the zebrafish model offers unique advantages in this field. The tiny size and huge offspring numbers of zebrafish make it amenable to perform large-scale analysis or screening. The easily accessible strategies for gene manipulation with morpholino or CRISPR/Cas9 and chemical/drug treatment through microinjection or skin absorption allow establishing the zebrafish DM models by a variety of means. In addition, the transparency of zebrafish embryos makes it accessible to perform in vivo high-resolution imaging of the vascular system. In this review, we focus on the strategies to establish diabetic or hyperglycemic models with zebrafish and the achievements and disadvantages of using zebrafish as a model to study diabetic microvascular complications.
Collapse
Affiliation(s)
- Changsheng Chen
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Medical College, Nantong University, Nantong, China
| | - Dong Liu
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Medical College, Nantong University, Nantong, China.,Co-Innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, China
| |
Collapse
|
5
|
Raming R, Cordasic N, Kirchner P, Ekici AB, Fahlbusch FB, Woelfle J, Hilgers KF, Hartner A, Menendez-Castro C. Neonatal nephron loss during active nephrogenesis results in altered expression of renal developmental genes and markers of kidney injury. Physiol Genomics 2021; 53:509-517. [PMID: 34704838 DOI: 10.1152/physiolgenomics.00059.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Preterm neonates are at a high risk for nephron loss under adverse clinical conditions. Renal damage potentially collides with postnatal nephrogenesis. Recent animal studies suggest that nephron loss within this vulnerable phase leads to renal damage later in life. Nephrogenic pathways are commonly reactivated after kidney injury supporting renal regeneration. We hypothesized that nephron loss during nephrogenesis affects renal development, which, in turn, impairs tissue repair after secondary injury. Neonates prior to 36 wk of gestation show an active nephrogenesis. In rats, nephrogenesis is ongoing until day 10 after birth. Mimicking the situation of severe nephron loss during nephrogenesis, male pups were uninephrectomized at day 1 of life (UNXd1). A second group of males was uninephrectomized at postnatal day 14 (UNXd14), after terminated nephrogenesis. Age-matched controls were sham operated. Three days after uninephrectomy transcriptional changes in the right kidney were analyzed by RNA-sequencing, followed by functional pathway analysis. In UNXd1, 1,182 genes were differentially regulated, but only 143 genes showed a regulation both in UNXd1 and UNXd14. The functional groups "renal development" and "kidney injury" were among the most differentially regulated groups and revealed distinctive alterations. Reduced expression of candidate genes concerning renal development (Bmp7, Gdnf, Pdgf-B, Wt1) and injury (nephrin, podocin, Tgf-β1) were detected. The downregulation of Bmp7 and Gdnf persisted until day 28. In UNXd14, Six2 was upregulated and Pax2 was downregulated. We conclude that nephron loss during nephrogenesis affects renal development and induces a specific regulation of genes that might hinder tissue repair after secondary kidney injury.
Collapse
Affiliation(s)
- Roman Raming
- Department of Pediatrics and Adolescent Medicine, University Hospital of Erlangen, Erlangen, Germany
| | - Nada Cordasic
- Department of Nephrology and Hypertension, University Hospital of Erlangen, Erlangen, Germany
| | - Philipp Kirchner
- Institute of Human Genetics, University Hospital of Erlangen, Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, University Hospital of Erlangen, Erlangen, Germany
| | - Fabian B Fahlbusch
- Department of Pediatrics and Adolescent Medicine, University Hospital of Erlangen, Erlangen, Germany
| | - Joachim Woelfle
- Department of Pediatrics and Adolescent Medicine, University Hospital of Erlangen, Erlangen, Germany
| | - Karl F Hilgers
- Department of Nephrology and Hypertension, University Hospital of Erlangen, Erlangen, Germany
| | - Andrea Hartner
- Department of Pediatrics and Adolescent Medicine, University Hospital of Erlangen, Erlangen, Germany
| | - Carlos Menendez-Castro
- Department of Pediatrics and Adolescent Medicine, University Hospital of Erlangen, Erlangen, Germany
| |
Collapse
|
6
|
Wibowo I, Utami N, Anggraeni T, Barlian A, Putra RE, Indriani AD, Masadah R, Ekawardhani S. Propolis Can Improve Caudal Fin Regeneration in Zebrafish ( Danio rerio) Induced by The Combined Administration of Alloxan and Glucose. Zebrafish 2021; 18:274-281. [PMID: 34297614 DOI: 10.1089/zeb.2020.1969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hyperglycemia, a primary symptom in diabetes mellitus, is associated with difficulties in wound healing and regeneration. This condition is due to the length of the inflammatory phase and free radicals. Furthermore, there is evidence that molecular pathogenesis is involved in impaired wound healing in diabetics. As an animal model, zebrafish have many shared orthologous genes with human that are involved in protein regulation of wound healing and regeneration. Little is known about natural drugs that may be used to treat complications of wound healing in diabetes. Propolis, however, is known to consist of various organic compounds such as phenols and flavonoids with antioxidant and anti-inflammatory activities. This research aims to study propolis' effect on caudal fin regeneration and relative expression of several genes belonging to Hedgehog, bone morphogenetic protein (BMP), and Wnt signaling hyperglycemic (HG) zebrafish. GC-MS analysis and antioxidant activity testing were performed on ethanolic extract of propolis (EEP). Caudal fin regeneration was analyzed using ImageJ; blood glucose levels were measured; and relative gene expression analysis of shha, igf2a, bmp2b, and col1a2 was performed by the real-time polymerase chain reaction method with the β-actin housekeeping gene. Impairment of caudal fin regeneration in zebrafish hyperglycemia was characterized by a low percentage of regeneration and decreased relative gene expression. EEP at 15 ppm could increase the percentage of caudal fin regeneration and the expression of shha, igf2a, bmp2b, and col1a2. Based on the results, it appears that phenols and flavonoids from the EEP can improve the caudal fin regeneration of HG zebrafish.
