1
|
Quah AMF, Ng MJM, Zhang L, Chan YM, Neo S, Mak M, Hong Q, Tan G, Pan Y, Yong E. Early experience on injectable micronized putty type human-derived acellular dermal matrix (ADM) in management of diabetic foot wounds in Singapore. Int Wound J 2025; 22:e70127. [PMID: 39800362 PMCID: PMC11725370 DOI: 10.1111/iwj.70127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/20/2024] [Indexed: 01/16/2025] Open
Abstract
Diabetic foot wounds (DFW) are notoriously difficult to treat owing to poor vascularity, delayed healing and higher rates of infection. Human-derived acellular dermal matrices (ADM) have been used in DFW treatment, utilizing a matrix scaffold for new tissue generation. We investigate the efficacy of a micronized injectable human-derived ADM in the treatment of DFW. We retrospectively recruited 13 patients with diabetic foot wounds. Wounds were adequately debrided, and a micronized injectable ADM was applied. Wound sizes were recorded prior to treatment, at 2 and 4 weeks post-treatment. The mean defect of wounds treated was 19.21 cm3. Our results showed a statistically significant reduction in wound size of 45% and 59% at 2 and 4 weeks post-treatment, respectively (p < 0.01). ADM was also effective in infected DFW as 84% of our wounds had positive tissue cultures at the time of application. Micronized injectable ADM has proven to be an effective treatment for DFW. Advantages include a ready-to-use injectable, single-stage treatment, minimal pain, mouldable matrix to fit any wound shape, allows for outpatient treatment and simple wound dressings.
Collapse
Affiliation(s)
- Alison Mei Fern Quah
- Vascular Surgery Unit, Department of General SurgeryTan Tock Seng HospitalSingaporeSingapore
| | - Marcus Jia Ming Ng
- Vascular Surgery Unit, Department of General SurgeryTan Tock Seng HospitalSingaporeSingapore
| | - Li Zhang
- Vascular Surgery Unit, Department of General SurgeryTan Tock Seng HospitalSingaporeSingapore
| | - Yam Meng Chan
- Vascular Surgery Unit, Department of General SurgeryTan Tock Seng HospitalSingaporeSingapore
| | - Shufen Neo
- Vascular Surgery Unit, Department of General SurgeryTan Tock Seng HospitalSingaporeSingapore
| | - Malcolm Mak
- Vascular Surgery Unit, Department of General SurgeryTan Tock Seng HospitalSingaporeSingapore
| | - Qiantai Hong
- Vascular Surgery Unit, Department of General SurgeryTan Tock Seng HospitalSingaporeSingapore
- Skin Research Institute of Singapore, Agency for ScienceTechnology and Research (A*STAR)SingaporeSingapore
| | - Glenn Tan
- Vascular Surgery Unit, Department of General SurgeryTan Tock Seng HospitalSingaporeSingapore
- Skin Research Institute of Singapore, Agency for ScienceTechnology and Research (A*STAR)SingaporeSingapore
| | - Ying Pan
- Vascular Surgery Unit, Department of General SurgeryTan Tock Seng HospitalSingaporeSingapore
- Skin Research Institute of Singapore, Agency for ScienceTechnology and Research (A*STAR)SingaporeSingapore
| | - Enming Yong
- Vascular Surgery Unit, Department of General SurgeryTan Tock Seng HospitalSingaporeSingapore
| |
Collapse
|
2
|
Zhang M, Han F, Duan X, Zheng D, Cui Q, Liao W. Advances of biological macromolecules hemostatic materials: A review. Int J Biol Macromol 2024; 269:131772. [PMID: 38670176 DOI: 10.1016/j.ijbiomac.2024.131772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/02/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Achieving hemostasis is a necessary intervention to rapidly and effectively control bleeding. Conventional hemostatic materials currently used in clinical practice may aggravate the damage at the bleeding site due to factors such as poor adhesion and poor adaptation. Compared to most traditional hemostatic materials, polymer-based hemostatic materials have better biocompatibility and offer several advantages. They provide a more effective method of stopping bleeding and avoiding additional damage to the body in case of excessive blood loss. Various hemostatic materials with greater functionality have been developed in recent years for different organs using diverse design strategies. This article reviews the latest advances in the development of polymeric hemostatic materials. We introduce the coagulation cascade reaction after bleeding and then discuss the hemostatic mechanisms and advantages and disadvantages of various polymer materials, including natural, synthetic, and composite polymer hemostatic materials. We further focus on the design strategies, properties, and characterization of hemostatic materials, along with their applications in different organs. Finally, challenges and prospects for the application of hemostatic polymeric materials are summarized and discussed. We believe that this review can provide a reference for related research on hemostatic materials, contributing to the further development of polymer hemostatic materials.
Collapse
Affiliation(s)
- Mengyang Zhang
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Feng Han
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Xunxin Duan
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Dongxi Zheng
- School of Mechanical and Intelligent Manufacturing, Jiujiang University, Jiujiang, Jiangxi, China
| | - Qiuyan Cui
- The Second Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| | - Weifang Liao
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China.
| |
Collapse
|
3
|
Lingyan L, Han Z, Jialu L, Bingyang H, Yuanyuan M, Peiwei Q, Peifen M, Liwei X. Acellular Dermal Matrix for Treatment of Diabetic Foot Ulcer: An Overview of Systematic Reviews. INT J LOW EXTR WOUND 2023:15347346231201696. [PMID: 38018121 DOI: 10.1177/15347346231201696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Aims: To evaluate the reliability of the methodological quality and outcome measures of systematic reviews (SRs)/metaanalyses (MAs) of the acellular dermal matrix (ADM) for diabetic foot ulcer (DFU). Methods: We searched and retrieved SRs and MAs on the application of ADM for DFU from PubMed, Web of Science, The Cochrane Library, EMBASE, CNKI, CBM, WanFang, and VIP databases. We employed AMSTAR 2 to assess methodological quality, Grading of Recommendations, Assessment, Development and Evaluation (GRADE) system to grade, and the strength of evidence of included SRs/MAs. We excluded the overlapping randomized controlled trials (RCTs) and conducted a re-MA of the primary RCTs. Results: A total of 7 SRs/MAs were included. Results from the AMSTAR 2 evaluation revealed a low overall quality; the GRADE system showed that the evidence was of moderate to very low quality. Our re-MA showed that ADM was superior to standard of care (SOC), with regards to complete wound healing rate at 12 weeks (RR = 1.74, 95% CI:1.34-2.25, P < .0001), complete wound healing rate at 16 weeks (RR = 1.50, 95% CI: 1.26-1.77, P < .00001); healing time (MD = -2.06, 95% CI: -2.57 to -1.54, P < .00001) and adverse events (RR = 0.62, 95% CI: 0.49-0.80, P = .0002). However, a consensus has not yet been reached between ADM and SOC groups with regard to outcome indicators of the reduction of ulcer area and quality of life; and subgroup analyses showed no statistically significant differences between the xenograft ADM and SOC groups (RR = 1.36, 95% CI: 0.95-1.93, P = .09) at 12 weeks. Conclusion: Current evidence suggests that ADM is more effective than the standard of care in the treatment of DFU, particularly for full-thickness, noninfected, and nonischemic foot ulcers, but with low evidence quality. Therefore, the results of this overview should be interpreted dialectically and prudently, and the role of ADM in DFU needs further exploration.