Collapse
Affiliation(s)
- Indra Wibowo
- School of Life Sciences and Technology, Bandung Institute of Technology (ITB), Bandung, Indonesia
| | - Nuruliawaty Utami
- School of Life Sciences and Technology, Bandung Institute of Technology (ITB), Bandung, Indonesia
| | - Tjandra Anggraeni
- School of Life Sciences and Technology, Bandung Institute of Technology (ITB), Bandung, Indonesia
| | - Anggraini Barlian
- School of Life Sciences and Technology, Bandung Institute of Technology (ITB), Bandung, Indonesia
| | - Ramadhani Eka Putra
- School of Life Sciences and Technology, Bandung Institute of Technology (ITB), Bandung, Indonesia.,Biology Studi Program, Institut Teknologi Sumatera, Jalan Terusan Ryacudu, Way Hui, Indonesia
| | - Annisa Devi Indriani
- School of Life Sciences and Technology, Bandung Institute of Technology (ITB), Bandung, Indonesia
| | - Rina Masadah
- Department of Pathology Anatomy Faculty of Medicine Hasanuddin University, Makassar, Indonesia
| | - Savira Ekawardhani
- Parasitology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
7
|
van de Venter M, Didloff J, Reddy S, Swanepoel B, Govender S, Dambuza NS, Williams S, Koekemoer TC, Venables L. Wild-Type Zebrafish ( Danio rerio) Larvae as a Vertebrate Model for Diabetes and Comorbidities: A Review. Animals (Basel) 2020; 11:E54. [PMID: 33396883 PMCID: PMC7824285 DOI: 10.3390/ani11010054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Zebrafish have become a popular alternative to higher animals in biomedical and pharmaceutical research. The development of stable mutant lines to model target specific aspects of many diseases, including diabetes, is well reported. However, these mutant lines are much more costly and challenging to maintain than wild-type zebrafish and are simply not an option for many research facilities. As an alternative to address the disadvantages of advanced mutant lines, wild-type larvae may represent a suitable option. In this review, we evaluate organ development in zebrafish larvae and discuss established methods that use wild-type zebrafish larvae up to seven days post fertilization to test for potential drug candidates for diabetes and its commonly associated conditions of oxidative stress and inflammation. This provides an up to date overview of the relevance of wild-type zebrafish larvae as a vertebrate antidiabetic model and confidence as an alternative tool for preclinical studies. We highlight the advantages and disadvantages of established methods and suggest recommendations for future developments to promote the use of zebrafish, specifically larvae, rather than higher animals in the early phase of antidiabetic drug discovery.
Collapse
Affiliation(s)
- Maryna van de Venter
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Jenske Didloff
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Shanika Reddy
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Bresler Swanepoel
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Sharlene Govender
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Ntokozo Shirley Dambuza
- Department of Pharmacy, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa;
| | - Saralene Williams
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Trevor Craig Koekemoer
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Luanne Venables
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| |
Collapse
|
8
|
Wang Q, Luo C, Lu G, Chen Z. Effect of adenosine monophosphate-activated protein kinase-p53-Krüppel-like factor 2a pathway in hyperglycemia-induced cardiac remodeling in adult zebrafish. J Diabetes Investig 2020; 12:320-333. [PMID: 32881390 PMCID: PMC7926222 DOI: 10.1111/jdi.13393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 01/10/2023] Open
Abstract
Aims/Introduction Diabetic cardiomyopathy is a type of myocardial disease. It causes left ventricular hypertrophy, followed by diastolic and systolic dysfunction, eventually leading to congestive heart failure. However, the underlying mechanism still requires further elucidation. Materials and Methods A high‐glucose zebrafish model was constructed by administering streptozocin intraperitoneally to enhance the development of cardiomyopathy and then treated with adenosine monophosphate‐activated protein kinase (AMPK) activator. Cardiac structure and function, and protein and gene expression were then analyzed. Cardiomyocytes (CMs) culture in vitro using lentivirus were used for detection of AMPK, p53 and Krüppel‐like factor 2a (klf2a) gene expression. Results In the hyperglycemia group, electrocardiogram findings showed arrhythmia, echocardiography results showed heart enlargement and dysfunction, and many differences, such as increased apoptosis and myocardial fiber loss, were observed. The phospho‐AMPK and klf2a expression were downregulated, and p53 expression was upregulated. Activation of phospho‐AMPK reduced p53 and increased klf2a expression, alleviated apoptosis in CMs and improved cardiac function in the hyperglycemic zebrafish. In vitro knockdown system of AMPK, p53 and klf2a using lentivirus illustrated an increased p53 expression and decreased klf2a expression in CMs by inhibiting AMPK. Repression of p53 and upregulation of klf2a expression were observed, but no changes in the expression of AMPK and its phosphorylated type. Conclusions In the model of streptozocin‐induced hyperglycemia zebrafish, the reduction of phosphorylated AMPK increased p53, which led to KLF2a decrease to facilitate apoptosis of CMs, inducing the cardiac remodeling and cardiac dysfunction. These results can be reversed by AMPK activator, which means the AMPK–p53–klf2a pathway might be a potential target for diabetic cardiomyopathy intervention.
Collapse
Affiliation(s)
- Qiuyun Wang
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chen Luo
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guoping Lu
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhenyue Chen
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Ennerfelt H, Voithofer G, Tibbo M, Miller D, Warfield R, Allen S, Kennett Clark J. Disruption of peripheral nerve development in a zebrafish model of hyperglycemia. J Neurophysiol 2019; 122:862-871. [DOI: 10.1152/jn.00318.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Diabetes mellitus-induced hyperglycemia is associated with a number of pathologies such as retinopathy, nephropathy, delayed wound healing, and diabetic peripheral neuropathy (DPN). Approximately 50% of patients with diabetes mellitus will develop DPN, which is characterized by disrupted sensory and/or motor functioning, with treatment limited to pain management. Zebrafish ( Danio rerio) are an emerging animal model used to study a number of metabolic disorders, including diabetes. Diabetic retinopathy, nephropathy, and delayed wound healing have all been demonstrated in zebrafish. Recently, our laboratory has demonstrated that following the ablation of the insulin-producing β-cells of the pancreas (and subsequent hyperglycemia), the peripheral nerves begin to show signs of dysregulation. In this study, we take a different approach, taking advantage of the transdermal absorption abilities of zebrafish larvae to extend the period of hyperglycemia. Following 5 days of 60 mM d-glucose treatment, we observed motor axon defasciculation, disturbances in perineurial glia sheath formation, decreased myelination of motor axons, and sensory neuron mislocalization. This study extends our understanding of the structural changes of the peripheral nerve following induction of hyperglycemia and does so in an animal model capable of potential DPN drug discovery in the future. NEW & NOTEWORTHY Zebrafish are emerging as a robust model system for the study of diabetic complications such as retinopathy, nephropathy, and impaired wound healing. We present a novel model of diabetic peripheral neuropathy in zebrafish in which the integrity of the peripheral nerve is dysregulated following the induction of hyperglycemia. By using this model, future studies can focus on elucidating the underlying molecular mechanisms currently unknown.