Collapse
Affiliation(s)
- Li Lingyan
- School of Nursing, Lanzhou University, Lanzhou, Gansu Province, P. R. China
| | - Zhao Han
- School of Nursing, Lanzhou University, Lanzhou, Gansu Province, P. R. China
| | - Li Jialu
- School of Nursing, Lanzhou University, Lanzhou, Gansu Province, P. R. China
| | - He Bingyang
- School of Nursing, Lanzhou University, Lanzhou, Gansu Province, P. R. China
| | - Ma Yuanyuan
- School of Nursing, Lanzhou University, Lanzhou, Gansu Province, P. R. China
| | - Qin Peiwei
- School of Nursing, Lanzhou University, Lanzhou, Gansu Province, P. R. China
| | - Ma Peifen
- School of Nursing, Lanzhou University, Lanzhou, Gansu Province, P. R. China
- Department of Nursing, The Second Hospital of Lanzhou University, Lanzhou, Gansu Province, P. R. China
| | - Xu Liwei
- Department of Burns, The Second Hospital of Lanzhou University, Lanzhou, Gansu Province, P. R. China
| |
Collapse
|
4
|
Vaporidou N, Peroni F, Restelli A, Jalil MN, Dye JF. Artificial Skin Therapies; Strategy for Product Development. Adv Wound Care (New Rochelle) 2023; 12:574-600. [PMID: 36680749 DOI: 10.1089/wound.2022.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Significance: Tissue-engineered artificial skin for clinical reconstruction can be regarded as an established practice. Bi-layered skin equivalents are available as established allogenic or autologous therapy, and various acellular skin replacements can support tissue repair. Moreover, there is considerable commonality between the skin and other soft tissue reconstruction products. This article presents an attempt to create a comprehensive global landscape review of advanced replacement materials and associated strategies for skin and soft tissue reconstruction. Recent Advances: There has been rapid growth in the number of commercial and pre-commercial products over the past decade. In this survey, 263 base products for advanced skin therapy have been identified, across 8 therapeutic categories, giving over 350 products in total. The largest market is in the United States, followed by the E.U. zone. However, despite these advances, and the investment of resources in each product development, there are key issues concerning the clinical efficacy, cost-benefit of products, and clinical impact. Each therapeutic strategy has relative merits and limitations. Critical Issues: A critical consideration in developing and evaluating products is the therapeutic modality, associated regulatory processes, and the potential for clinical adoption geographically, determined by regulatory territory, intellectual property, and commercial distribution factors. The survey identifies an opportunity for developments that improve basic efficacy or cost-benefit. Future Directions: The economic pressures on health care systems, compounded by the demands of our increasingly ageing population, and the imperative to distribute effective health care, create an urgent global need for effective and affordable products.
Collapse
Affiliation(s)
- Nephelie Vaporidou
- Division of Surgery and Interdisciplinary Sciences, University College London, London, United Kingdom
- Oxartis Ltd., Oxford, United Kingdom
| | | | | | - M Nauman Jalil
- Oxartis Ltd., Oxford, United Kingdom
- MADE Cymru, University of Wales Trinity Saint David, Swansea, Wales, United Kingdom
| | - Julian F Dye
- Oxartis Ltd., Oxford, United Kingdom
- Research Strategy and Development, University College London, London, United Kingdom
| |
Collapse
|
5
|
Yoshikawa Y, Maeshige N, Yamaguchi A, Uemura M, Hiramatsu T, Tsuji Y, Terashi H. Association between Patients' Body Mass Index and the Effect of Monophasic Pulsed Microcurrent Stimulation on Pressure Injury Healing. Biomedicines 2023; 11:2379. [PMID: 37760820 PMCID: PMC10526075 DOI: 10.3390/biomedicines11092379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
This secondary analysis study aimed to detect individual variables that influence the efficacy of monophasic pulsed microcurrent on pressure injury healing. Eleven patients with pressure injuries showing delayed healing underwent a microcurrent stimulation period and a placebo period. We analyzed the correlation between the individual variables and the following three outcomes using monophasic pulsed microcurrent: the wound reduction rate in the electrical stimulation period, the reduction rate in the placebo period, and the difference between these two reduction rates. Furthermore, the patients were divided into two groups, one with a wound reduction rate of more than 10% and the other with less than 10%, and the relationship between each variable was compared. As a result, the wound reduction rate in the electrical stimulation period and the difference in the reduction rate between the two periods showed significant positive correlations with patients' body mass index. In addition, a significant difference was observed in the body mass index between subjects with a reduction rate of 10% or higher and those with a reduction rate of less than 10%. This study found a correlation between the effect of monophasic pulsed microcurrent for pressure injury healing and the level of patients' body mass index.
Collapse
Affiliation(s)
- Yoshiyuki Yoshikawa
- Department of Rehabilitation, Faculty of Health Sciences, Naragakuen University, Nara 631-0003, Japan
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Kobe 654-0142, Japan
| | - Noriaki Maeshige
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Kobe 654-0142, Japan
| | - Atomu Yamaguchi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Kobe 654-0142, Japan
| | - Mikiko Uemura
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Kobe 654-0142, Japan
- Department of Rehabilitation, Faculty of Health Sciences, Kansai University of Welfare Sciences, Kashiwara 582-0026, Japan
| | | | - Yoriko Tsuji
- Unit of Podiatric Medicine, Department of Plastic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Hiroto Terashi
- Department of Plastic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| |
Collapse
|
6
|
Nilforoushzadeh MA, Raoofi A, Afzali H, Gholami O, Zare S, Nasiry D, Khodaverdi Darian E, Rustamzadeh A, Alavi S, Ahmadi R, Alimohammadi A, Razzaghi Z, Safaie Naraghi Z, Mahmoudbeyk M, Amirkhani MA, Mousavi Khaneghah A. Promotion of cutaneous diabetic wound healing by subcutaneous administration of Wharton's jelly mesenchymal stem cells derived from umbilical cord. Arch Dermatol Res 2023; 315:147-159. [PMID: 35129662 DOI: 10.1007/s00403-022-02326-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 12/20/2022]
Abstract
Wound healing is a major problem in diabetic patients, and current treatments have been confronted with limited success. The present study examined the benefit of Wharton's jelly mesenchymal stem cells (WJ-MSCs) derived from the human umbilical cord (UC) in wound healing in diabetic rats. Thirty days after inducing diabetes, a circular excision was created in the skin of rats, and the treatments were performed for 21 days. Two groups were studied, which included the Control group and WJ-MSCs group. The studied groups were sampled on the 7th, 14th, and 21st days after wounding. Histological ultrasound imaging of dermis and epidermis in the wound area for thickness and density measurement and skin elasticity were evaluated. Our results on post-wounding days 7, 14, and 21 showed that the wound closure, thickness, and density of new epidermis and dermis, as well as skin elasticity in the healed wound, were significantly higher in the WJ-MSCs group compared to the Control group. Subcutaneous administration of WJ-MSCs in diabetic wounds can effectively accelerate healing. Based on this, these cells can be used along with other treatment methods in the healing of different types of chronic wounds.
Collapse
Affiliation(s)
- Mohammad Ali Nilforoushzadeh
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Jordan Dermatology and Hair Transplantation Center, Tehran, Iran
| | - Amir Raoofi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Hamideh Afzali
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Gholami
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Sona Zare
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Davood Nasiry
- Amol Faculty of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ebrahim Khodaverdi Darian
- Department of Medical Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.,Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Auob Rustamzadeh
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shiva Alavi
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Rahim Ahmadi
- Department of Biology, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Alimohammad Alimohammadi
- Forensic Medicine Specialist, Research Center of Legal Medicine Organization of Iran, Tehran, Iran
| | - Zahra Razzaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Safaie Naraghi
- Department of Pathology, Razi Skin Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Mahmoudbeyk
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas, Caixa Postal: 6121.CEP: 13083-862, São Paulo, Brazil
| |
Collapse
|
7
|
In Vivo Comparison of Synthetic Macroporous Filamentous and Sponge-like Skin Substitute Matrices Reveals Morphometric Features of the Foreign Body Reaction According to 3D Biomaterial Designs. Cells 2022; 11:cells11182834. [PMID: 36139409 PMCID: PMC9496825 DOI: 10.3390/cells11182834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Synthetic macroporous biomaterials are widely used in the field of skin tissue engineering to mimic membrane functions of the native dermis. Biomaterial designs can be subclassified with respect to their shape in fibrous designs, namely fibers, meshes or fleeces, respectively, and porous designs, such as sponges and foams. However, synthetic matrices often have limitations regarding unfavorable foreign body responses (FBRs). Severe FBRs can result in unfavorable disintegration and rejection of an implant, whereas mild FBRs can lead to an acceptable integration of a biomaterial. In this context, comparative in vivo studies of different three-dimensional (3D) matrix designs are rare. Especially, the differences regarding FBRs between synthetically derived filamentous fleeces and sponge-like constructs are unknown. In the present study, the FBRs on two 3D matrix designs were explored after 25 days of subcutaneous implantation in a porcine model. Cellular reactions were quantified histopathologically to investigate in which way the FBR is influenced by the biomaterial architecture. Our results show that FBR metrics (polymorph-nucleated cells and fibrotic reactions) were significantly affected according to the matrix designs. Our findings contribute to a better understanding of the 3D matrix tissue interactions and can be useful for future developments of synthetically derived skin substitute biomaterials.
Collapse
|
8
|
Ju J, Kim J, Choi Y, Jin S, Kim S, Son D, Shin M. Punicalagin-Loaded Alginate/Chitosan-Gallol Hydrogels for Efficient Wound Repair and Hemostasis. Polymers (Basel) 2022; 14:polym14163248. [PMID: 36015503 PMCID: PMC9416046 DOI: 10.3390/polym14163248] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 12/29/2022] Open
Abstract
For recently devised wound-healing materials, a variety of acute application systems with sustainable therapeutic effects on wound sites have been suggested. For example, hydrogel-type healing agents with porous structures and high drug encapsulation efficiencies have been developed for wound repair. However, challenges remain about the poor mechanical and adhesive properties of hydrogels. Herein, we propose a punicalagin (PC)-containing wound-healing hydrogel in adhesive form that is mechanically stable and has sustainable wound-healing therapeutic efficiency. The APC hydrogel, composed of alginate (ALG), PC, and chitosan–gallol (CHI–G), exhibits significant mechanical and self-healing properties, thus indicating that PC increases cross-linking in ALG/CHI–G as macromolecule. The PC-containing mechanically enhanced hydrogel demonstrates high tissue adhesiveness. Sustainable PC release for 192 h, which indicates high therapeutic effect of the released PC, and great blood compatibility are evaluated based on rapid blood coagulation and minimal hemolysis. The cytocompatibility and wound-healing abilities of the PC-containing APC hydrogel are greater than those of the non-PC hydrogel, as verified by cell compatibility and wound scratch assays. These results indicate that a suitable concentration of PC-containing hydrogel with sustainable moisture condition and PC release may inspire further polyphenol-agent-containing hydrogels as wound-healing agents with structural stability and therapeutic efficiency.
Collapse
Affiliation(s)
- Jaewon Ju
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Korea
| | - Jungwoo Kim
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Korea
| | - Yeonsun Choi
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea
| | - Subin Jin
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Korea
| | - Sumin Kim
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Korea
| | - Donghee Son
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Korea
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea
- Department of Superintelligence Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea
- Correspondence: (D.S.); (M.S.)
| | - Mikyung Shin
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Korea
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea
- Correspondence: (D.S.); (M.S.)
| |
Collapse
|
9
|
Alan S, Şalva E, Karakoyun B, Çakalağaoğlu F, Özbaş S, Akbuğa J. Investigation of therapeutic effects in the wound healing of chitosan/pGM-CSF complexes. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
10
|
Fatrekar AP, Morajkar R, Krishnan S, Dusane A, Madhyastha H, Vernekar AA. Delineating the Role of Tailored Gold Nanostructures at the Biointerface. ACS APPLIED BIO MATERIALS 2021; 4:8172-8191. [PMID: 35005942 DOI: 10.1021/acsabm.1c00998] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gold (Au) has emerged as a superior element, because of its widespread applications in electronic and medical fields. The desirable physical, chemical, optical, and inherent enzyme-like properties of Au are efficiently exploited for detection, diagnostic, and therapeutic purposes. Au offers a unique advantage of fabricating gold nanostructures (GNS) having exact physical, chemical, optical, and enzyme-like properties required for the specific biomedical application. In this Review, the emerging trend of GNS for various biomedical applications is highlighted. Some notable structural and chemical modifications achieved for the detection of biomolecules, pathogens, diagnosis of diseases, and therapeutic applications are discussed in brief. The limitations of GNS during biomedical usage are highlighted and the way forward to overcome these limitations are discussed.
Collapse
Affiliation(s)
- Adarsh P Fatrekar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600 020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Rasmi Morajkar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600 020, India
| | | | - Apurva Dusane
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600 020, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Amit A Vernekar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600 020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| |
Collapse
|
11
|
Differential Capability of Clinically Employed Dermal Regeneration Scaffolds to Support Vascularization for Tissue Bioengineering. Biomedicines 2021; 9:biomedicines9101458. [PMID: 34680575 PMCID: PMC8533449 DOI: 10.3390/biomedicines9101458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/27/2021] [Accepted: 10/11/2021] [Indexed: 01/05/2023] Open
Abstract
The loss of skin integrity has always represented a major challenge for clinicians dealing with dermal defects, such as ulcers (diabetic, vascular and chronic), postoncologic resections (i.e., radical vulvectomy) or dermatologic disorders. The introduction in recent decades of acellular dermal matrices (ADMs) supporting the repair and restoration of skin functionality represented a significant step toward achieving clean wound repair before performing skin grafts. Hard-to-heal ulcers generally depend on local ischemia and nonadequate vascularization. In this context, one possible innovative approach could be the prevascularization of matrices with vessel-forming cells (inosculation). This paper presents a comparative analysis of the most widely used dermal templates, i.e., Integra® Bilayer Matrix Wound Dressing, PELNAC®, PriMatrix® Dermal Repair Scaffold, Endoform® Natural Dermal Template, and Myriad Matrix®, testing their ability to be colonized by human adult dermal microvascular endothelial cells (ADMECs) and to induce and support angiogenesis in vitro and in vivo. By in vitro studies, we demonstrated that Integra® and PELNAC® possess superior pro-adhesive and pro-angiogenetic properties. Animal models allowed us to demonstrate the ability of preseeded ADMECs on Integra® to promote the engraftment, integration and vascularization of ADMs at the site of application.
Collapse
|
12
|
Kharaziha M, Baidya A, Annabi N. Rational Design of Immunomodulatory Hydrogels for Chronic Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100176. [PMID: 34251690 PMCID: PMC8489436 DOI: 10.1002/adma.202100176] [Citation(s) in RCA: 316] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/03/2021] [Indexed: 05/03/2023]
Abstract
With all the advances in tissue engineering for construction of fully functional skin tissue, complete regeneration of chronic wounds is still challenging. Since immune reaction to the tissue damage is critical in regulating both the quality and duration of chronic wound healing cascade, strategies to modulate the immune system are of importance. Generally, in response to an injury, macrophages switch from pro-inflammatory to an anti-inflammatory phenotype. Therefore, controlling macrophages' polarization has become an appealing approach in regenerative medicine. Recently, hydrogels-based constructs, incorporated with various cellular and molecular signals, have been developed and utilized to adjust immune cell functions in various stages of wound healing. Here, the current state of knowledge on immune cell functions during skin tissue regeneration is first discussed. Recent advanced technologies used to design immunomodulatory hydrogels for controlling macrophages' polarization are then summarized. Rational design of hydrogels for providing controlled immune stimulation via hydrogel chemistry and surface modification, as well as incorporation of cell and molecules, are also dicussed. In addition, the effects of hydrogels' properties on immunogenic features and the wound healing process are summarized. Finally, future directions and upcoming research strategies to control immune responses during chronic wound healing are highlighted.