Collapse
Affiliation(s)
- Hannah Ennerfelt
- Department of Biological Sciences, Salisbury University, Salisbury, Maryland
- Department of Psychology, Salisbury University, Salisbury, Maryland
| | - Gabrielle Voithofer
- Department of Biological Sciences, Salisbury University, Salisbury, Maryland
- Department of Psychology, Salisbury University, Salisbury, Maryland
| | - Morgan Tibbo
- Department of Biological Sciences, Salisbury University, Salisbury, Maryland
- Department of Psychology, Salisbury University, Salisbury, Maryland
| | - Derrick Miller
- Department of Chemistry, Salisbury University, Salisbury, Maryland
| | - Rebecca Warfield
- Department of Biological Sciences, Salisbury University, Salisbury, Maryland
- Department of Psychology, Salisbury University, Salisbury, Maryland
| | - Samantha Allen
- Department of Biological Sciences, Salisbury University, Salisbury, Maryland
| | | |
Collapse
|
10
|
Benchoula K, Khatib A, Jaffar A, Ahmed QU, Sulaiman WMAW, Wahab RA, El-Seedi HR. The promise of zebrafish as a model of metabolic syndrome. Exp Anim 2019; 68:407-416. [PMID: 31118344 PMCID: PMC6842808 DOI: 10.1538/expanim.18-0168] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Metabolic syndrome is a cluster including hyperglycaemia, obesity, hypertension, and
hypertriglyceridaemia as a result of biochemical and physiological alterations and can
increase the risk of cardiovascular disease and diabetes. Fundamental research on this
disease requires validated animal models. One potential animal model that is rapidly
gaining in popularity is zebrafish (Danio rerio). The use of zebrafish as
an animal model conveys several advantages, including high human genetic homology,
transparent embryos and larvae that allow easier visualization. This review discusses how
zebrafish models contribute to the development of metabolic syndrome studies. Different
diseases in the cluster of metabolic syndrome, such as hyperglycaemia, obesity, diabetes,
and hypertriglyceridaemia, have been successfully studied using zebrafish; and the model
is promising for hypertension and cardiovascular metabolic-related diseases due to its
genetic similarity to mammals. Genetic mutation, chemical induction, and dietary
alteration are among the tools used to improve zebrafish models. This field is expanding,
and thus, more effective and efficient techniques are currently developed to fulfil the
increasing demand for thorough investigations.
Collapse
Affiliation(s)
- Khaled Benchoula
- Department of Basic Medical Sciences, Kulliyyah of Pharmacy, International Islamic University Malaysia, Sultan Ahmad Shah Street, Kuantan 25200, Pahang, Malaysia
| | - Alfi Khatib
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Sultan Ahmad Shah Street, Kuantan 25200, Pahang, Malaysia.,Central Research and Animal Facility (CREAM), Kulliyyah of Science, International Islamic University Malaysia, Sultan Ahamad Shah Street, Kuantan 25200, Pahang, Malaysia
| | - Ashika Jaffar
- School of Biosciences & Technology, VIT University, Vellore 632014, India
| | - Qamar Udin Ahmed
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Sultan Ahmad Shah Street, Kuantan 25200, Pahang, Malaysia
| | - Wan Mohd Azizi Wan Sulaiman
- Department of Basic Medical Sciences, Kulliyyah of Pharmacy, International Islamic University Malaysia, Sultan Ahmad Shah Street, Kuantan 25200, Pahang, Malaysia
| | - Ridhwan Abd Wahab
- Kulliyah of Allied Health Science, International Islamic University Malaysia, Sultan Ahmad Shah Street, Kuantan 25200, Pahang, Malaysia
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden.,Alrayan Medical colleges, Medina 42541, Kingdom of Saudi Arabia
| |
Collapse
|
11
|
Rocker A, Howell J, Voithofer G, Clark JK. Acute effects of hyperglycemia on the peripheral nervous system in zebrafish (Danio rerio) following nitroreductase-mediated β-cell ablation. Am J Physiol Regul Integr Comp Physiol 2019; 316:R395-R405. [DOI: 10.1152/ajpregu.00258.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is estimated to affect 50% of diabetic patients. Although DPN is highly prevalent, molecular mechanisms remain unknown and treatment is limited to pain relief and glycemic control. We provide a novel model of acute DPN in zebrafish ( Danio rerio) larvae. Beginning 5 days postfertilization (dpf), zebrafish expressing nitroreductase in their pancreatic β-cells were treated with metronidazole (MTZ) for 48 h and checked for β-cell ablation 7 dpf. In experimental design, this was meant to serve as proof of concept that β-cell ablation and hyperglycemia are possible at this time point, but we were surprised to find changes in both sensory and motor nerve components. Compared with controls, neurod+ sensory neurons were often observed outside the dorsal root ganglia in MTZ-treated fish. Fewer motor nerves were properly ensheathed by nkx2.2a+ perineurial cells, and tight junctions were disrupted along the motor nerve in MTZ-treated fish compared with controls. Not surprisingly, the motor axons of the MTZ-treated group were defasciculated compared with the control group, myelination was attenuated, and there was a subtle difference in Schwann cell number between the MTZ-treated and control group. All structural changes occurred in the absence of behavioral changes in the larvae at this time point, suggesting that peripheral nerves are influenced by acute hyperglycemia before becoming symptomatic. Moving forward, this novel animal model of DPN will allow us to access the molecular mechanisms associated with the acute changes in the hyperglycemic peripheral nervous system, which may help direct therapeutic approaches.