Collapse
Affiliation(s)
- Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Avijit Baidya
- Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| | - Nasim Annabi
- Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
13
|
Dearman BL, Boyce ST, Greenwood JE. Advances in Skin Tissue Bioengineering and the Challenges of Clinical Translation. Front Surg 2021; 8:640879. [PMID: 34504864 PMCID: PMC8421760 DOI: 10.3389/fsurg.2021.640879] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 07/31/2021] [Indexed: 01/17/2023] Open
Abstract
Skin tissue bioengineering is an emerging field that brings together interdisciplinary teams to promote successful translation to clinical care. Extensive deep tissue injuries, such as large burns and other major skin loss conditions, are medical indications where bioengineered skin substitutes (that restore both dermal and epidermal tissues) are being studied as alternatives. These may not only reduce mortality but also lessen morbidity to improve quality of life and functional outcome compared with the current standards of care. A common objective of dermal-epidermal therapies is to reduce the time required to accomplish stable closure of wounds with minimal scar in patients with insufficient donor sites for autologous split-thickness skin grafts. However, no commercially-available product has yet fully satisfied this objective. Tissue engineered skin may include cells, biopolymer scaffolds and drugs, and requires regulatory review to demonstrate safety and efficacy. They must be scalable for manufacturing and distribution. The advancement of technology and the introduction of bioreactors and bio-printing for skin tissue engineering may facilitate clinical products' availability. This mini-review elucidates the reasons for the few available commercial skin substitutes. In addition, it provides insights into the challenges faced by surgeons and scientists to develop new therapies and deliver the results of translational research to improve patient care.
Collapse
Affiliation(s)
- Bronwyn L. Dearman
- Skin Engineering Laboratory, Adult Burns Centre, Royal Adelaide Hospital, Adelaide, SA, Australia
- Adult Burns Centre, Royal Adelaide Hospital, Adelaide, SA, Australia
- Faculty of Health and Medical Science, The University of Adelaide, Adelaide, SA, Australia
| | - Steven T. Boyce
- Department of Surgery, University of Cincinnati, Cincinnati, OH, United States
| | - John E. Greenwood
- Skin Engineering Laboratory, Adult Burns Centre, Royal Adelaide Hospital, Adelaide, SA, Australia
- Adult Burns Centre, Royal Adelaide Hospital, Adelaide, SA, Australia
| |
Collapse
|
14
|
Cammarota M, D'Agostino A, Campitiello F, Mancone M, Ricci G, Corte AD, Guerniero R, Stellavato A, Schiraldi C, Canonico S. Hard-to-heal wound treated with Integra Flowable Wound Matrix: analysis and clinical observations. J Wound Care 2021; 30:644-652. [PMID: 34382844 DOI: 10.12968/jowc.2021.30.8.644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Skin healing defects severely impair the quality of life of millions of people and burden healthcare systems globally. The therapeutic approach to these pathologies still represents a challenge. Novel scaffolds, used as dermal substitutes, possibly represent a promising strategy in complex wound management. Integra Flowable Wound Matrix (IFWM) is composed of a lyophilised, micronised form of collagen/chondroitin sulphate matrix, already used in regenerative medicine and endorsed in the therapy of diabetic foot lesions. In this paper, IFWM was applied to a tunnelling hard-to-heal skin lesion in order to restore tissue integrity. Although the different phases of skin wound healing are well established, the molecular mechanism underpinning IFWM-induced tissue repair are almost unknown. Here, we report, for the first time, the comparative analysis of molecular, histological and clinical observations of the healing process of a hard-to-heal tunnelling skin wound. The therapeutic success of this clinical case allowed us to recommend the use of IFWM as a tissue substitute in this rare type of hard-to-heal wound in which the high inflammatory status hampered the natural healing process.
Collapse
Affiliation(s)
- Marcella Cammarota
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonella D'Agostino
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Ferdinando Campitiello
- Department of Integrated Multi-Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Manfredi Mancone
- Department of Integrated Multi-Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giulia Ricci
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Angela Della Corte
- Department of Integrated Multi-Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Raffaella Guerniero
- Department of Integrated Multi-Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonietta Stellavato
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Silvestro Canonico
- Department of Integrated Multi-Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
15
|
Peterson A, Nair L. Hair Follicle Stem Cells for Tissue Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:695-706. [PMID: 34238037 PMCID: PMC9419938 DOI: 10.1089/ten.teb.2021.0098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With the positive outcomes of various cell therapies currently under pre-clinical and clinical studies, there is a significant interest in novel stem cell sources with unique therapeutic properties. Studies over the past two decades or so demonstrated the feasibility to isolate multipotent/pluripotent stem cells from hair follicles. The easy accessibility, high proliferation and differentiation ability as well as lack of ethical concerns associated with this stem cell source make hair follicle stem cells (HFSCs) attractive candidate for cell therapy and tissue engineering. This review discusses the various stem cell types identified in rodent and human hair follicles and ongoing studies on the potential use of HFSCs for skin, bone, cardio-vascular, and nerve tissue engineering.
Collapse
Affiliation(s)
- Alyssa Peterson
- University of Connecticut, 7712, Storrs, Connecticut, United States;
| | - Lakshmi Nair
- University of Connecticut Health Center, 21654, Orthopaedic Surgery, Farmington, Connecticut, United States;
| |
Collapse
|
16
|
Castro PR, Bittencourt LFF, Larochelle S, Andrade SP, Mackay CR, Slevin M, Moulin VJ, Barcelos LS. GPR43 regulates sodium butyrate-induced angiogenesis and matrix remodeling. Am J Physiol Heart Circ Physiol 2021; 320:H1066-H1079. [PMID: 33356962 DOI: 10.1152/ajpheart.00515.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/04/2020] [Indexed: 12/26/2022]
Abstract
Butyrate is a short-chain fatty acid (SCFA) derived from microbiota and is involved in a range of cell processes in a concentration-dependent manner. Low concentrations of sodium butyrate (NaBu) were shown to be proangiogenic. However, the mechanisms associated with these effects are not yet fully known. Here, we investigated the contribution of the SCFA receptor GPR43 in the proangiogenic effects of local treatment with NaBu and its effects on matrix remodeling using the sponge-induced fibrovascular tissue model in mice lacking the Gpr43 gene (Gpr43-KO) and the wild-type (WT) mice. We demonstrated that NaBu (0.2 mM intraimplant) treatment enhanced the neovascularization process, blood flow, and VEGF levels in a GPR43-dependent manner in the implants. Moreover, NaBu was able to modulate matrix remodeling aspects of the granulation tissue such as proteoglycan production, collagen deposition, and α-smooth muscle actin (α-SMA) expression in vivo, besides increasing transforming growth factor (TGF)-β1 levels in the fibrovascular tissue, in a GPR43-dependent manner. Interestingly, NaBu directly stimulated L929 murine fibroblast migration and TGF-β1 and collagen production in vitro. GPR43 was found to be expressed in human dermal fibroblasts, myofibroblasts, and endothelial cells. Overall, our findings evidence that the metabolite-sensing receptor GPR43 contributes to the effects of low dose of NaBu in inducing angiogenesis and matrix remodeling during granulation tissue formation. These data provide important insights for the proposition of new therapeutic approaches based on NaBu, beyond the highly explored intestinal, anti-inflammatory, and anticancer purposes, as a local treatment to improve tissue repair, particularly, by modulating granulation tissue components.NEW & NOTEWORTHY Our data show the contribution of the metabolite-sensing receptor GPR43 in the effects of low dose of sodium butyrate (NaBu) on stimulating angiogenesis and extracellular matrix remodeling in a model of granulation tissue formation in mice. We also show that human dermal fibroblasts, myofibroblasts, and endothelial cells express the receptor GPR43. These data provide important insights for the use of NaBu in local therapeutic approaches applicable to tissue repair in sites other than the intestine.