Collapse
Affiliation(s)
- Amanda Rocker
- Department of Biological Sciences, Salisbury University, Salisbury, Maryland
| | - Julia Howell
- Department of Biological Sciences, Salisbury University, Salisbury, Maryland
| | - Gabrielle Voithofer
- Department of Biological Sciences, Salisbury University, Salisbury, Maryland
| | | |
Collapse
|
12
|
Liu FY, Hsu TC, Choong P, Lin MH, Chuang YJ, Chen BS, Lin C. Uncovering the regeneration strategies of zebrafish organs: a comprehensive systems biology study on heart, cerebellum, fin, and retina regeneration. BMC SYSTEMS BIOLOGY 2018; 12:29. [PMID: 29560825 PMCID: PMC5861487 DOI: 10.1186/s12918-018-0544-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background Regeneration is an important biological process for the restoration of organ mass, structure, and function after damage, and involves complex bio-physiological mechanisms including cell differentiation and immune responses. We constructed four regenerative protein-protein interaction (PPI) networks using dynamic models and AIC (Akaike’s Information Criterion), based on time-course microarray data from the regeneration of four zebrafish organs: heart, cerebellum, fin, and retina. We extracted core and organ-specific proteins, and proposed a recalled-blastema-like formation model to uncover regeneration strategies in zebrafish. Results It was observed that the core proteins were involved in TGF-β signaling for each step in the recalled-blastema-like formation model and TGF-β signaling may be vital for regeneration. Integrins, FGF, and PDGF accelerate hemostasis during heart injury, while Bdnf shields retinal neurons from secondary damage and augments survival during the injury response. Wnt signaling mediates the growth and differentiation of cerebellum and fin neural stem cells, potentially providing a signal to trigger differentiation. Conclusion Through our analysis of all four zebrafish regenerative PPI networks, we provide insights that uncover the underlying strategies of zebrafish organ regeneration.
Collapse
Affiliation(s)
- Fang-Yu Liu
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Te-Cheng Hsu
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Patrick Choong
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Min-Hsuan Lin
- Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yung-Jen Chuang
- Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Bor-Sen Chen
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Che Lin
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
13
|
Zebrafish as a Model for the Study of Microvascular Complications of Diabetes and Their Mechanisms. Int J Mol Sci 2017; 18:ijms18092002. [PMID: 28925940 PMCID: PMC5618651 DOI: 10.3390/ijms18092002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 08/31/2017] [Accepted: 09/14/2017] [Indexed: 12/21/2022] Open
Abstract
Diabetes mellitus (DM) is a crucial metabolic disease that leads to severe disorders. These include macrovascular complications such as myocardial infarction, stroke, and peripheral artery disease and microvascular complications including diabetic nephropathy, neuropathy, and retinopathy. Diabetes mellitus, along with its associated organ pathologies, is one of the key problems in today's medicine. Zebrafish is an upcoming disease model organism in diabetes research. Its glucose metabolism and the pathways of reactive metabolite formation are very similar to those of humans. Moreover, several physiological and pathophysiological pathways that also exist in humans and other mammals have been identified in this species or are currently under intense investigation. Zebrafish offer sophisticated imaging techniques and allow simple and fast genetic and pharmacological approaches with a high throughput. In this review, we highlight achievements and mechanisms concerning microvascular complications discovered in zebrafish, and we discuss the advantages and disadvantages of zebrafish as a model for studying diabetic complications.
Collapse
|
14
|
Abstract
The zebrafish pancreas shares its basic organization and cell types with the mammalian pancreas. In addition, the developmental pathways that lead to the establishment of the pancreatic islets of Langherhans are generally conserved from fish to mammals. Zebrafish provides a powerful tool to probe the mechanisms controlling establishment of the pancreatic endocrine cell types from early embryonic progenitor cells, as well as the regeneration of endocrine cells after damage. This knowledge is, in turn, applicable to refining protocols to generate renewable sources of human pancreatic islet cells that are critical for regulation of blood sugar levels. Here, we review how previous and ongoing studies in zebrafish and beyond are influencing the understanding of molecular mechanisms underlying various forms of diabetes and efforts to develop cell-based approaches to cure this increasingly widespread disease.
Collapse
|
15
|
Connaughton VP, Baker C, Fonde L, Gerardi E, Slack C. Alternate Immersion in an External Glucose Solution Differentially Affects Blood Sugar Values in Older Versus Younger Zebrafish Adults. Zebrafish 2016; 13:87-94. [PMID: 26771444 DOI: 10.1089/zeb.2015.1155] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recently, zebrafish have been used to examine hyperglycemia-induced complications (retinopathy and neuropathy), as would occur in individuals with diabetes. Current models to induce hyperglycemia in zebrafish include glucose immersion and streptozotocin injections. Both are effective, although neither is reported to elevate blood sugar values for more than 1 month. In this article, we report differences in hyperglycemia induction and maintenance in young (4-11 months) versus old (1-3 years) zebrafish adults. In particular, older fish immersed in an alternating constant external glucose solution (2%) for 2 months displayed elevated blood glucose levels for the entire experimental duration. In contrast, younger adults displayed only transient hyperglycemia, suggesting the fish were acclimating to the glucose exposure protocol. However, modifying the immersion protocol to include a stepwise increasing glucose concentration (from 1% → 2%→3%) resulted in maintained hyperglycemia in younger zebrafish adults for up to 2 months. Glucose-exposed younger fish collected after 8 weeks of exposure also displayed a significant decrease in wet weight. Taken together, these data suggest different susceptibilities to hyperglycemia in older and younger fish and that stepwise increasing glucose concentrations of 1% are required for maintenance of hyperglycemia in younger adults, with higher concentrations of glucose resulting in greater increases in blood sugar values.
Collapse
Affiliation(s)
| | - Cassandra Baker
- Department of Biology, American University , Washington, District of Columbia
| | - Lauren Fonde
- Department of Biology, American University , Washington, District of Columbia
| | - Emily Gerardi
- Department of Biology, American University , Washington, District of Columbia
| | - Carly Slack
- Department of Biology, American University , Washington, District of Columbia
| |
Collapse
|
16
|
|
17
|
Leontovich AA, Intine RV, Sarras MP. Epigenetic Studies Point to DNA Replication/Repair Genes as a Basis for the Heritable Nature of Long Term Complications in Diabetes. J Diabetes Res 2016; 2016:2860780. [PMID: 26981540 PMCID: PMC4769771 DOI: 10.1155/2016/2860780] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/14/2016] [Indexed: 01/17/2023] Open
Abstract
Metabolic memory (MM) is defined as the persistence of diabetic (DM) complications even after glycemic control is pharmacologically achieved. Using a zebrafish diabetic model that induces a MM state, we previously reported that, in this model, tissue dysfunction was of a heritable nature based on cell proliferation studies in limb tissue and this correlated with epigenetic DNA methylation changes that paralleled alterations in gene expression. In the current study, control, DM, and MM excised fin tissues were further analyzed by MeDIP sequencing and microarray techniques. Bioinformatics analysis of the data found that genes of the DNA replication/DNA metabolism process group (with upregulation of the apex1, mcm2, mcm4, orc3, lig1, and dnmt1 genes) were altered in the DM state and these molecular changes continued into MM. Interestingly, DNA methylation changes could be found as far as 6-13 kb upstream of the transcription start site for these genes suggesting potential higher levels of epigenetic control. In conclusion, DNA methylation changes in members of the DNA replication/repair process group best explain the heritable nature of cell proliferation impairment found in the zebrafish DM/MM model. These results are consistent with human diabetic epigenetic studies and provide one explanation for the persistence of long term tissue complications as seen in diabetes.
Collapse
Affiliation(s)
- Alexey A. Leontovich
- Division of Biomedical Statistics and Informatics, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Robert V. Intine
- Department of Biomedical Sciences, Dr. William M. Scholl College of Podiatric Medicine, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Michael P. Sarras
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
- *Michael P. Sarras Jr.:
| |
Collapse
|
18
|
Sarras MP, Leontovich AA, Intine RV. Use of zebrafish as a model to investigate the role of epigenetics in propagating the secondary complications observed in diabetes mellitus. Comp Biochem Physiol C Toxicol Pharmacol 2015; 178:3-7. [PMID: 26165618 PMCID: PMC4662881 DOI: 10.1016/j.cbpc.2015.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 12/27/2022]
Abstract
Diabetes mellitus (DM) is classified as a disease of metabolic dysregulation predicted to affect over 400 million individuals world-wide by 2030. The debilitating aspects of this disease are the long term complications involving microvascular and macrovascular pathologies. These long term complications are related to the clinical phenomenon of metabolic memory (MM) that is defined as the persistence of diabetic complications even after glycemic control has been pharmacologically achieved. The persistent nature of MM has invoked involvement of epigenetic processes. Current research with the DM/MM zebrafish model as described in this review as well as human and mammalian studies has established that changes in DNA methylation patterns appear to contribute to tissue dysfunctions associated with DM. This review will describe studies on an adult zebrafish model of type I diabetes mellitus that allows analysis of both the hyperglycemic (HG or DM) phase and MM phase of the disease. The review will discuss the model in regards to: 1) its hyperglycemic phase, 2) its MM phase, 3) biochemical õpathways underlying changes in DNA methylation patterns observed in the model, 4) loci specific changes in DNA methylation patterns, and 5) strengths of the adult zebrafish model as compared to other MM animal models.