Collapse
Affiliation(s)
- Pollyana Ribeiro Castro
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Lucas Felipe Fernandes Bittencourt
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Sébastien Larochelle
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de recherche du CHU de Québec-Université Laval, Quebec, Canada
| | - Silvia Passos Andrade
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Mark Slevin
- School of Healthcare Science, GMBC, Manchester Metropolitan University, Manchester, United Kingdom
| | - Véronique J Moulin
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de recherche du CHU de Québec-Université Laval, Quebec, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec, Canada
| | - Lucíola Silva Barcelos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
17
|
Rêgo M, Franco E, Oliveira R, Linden L, Silva V, Maia C, Teixeira M, Marinho M, Lima E. Evaluation of tissue repair using phytotherapeutic gel from Plectranthus neochilus, Schlechter (boldo-gambá) and Cnidoscolus quercifolius Pohl (favela) in Wistar rats. ARQ BRAS MED VET ZOO 2021. [DOI: 10.1590/1678-4162-12026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT The objective of this study was to investigate the effects of a gel formulation from the association of Plectranthus neochilus and Cnidoscolus quercifolius on tissue repair in cutaneous wounds in rats. A surgical wound was induced in 35 Wistar rats and treated according to group: G1 - commercial phytotherapeutic gel; G2 - Carbopol gel 1%; G3, 4, 5 - gel formulation from Boldo-gambá and Favela (FGBF) at 2.5%, 5%, and 10%, respectively. 1ml of the product was applied topically daily, for 14 days. Macroscopic evaluation of the wound showed inflammation, granulation, and epithelization in all groups. The FGBF 2.5% group showed greater angiogenic potential. There was a significant difference between the surgical area of the wounds treated with FGBF 2.5%, 5%, or 10% compared to the group with the commercial phytotherapeutic gel. On histomorphometry of the skin, there were reepithelization of the epidermis and superficial dermis, longitudinal collagen fibers, fibroblasts, and blood vessels, and in the deeper dermis, fibroblasts, transverse and longitudinal collagen fibers, blood vessels, and inflammatory cells. The 2.5% formulation had the greatest increase in fibroblast proliferation and most intense collagenization on day 14 of treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - C.S. Maia
- Universidade Federal de Pernambuco, Brazil
| | | | | | - E.R. Lima
- Universidade Federal Rural de Pernambuco, Brazil
| |
Collapse
|
18
|
Hosseini ES, Bhattacharjee M, Manjakkal L, Dahiya R. Healing and monitoring of chronic wounds: advances in wearable technologies. Digit Health 2021. [DOI: 10.1016/b978-0-12-818914-6.00014-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
19
|
S P, Jaiswal AK. Effect of interpolymer complex formation between chondroitin sulfate and chitosan-gelatin hydrogel on physico-chemical and rheological properties. Carbohydr Polym 2020; 238:116179. [DOI: 10.1016/j.carbpol.2020.116179] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/09/2020] [Accepted: 03/13/2020] [Indexed: 01/03/2023]
|
20
|
New Treatment of Wound Healing With Allogenic Acellular Human Skin Graft: Preclinical Assessment and In Vitro Study. Transplant Proc 2020; 52:2204-2207. [PMID: 32340748 DOI: 10.1016/j.transproceed.2020.02.115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/13/2020] [Indexed: 01/30/2023]
Abstract
BACKGROUND Nonhealing wounds can be a major clinical problem. Impaired wound healing is often related to massive tissue injury, concomitant wound healing deficiencies (chronic wounds), burn injury, or congenital conditions. We propose a novel biological dressing as an alternative surgical approach. The dressing is a form of an allogenic human skin graft equivalent with further use of allogeneic stem cells classified as an advanced therapy medicinal product. This new allogenic acellular human skin graft has been specifically developed to address the clinical indications for dressing wound lesions and promoting tissue repair in specific rare genetic diseases. METHODS This case report illustrates the use of an acellular human skin allograft seeded with multipotent stem cells in the treatment of tissue injuries (burns), congenital conditions, and chronic wounds. Donor-tissue processing yields an acellular dermal matrix with integral collagen bundling and organization, as well as an intact basement membrane complex. RESULTS Preclinical observations show prolonged viability of acellular human skin grafts with multipotent stem cells. This was confirmed with histological and electron-microscopic evaluation of biopsies, which demonstrated host-cell infiltration and neovascularization of the biological dressing. Moreover, the dressings were characterized by low immunogenicity, as confirmed by histology exam and T-cell proliferation assays in vitro. CONCLUSION Our data confirmed the safety and efficacy of the evaluated acellular human skin grafts, which may be used in patients with rare diseases, such as epidermolysis bullosa, burn injuries, and chronic wounds.
Collapse
|
21
|
Li M, Ma J, Gao Y, Dong M, Zheng Z, Li Y, Tan R, She Z, Yang L. Epithelial differentiation of human adipose-derived stem cells (hASCs) undergoing three-dimensional (3D) cultivation with collagen sponge scaffold (CSS) via an indirect co-culture strategy. Stem Cell Res Ther 2020; 11:141. [PMID: 32234069 PMCID: PMC7110797 DOI: 10.1186/s13287-020-01645-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/10/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Three-dimensional (3D) cultivation with biomaterials was proposed to facilitate stem cell epithelial differentiation for wound healing. However, whether human adipose-derived stem cells (hASCs) on collagen sponge scaffold (CSS) better differentiate to keratinocytes remains unclear. METHODS 3D cultivation with CSS on hASC epidermal differentiation co-cultured with HaCaT cells at air-liquid interface (ALI) was compared with two-dimensional (2D) form and cultivation without "co-culture" or "ALI." Cellular morphology, cell adhesion, and growth condition were evaluated, followed by the protein and gene expression of keratin 14 (K14, keratinocyte specific marker). RESULTS Typical cobblestone morphology of keratinocytes was remarkably observed in co-cultured hASCs at ALI, but those seeded on the CSS exhibited more keratinocyte-like cells under an invert microscope and scanning electron microscope. Desired cell adhesion and proliferation were confirmed in 3D differentiation groups by rhodamine-labeled phalloidin staining, consistent with H&E staining. Compared with those cultured in 2D culture system or without "ALI," immunofluorescence staining and gene expression analysis revealed hASCs co-cultured over CSS expressed K14 at higher levels at day 15. CONCLUSIONS CSS is positive to promote epithelial differentiation of hASCs, which will foster a deeper understanding of artificial dermis in skin wound healing and regeneration.