Collapse
Affiliation(s)
- Michael P Sarras
- Department of Cell Biology and Anatomy, Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| | - Alexey A Leontovich
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA.
| | - Robert V Intine
- Department of Biomedical Sciences, Dr. William M. School College of Podiatric Medicine at Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| |
Collapse
|
19
|
Sarras MP, Mason S, McAllister G, Intine RV. Inhibition of poly-ADP ribose polymerase enzyme activity prevents hyperglycemia-induced impairment of angiogenesis during wound healing. Wound Repair Regen 2015; 22:666-70. [PMID: 25066843 DOI: 10.1111/wrr.12216] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/14/2014] [Indexed: 01/28/2023]
Abstract
We previously reported a zebrafish model of type I diabetes mellitus (DM) that can be used to study the hyperglycemic (HG) and metabolic memory (MM) states within the same fish. Clinically, MM is defined as the persistence of diabetic complications even after glycemic control is pharmacologically achieved. In our zebrafish model, MM occurs following β-cell regeneration, which returns fish to euglycemia. During HG, fish acquire tissue deficits reflective of the complications seen in patients with DM and these deficits persist after fish return to euglycemia (MM). The unifying mechanism for the induction of diabetic complications involves a cascade of events that is initiated by the HG stimulation of poly-ADP ribose polymerase enzyme (Parp) activity. Additionally, recent evidence shows that the HG induction of Parp activity stimulates changes in epigenetic mechanisms that correlate with the MM state and the persistence of complications. Here we report that wound-induced angiogenesis is impaired in DM and remains impaired when fish return to a euglycemic state. Additionally, inhibition of Parp activity prevented the HG-induced wound angiogenesis deficiency observed. This approach can identify molecular targets that will provide potential new avenues for therapeutic discovery as angiogenesis imbalances are associated with all HG-damaged tissues.
Collapse
Affiliation(s)
- Michael P Sarras
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | | | | | | |
Collapse
|
20
|
Park LK, Maione AG, Smith A, Gerami-Naini B, Iyer LK, Mooney DJ, Veves A, Garlick JA. Genome-wide DNA methylation analysis identifies a metabolic memory profile in patient-derived diabetic foot ulcer fibroblasts. Epigenetics 2015; 9:1339-49. [PMID: 25437049 PMCID: PMC4622843 DOI: 10.4161/15592294.2014.967584] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Diabetic foot ulcers (DFUs) are a serious complication of diabetes. Previous exposure to hyperglycemic conditions accelerates a decline in cellular function through metabolic memory despite normalization of glycemic control. Persistent, hyperglycemia-induced epigenetic patterns are considered a central mechanism that activates metabolic memory; however, this has not been investigated in patient-derived fibroblasts from DFUs. We generated a cohort of patient-derived lines from DFU fibroblasts (DFUF), and site- and age-matched diabetic foot fibroblasts (DFF) and non-diabetic foot fibroblasts (NFF) to investigate global and genome-wide DNA methylation patterns using liquid chromatography/mass spectrometry and the Illumina Infinium HumanMethylation450K array. DFFs and DFUFs demonstrated significantly lower global DNA methylation compared to NFFs (p = 0.03). Hierarchical clustering of differentially methylated probes (DMPs, p = 0.05) showed that DFFs and DFUFs cluster together and separately from NFFs. Twenty-five percent of the same probes were identified as DMPs when individually comparing DFF and DFUF to NFF. Functional annotation identified enrichment of DMPs associated with genes critical to wound repair, including angiogenesis (p = 0.07) and extracellular matrix assembly (p = 0.035). Identification of sustained DNA methylation patterns in patient-derived fibroblasts after prolonged passage in normoglycemic conditions demonstrates persistent metabolic memory. These findings suggest that epigenetic-related metabolic memory may also underlie differences in wound healing phenotypes and can potentially identify therapeutic targets.
Collapse
Key Words
- ANOVA, Analysis of Variance
- BMP, Bone Morphogenic Protein
- COL4A1, Collagen 4A1
- DAVID, Database for Annotation, Visualization, and Integrative Discovery
- DCCT, Diabetes Control and Complications Trial
- DFF, Diabetic Foot Fibroblast
- DFU, Diabetic Foot Ulcer
- DFUF, Diabetic Foot Ulcer Fibroblast
- DHS, DNase Hypersensitive Site
- DMP, Differentially Methylated Probe
- DNA methylation
- ECM, Extracellular Matrix
- EDIC, Epidemiology of Diabetes Interventions and Complications
- ENCODE, Encyclopedia of DNA Elements
- FGF1, Fibroblast Growth Factor 1
- HbA1c, Hemoglobin A1c
- NFF, Non-diabetic Foot Fibroblast
- NHLF, Normal Human Lung Fibroblast
- PLAU, Plasminogen Activator Urokinase
- SNP, Single Nucleotide Polymorphism
- TFBS, Transcription Factor Binding Site
- TGFb, Transforming Growth Factor b
- TNFa, Tumor Necrosis Factor a
- TSS, Transcription Start Site
- UTR, Untranslated Region.
- dNTPs, deoxynucleotide
- diabetes
- diabetic foot ulcer
- epigenetics
- fibroblast
- metabolic memory
- wound healing
Collapse
Affiliation(s)
- Lara K Park
- a Department of Oral and Maxillofacial Pathology ; Oral Medicine and Craniofacial Pain ; Tufts University School of Dental Medicine ; Boston , MA USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Dressler GR, Patel SR. Epigenetics in kidney development and renal disease. Transl Res 2015; 165:166-76. [PMID: 24958601 PMCID: PMC4256142 DOI: 10.1016/j.trsl.2014.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/08/2014] [Accepted: 04/10/2014] [Indexed: 11/21/2022]
Abstract
The study of epigenetics is intimately linked and inseparable from developmental biology. Many of the genes that imprint epigenetic information on chromatin function during the specification of cell lineages in the developing embryo. These include the histone methyltransferases and their cofactors of the Polycomb and Trithorax gene families. How histone methylation is established and what regulates the tissue and locus specificity of histone methylation is an emerging area of research. The embryonic kidney is used as a model to understand how DNA-binding proteins can specify cell lineages and how such proteins interact directly with the histone methylation machinery to generate a unique epigenome for particular tissues and cell types. In adult tissues, histone methylation marks must be maintained for normal gene expression patterns. In chronic and acute renal disease, epigenetic marks are being characterized and correlated with the establishment of metabolic memory, in part to explain the persistence of pathologies even when optimal treatment modalities are used. Thus, the state of the epigenome in adult cells must be considered when attempting to alleviate or alter gene expression patterns in disease.
Collapse
|
22
|
Dhliwayo N, Sarras MP, Luczkowski E, Mason SM, Intine RV. Parp inhibition prevents ten-eleven translocase enzyme activation and hyperglycemia-induced DNA demethylation. Diabetes 2014; 63:3069-76. [PMID: 24722243 PMCID: PMC4141369 DOI: 10.2337/db13-1916] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 04/01/2014] [Indexed: 01/24/2023]
Abstract
Studies from human cells, rats, and zebrafish have documented that hyperglycemia (HG) induces the demethylation of specific cytosines throughout the genome. We previously documented that a subset of these changes become permanent and may provide, in part, a mechanism for the persistence of complications referred to as the metabolic memory phenomenon. In this report, we present studies aimed at elucidating the molecular machinery that is responsible for the HG-induced DNA demethylation observed. To this end, RNA expression and enzymatic activity assays indicate that the ten-eleven translocation (Tet) family of enzymes are activated by HG. Furthermore, through the detection of intermediates generated via conversion of 5-methyl-cytosine back to the unmethylated form, the data were consistent with the use of the Tet-dependent iterative oxidation pathway. In addition, evidence is provided that the activity of the poly(ADP-ribose) polymerase (Parp) enzyme is required for activation of Tet activity because the use of a Parp inhibitor prevented demethylation of specific loci and the accumulation of Tet-induced intermediates. Remarkably, this inhibition was accompanied by a complete restoration of the tissue regeneration deficit that is also induced by HG. The ultimate goal of this work is to provide potential new avenues for therapeutic discovery.
Collapse
Affiliation(s)
- Nyembezi Dhliwayo
- Dr. William M. Scholl College of Podiatric Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL
| | - Michael P Sarras
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL
| | - Ernest Luczkowski
- Dr. William M. Scholl College of Podiatric Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL
| | - Samantha M Mason
- Dr. William M. Scholl College of Podiatric Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL
| | - Robert V Intine
- Dr. William M. Scholl College of Podiatric Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL
| |
Collapse
|