Collapse
Affiliation(s)
- Minxiong Li
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, People's Republic of China
| | - Jun Ma
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, People's Republic of China
| | - Yanbin Gao
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, People's Republic of China
| | - Mengru Dong
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, People's Republic of China
| | - Zijun Zheng
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, People's Republic of China
| | - Yuchen Li
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, People's Republic of China
| | - Rongwei Tan
- Guangdong Engineering Research Center of Implantable Medical Polymer, Shenzhen Lando Biomaterials Co., Ltd., Shenzhen, 518107, People's Republic of China
| | - Zhending She
- Guangdong Engineering Research Center of Implantable Medical Polymer, Shenzhen Lando Biomaterials Co., Ltd., Shenzhen, 518107, People's Republic of China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
22
|
Weng T, Wu P, Zhang W, Zheng Y, Li Q, Jin R, Chen H, You C, Guo S, Han C, Wang X. Regeneration of skin appendages and nerves: current status and further challenges. J Transl Med 2020; 18:53. [PMID: 32014004 PMCID: PMC6996190 DOI: 10.1186/s12967-020-02248-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/28/2020] [Indexed: 12/14/2022] Open
Abstract
Tissue-engineered skin (TES), as an analogue of native skin, is promising for wound repair and regeneration. However, a major drawback of TES products is a lack of skin appendages and nerves to enhance skin healing, structural integrity and skin vitality. Skin appendages and nerves are important constituents for fully functional skin. To date, many studies have yielded remarkable results in the field of skin appendages reconstruction and nerve regeneration. However, patients often complain about a loss of skin sensation and even cutaneous chronic pain. Restoration of pain, temperature, and touch perceptions should now be a major challenge to solve in order to improve patients’ quality of life. Current strategies to create skin appendages and sensory nerve regeneration are mainly based on different types of seeding cells, scaffold materials, bioactive factors and involved signaling pathways. This article provides a comprehensive overview of different strategies for, and advances in, skin appendages and sensory nerve regeneration, which is an important issue in the field of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Tingting Weng
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Pan Wu
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Wei Zhang
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Yurong Zheng
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Qiong Li
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Ronghua Jin
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Haojiao Chen
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Chuangang You
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Songxue Guo
- Department of Plastic Surgery, Second Affiliated Hospital of Zhejiang University, Hangzhou, 310009, China
| | - Chunmao Han
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Xingang Wang
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
23
|
Zepon ΚM, Marques MS, Hansen AW, Pucci CDAF, Morisso FDP, Ziulkoski AL, do Nascimento JHO, Magnago RF, Κanis LA. Polymer-based wafers containing in situ synthesized gold nanoparticles as a potential wound-dressing material. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110630. [PMID: 32228905 DOI: 10.1016/j.msec.2020.110630] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/19/2019] [Accepted: 01/02/2020] [Indexed: 12/19/2022]
Abstract
Polymer-based wafers containing gold nanoparticles (AuNP) were prepared using κ-carrageenan (κC), locust bean gum (LBG) and polyvinyl alcohol (PVA) at ratios of 42/22/13% w/w and 35/15/17% w/w. The synthesized AuNPs were evaluated for their particle size and morphology. The produced wafers containing AuNPs were investigated for their physicochemical, morphological, mechanical, and swelling properties. In addition, bacterial barrier activity and in vitro cytotoxicity were also evaluated in this study. The AuNPs obtained were spherical in shape (~ 10-15 nm in diameter) and exhibited a single bell-shaped UV-vis absorption band centered ~ 540 nm. FT-IR spectra of the wafers containing AuNPs exhibited a shift of ν(O=S=O) absorption band toward a lower wavenumber and a shift of ν(OH) absorption band toward a higher wavenumber due to the coordination of OH groups to AuNPs and their interaction with O=S=O groups of κC, respectively. SEM images confirmed the porous structure of the produced wafers, being the surface area, mechanical properties, and swelling behavior directly affected by changing both the initial amount of [Au+3] and the composition of the wafers. Lastly, the produced wafers showed non-toxicity to NIH-3T3 fibroblast cells, and they also serve as a bacterial barrier. These findings endorsed the claim that the produced wafers containing AuNPs could be a promising material for wound dressing applications.
Collapse
Affiliation(s)
- Κarine Modolon Zepon
- Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, 88701-000 Tubarão, SC, Brazil; Pós-Graduação em Tecnologia de Materiais e Processos Industriais, Universidade Feevale, 93525-075 Novo Hamburgo, RS, Brazil.
| | - Morgana Souza Marques
- Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, 88701-000 Tubarão, SC, Brazil; Pós-Graduação em Tecnologia de Materiais e Processos Industriais, Universidade Feevale, 93525-075 Novo Hamburgo, RS, Brazil.
| | - Alana Witt Hansen
- Laboratório de Citotoxicidade, Instituto de Ciências da Saúde, Universidade Feevale, 93525-075 Novo Hamburgo, RS, Brazil
| | | | - Fernando Dal Pont Morisso
- Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil
| | - Ana Luiza Ziulkoski
- Laboratório de Citotoxicidade, Instituto de Ciências da Saúde, Universidade Feevale, 93525-075 Novo Hamburgo, RS, Brazil
| | | | - Rachel Faverzani Magnago
- Pós-Graduação em Engenharia Têxtil, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| | - Luiz Alberto Κanis
- Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, 88701-000 Tubarão, SC, Brazil
| |
Collapse
|
24
|
Huang W, Chen Y, Wang N, Yin G, Wei C, Xu W. The Efficacy and Safety of Acellular Matrix Therapy for Diabetic Foot Ulcers: A Meta-Analysis of Randomized Clinical Trials. J Diabetes Res 2020; 2020:6245758. [PMID: 32090122 PMCID: PMC7016477 DOI: 10.1155/2020/6245758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/03/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Acellular matrix (AM) therapy has shown promise in the treatment of diabetic foot ulcers (DFUs) in several studies. The clinical effects of AM therapy were not well established. Therefore, we conducted a meta-analysis of randomized clinical trials (RCTs) to examine the efficacy and safety of AM therapy for patients with DFUs. METHODS A literature search of 5 databases was performed to identify RCTs comparing AM therapy to standard therapy (ST) in patients with DFUs. The primary outcome was the complete healing rate and the secondary outcomes mainly included time to complete healing and adverse events. RESULTS Nine RCTs involving 897 patients were included. Compared with ST group, patients allocated to AM group had a higher complete healing rate both at 12 weeks (risk ratio (RR) = 1.73, 95% confidence interval (CI): 1.31 to 2.30) and 16 weeks (RR = 1.56, 95% CI: 1.28 to 1.91), a shorter time to complete healing (mean difference (MD) = -2.41; 95% CI: -3.49 to -1.32), and fewer adverse events (RR = 0.64, 95% CI: 0.44 to 0.93). CONCLUSION The present study suggests that AM therapy as an adjuvant treatment could further promote the healing of full-thickness, noninfected, and nonischemia DFUs. AM therapy also has a safety profile. More large well-designed randomized clinical trials with long follow-up duration are needed to further explore the efficacy and safety of AM therapy for DFUs.
Collapse
Affiliation(s)
- Wentao Huang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou 515041, China
- Shantou University Medical College, 22 Xinling Road, Shantou 515041, China
| | - Yongsong Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou 515041, China
| | - Nasui Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou 515041, China
| | - Guoshu Yin
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou 515041, China
| | - Chiju Wei
- Multidisciplinary Research Center, Shantou University, 243 Daxue Road, Shantou 515063, China
| | - Wencan Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou 515041, China
| |
Collapse
|
25
|
De Angelis B, Orlandi F, Morais D'Autilio MFL, Di Segni C, Scioli MG, Orlandi A, Cervelli V, Gentile P. Vasculogenic Chronic Ulcer: Tissue Regeneration with an Innovative Dermal Substitute. J Clin Med 2019; 8:E525. [PMID: 30999579 PMCID: PMC6518262 DOI: 10.3390/jcm8040525] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/08/2019] [Accepted: 04/15/2019] [Indexed: 12/25/2022] Open
Abstract
The healing of venous and arterial ulcers is slow, and in some cases, they may not heal at all. This study aims to demonstrate the clinical advantage of Nevelia®, an innovative collagen dermal template substitute (DS) in venous and arterial chronic ulcers treatment. 35 patients affected by chronic vascular ulcers with a mean area of 35.1 ± 31.8 cm2 were treated with DS followed by autologous dermal epidermal graft (DEG). Follow-up was performed at 7-14-21 and 28 days after DS implant and 7-14-21 and 28 days after DEG. At 28 days after DEG, the mean values of Manchester Scar Scale was of 1.8 ± 0.7 for skin color, 1.6 ± 0.7 for skin contour, 1.7 ± 0.7 for distortion, and 1.7 ± 0.7 for skin texture, whereas skin was matte in 27 patients (77%) and shiny in the remaining eight cases (23%). Histological findings correlate with the clinical result showing a regenerated skin with reactive epidermal hyperplasia and dermal granulation tissue after two weeks (T1), and after three weeks (T2) a re-epithelialization and a formed new tissue architecture analogue to normal skin physiology. These data suggest that Nevelia® could be useful to treat chronic venous and arterial ulcers.
Collapse
Affiliation(s)
- Barbara De Angelis
- Department of Surgical Science, Plastic and Reconstructive Surgery Unit, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Fabrizio Orlandi
- Department of Surgical Science, Plastic and Reconstructive Surgery Unit, University of Rome Tor Vergata, 00133 Rome, Italy.
| | | | - Chiara Di Segni
- Department of Surgical Science, Plastic and Reconstructive Surgery Unit, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Maria Giovanna Scioli
- Department of Biomedicine and Prevention, Pathologic Anatomy Institute, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - Augusto Orlandi
- Department of Biomedicine and Prevention, Pathologic Anatomy Institute, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - Valerio Cervelli
- Department of Surgical Science, Plastic and Reconstructive Surgery Unit, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Pietro Gentile
- Department of Surgical Science, Plastic and Reconstructive Surgery Unit, University of Rome Tor Vergata, 00133 Rome, Italy.
| |
Collapse
|
26
|
Jiang Y, Li M, Fu X. Biotechnological Management of Angiopathic Wounds: Challenges and Perspectives. INT J LOW EXTR WOUND 2018; 17:214-217. [PMID: 30474446 DOI: 10.1177/1534734618813232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Angiopathic wound is a wound that develops as a result of a local vascular lesion. Angiogenesis is an important aspect underlying repair, and increased angiogenesis could accelerate and improve the healing outcome. Biotherapy has been used more and more in clinic and brings hope for angiopathic wound treatment, through the rapid recovery of angiogenesis and regulation and correction of the whole wound microenvironment. In this article, we discuss the advantages and disadvantages of various technologies ranging from presentation of angiogenic growth factors, genetic strategies, stem cells, and biomaterials engineering in angiopathic wound treatment.
Collapse
Affiliation(s)
- Yufeng Jiang
- Chinese PLA 306th Hospital, Beijing, People’s Republic of China
- Chinese PLA General Hospital and Chinese PLA Medical College, Beijing, People’s Republic of China
- The Key Laboratory of Wound Repair and Regeneration of PLA, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Meirong Li
- Chinese PLA General Hospital and Chinese PLA Medical College, Beijing, People’s Republic of China
- The Key Laboratory of Wound Repair and Regeneration of PLA, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Xiaobing Fu
- Chinese PLA General Hospital and Chinese PLA Medical College, Beijing, People’s Republic of China
- The Key Laboratory of Wound Repair and Regeneration of PLA, Chinese PLA General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
27
|
Electrospun chitosan/polycaprolactone-hyaluronic acid bilayered scaffold for potential wound healing applications. Int J Biol Macromol 2018; 116:774-785. [DOI: 10.1016/j.ijbiomac.2018.05.099] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/04/2018] [Accepted: 05/15/2018] [Indexed: 12/19/2022]
|
28
|
Dong Y, Rodrigues M, Kwon SH, Li X, A S, Brett EA, Elvassore N, Wang W, Gurtner GC. Acceleration of Diabetic Wound Regeneration using an In Situ-Formed Stem-Cell-Based Skin Substitute. Adv Healthc Mater 2018; 7:e1800432. [PMID: 30004192 DOI: 10.1002/adhm.201800432] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/31/2018] [Indexed: 02/06/2023]
Abstract
Chronic diabetic ulcers are a common complication in patients with diabetes, often leading to lower limb amputations and even mortality. Stem cells have shown promise in promoting cutaneous wound healing by modulating inflammation, angiogenesis, and re-epithelialization. However, more effective delivery and engraftment strategies are needed to prolong transplanted stem cell lifespan and their pro-healing functions in a chronic wound environment to improve skin regeneration. In this study, an injectable poly(ethylene glycol) (PEG)-gelatin-based hydrogel system is examined to create a functional stem cell niche for the delivery of adipose-derived stem cells (ASCs) into diabetic wounds. Human ASCs are encapsulated into the in situ crosslinked hydrogels and cultured in a 3D topography. The encapsulated cells are well attached and spread inside the hydrogels, retaining viability, proliferation, and metabolic activity up to three weeks in vitro. Allogeneic ASCs are delivered to diabetic wounds by this hydrogel vehicle. It is found that stem cell retention is significantly improved in vivo with vehicle-mediated delivery. The ASC-hydrogel-based treatment decreases inflammatory cell infiltration, enhances neovascularization, and remarkably accelerates wound closure in diabetic mice. Together, these findings suggest this conveniently-applicable ASC-hydrogel-based skin substitute provides a promising potential for the treatment of chronic diabetic wounds.
Collapse
Affiliation(s)
- Yixiao Dong
- Shanghai Institute for Advanced Immunochemical Studies; ShanghaiTech University; Shanghai 201210 China
| | - Melanie Rodrigues
- Department of Surgery; Stanford University School of Medicine; Stanford CA 94305 USA
| | - Sun Hyung Kwon
- Department of Surgery; Stanford University School of Medicine; Stanford CA 94305 USA
| | - Xiaolin Li
- Charles Institute of Dermatology; School of Medicine and Medical Science; University College Dublin; Dublin 4 Ireland
| | - Sigen A
- Charles Institute of Dermatology; School of Medicine and Medical Science; University College Dublin; Dublin 4 Ireland
| | - Elizabeth Anne Brett
- Department of Surgery; Stanford University School of Medicine; Stanford CA 94305 USA
| | - Nicola Elvassore
- Shanghai Institute for Advanced Immunochemical Studies; ShanghaiTech University; Shanghai 201210 China
| | - Wenxin Wang
- Charles Institute of Dermatology; School of Medicine and Medical Science; University College Dublin; Dublin 4 Ireland
| | - Geoffrey C. Gurtner
- Department of Surgery; Stanford University School of Medicine; Stanford CA 94305 USA
| |
Collapse
|
29
|
Neves LMG, Parizotto NA, Cominetti MR, Bayat A. Photobiomodulation of a flowable matrix in a human skin ex vivo model demonstrates energy-based enhancement of engraftment integration and remodeling. JOURNAL OF BIOPHOTONICS 2018; 11:e201800077. [PMID: 29688627 DOI: 10.1002/jbio.201800077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/19/2018] [Indexed: 06/08/2023]
Abstract
The use of dermal substitutes to treat skin defects such as ulcers has shown promising results, suggesting a potential role for skin substitutes for treating acute and chronic wounds. One of the main drawbacks with the use of dermal substitutes is the length of time from engraftment to graft take, plus the risk of contamination and failure due to this prolonged integration. Therefore, the use of adjuvant energy-based therapeutic modalities to augment and accelerate the rate of biointegration by dermal substitute engraftments is a desirable outcome. The photobiomodulation (PBM) therapy modulates the repair process, by stimulating cellular proliferation and angiogenesis. Here, we evaluated the effect of PBM on a collagen-glycosaminoglycan flowable wound matrix (FWM) in an ex vivo human skin wound model. PBM resulted in accelerated rate of re-epithelialization and organization of matrix as seen by structural arrangement of collagen fibers, and a subsequent increased expression of alpha-smooth muscle actin (α-SMA) and vascular endothelial growth factor A (VEGF-A) leading to an overall improved healing process. The use of PBM promoted a beneficial effect on the rate of integration and healing of FWM. We therefore propose that the adjuvant use of PBM may have utility in enhancing engraftment and tissue repair and be of value in clinical practice.
Collapse
Affiliation(s)
- Lia M G Neves
- Laboratory of Biology of Aging (LABEN), Department of Gerontology, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Nivaldo A Parizotto
- Physical Therapy Department, Federal University of São Carlos, São Carlos, SP, Brazil
- Biotechnology Post-Graduation Program, University of Araraquara, Araraquara, Brazil
- Post-Graduation in Biomedical Engineering, University of Brazil, São Paulo, SP, Brazil
| | - Marcia R Cominetti
- Laboratory of Biology of Aging (LABEN), Department of Gerontology, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Ardeshir Bayat
- School of Biological Sciences and Health/Division of Musculoskeletal and Dermatological Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
30
|
Piaggesi A, Låuchli S, Bassetto F, Biedermann T, Marques A, Najafi B, Palla I, Scarpa C, Seimetz D, Triulzi I, Turchetti G, Vaggelas A. Advanced therapies in wound management: cell and tissue based therapies, physical and bio-physical therapies smart and IT based technologies. J Wound Care 2018; 27:S1-S137. [DOI: 10.12968/jowc.2018.27.sup6a.s1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Alberto Piaggesi
- Prof, Director, EWMA Scientific Recorder (Editor), Diabetic Foot Section of the Pisa University Hospital, Department of Endocrinology and Metabolism, University of Pisa, Lungarno Pacinotti 43, 56126 Pisa, Italy
| | - Severin Låuchli
- Chief of Dermatosurgery and Woundcare, EWMA Immediate Past President (Co-editor), Department of Dermatology, University Hospital, Zurich, Råmistrasse 100, 8091 Zärich, Schwitzerland
| | - Franco Bassetto
- Prof, Head of Department, Clinic of Plastic and Reconstructive Surgery, University of Padova, Via Giustiniani, 35100 Padova
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, August Forel-Strasse 7, 8008 Zürich, Switzerland
| | - Alexandra Marques
- University of Minho, 3B's Research Group in Biomaterials, Biodegradables and Biomimetics, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
| | - Bijan Najafi
- Professor of Surgery, Director of Clinical Research, Division of Vascular Surgery and Endovascular Therapy, Director of Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, MS: BCM390, Houston, TX 77030-3411, US
| | - Ilaria Palla
- Institute of Management, Sant'Anna School of Advanced Studies, Piazza Martiri della Libertà, 33, 56127 Pisa, Italy
| | - Carlotta Scarpa
- Clinic of Plastic and Reconstructive Surgery, University of Padova, Via Giustiniani, 35100 Padova
| | - Diane Seimetz
- Founding Partner, Biopharma Excellence, c/o Munich Technology Center, Agnes-Pockels-Bogen 1, 80992 Munich, Germany
| | - Isotta Triulzi
- Institute of Management, Sant'Anna School of Advanced Studies, Piazza Martiri della Libertà, 33, 56127 Pisa, Italy
| | - Giuseppe Turchetti
- Fulbright Scholar, Institute of Management, Sant'Anna School of Advanced Studies, Piazza Martiri della Libertà, 33, 56127 Pisa, Italy
| | - Annegret Vaggelas
- Consultant, Biopharma Excellence, c/o Munich Technology Center, Agnes-Pockels-Bogen 1, 80992 Munich, Germany
| |
Collapse
|
31
|
De Angelis B, Orlandi F, Fernandes Lopes Morais D’Autilio M, Scioli MG, Orlandi A, Cervelli V, Gentile P. Long-term follow-up comparison of two different bi-layer dermal substitutes in tissue regeneration: Clinical outcomes and histological findings. Int Wound J 2018; 15:695-706. [PMID: 29590523 PMCID: PMC7949690 DOI: 10.1111/iwj.12912] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/06/2018] [Indexed: 12/12/2022] Open
Abstract
Double layer dermal substitute (DS) consist of a 3‐dimensional collagen structures and a superficial silicon layer that are positioned within the defect provide to promote tissue regeneration in skin wounds. DS often have unique physical characteristics due to differences in manufacturing techniques. The aim of this study is the clinical and histological comparison of Nevelia and Integra double layer DSs in patients with post‐traumatic injury wounds. Thirty patients with post‐traumatic wounds localised on the inferior limbs were randomised in 2 groups Nevelia or Integra, followed by autologous dermal epidermal graft (DEG). Clinical results were evaluated through the healing time; Manchester Scar Scale (MSS) and Visual Analog Scale (VAS) at 1, 2, and 3 weeks and after 1 and 3 years. Histological and immunohistochemical evaluation were performed at 0, 2, and 3 weeks. The difference in healing time between groups (P = .467, log‐rank test), pain and self‐estimation was not statistically significant after 35, 42, and 49 days and at 1‐year follow up. Histological data showed evident healing of wound after 2 weeks compared with preoperative with both DSs. At 3 weeks reepithelialisation and dermal regeneration were evident with both substitutes; however Nevelia showed early regenerative properties in terms of epidermal proliferation and dermal renewal compared with Integra. Nevelia showed also a more evident angiogenesis vs Integra evaluated as α‐SMA immunohistochemistry. Differences in the MSS score were statistically significant at 3 years follow up in favour of Nevelia group (P = .001). At long‐term follow up, Nevelia showed a better clinical outcome measured as MSS score vs Integra measured as MSS. Histological and immunohistochemistry data showed that Nevelia allows faster neoangiogenesis and tissue regeneration with neoformed tissue architecture closer to the physiology of the skin.
Collapse
Affiliation(s)
- Barbara De Angelis
- Department of Plastic and Reconstructive Surgery; University of Rome Tor Vergata; Rome Italy
- PhD Regenerative Surgery Department; University of Rome Tor Vergata; Rome Italy
| | - Fabrizio Orlandi
- Department of Plastic and Reconstructive Surgery; University of Rome Tor Vergata; Rome Italy
- PhD Regenerative Surgery Department; University of Rome Tor Vergata; Rome Italy
| | - Margarida Fernandes Lopes Morais D’Autilio
- Department of Plastic and Reconstructive Surgery; University of Rome Tor Vergata; Rome Italy
- PhD Regenerative Surgery Department; University of Rome Tor Vergata; Rome Italy
| | - Maria G Scioli
- Department of Anatomic Pathology; University of Rome Tor Vergata; Rome Italy
| | - Augusto Orlandi
- Department of Anatomic Pathology; University of Rome Tor Vergata; Rome Italy
| | - Valerio Cervelli
- Department of Plastic and Reconstructive Surgery; University of Rome Tor Vergata; Rome Italy
| | - Pietro Gentile
- Department of Plastic and Reconstructive Surgery; University of Rome Tor Vergata; Rome Italy
- PhD Regenerative Surgery Department; University of Rome Tor Vergata; Rome Italy
| |
Collapse
|
32
|
Rousselle P, Montmasson M, Garnier C. Extracellular matrix contribution to skin wound re-epithelialization. Matrix Biol 2018; 75-76:12-26. [PMID: 29330022 DOI: 10.1016/j.matbio.2018.01.002] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/04/2017] [Accepted: 01/01/2018] [Indexed: 12/11/2022]
Abstract
The ability of skin to act as a barrier is primarily determined by cells that maintain the continuity and integrity of skin and restore it after injury. Cutaneous wound healing in adult mammals is a complex multi-step process that involves overlapping stages of blood clot formation, inflammation, re-epithelialization, granulation tissue formation, neovascularization, and remodeling. Under favorable conditions, epidermal regeneration begins within hours after injury and takes several days until the epithelial surface is intact due to reorganization of the basement membrane. Regeneration relies on numerous signaling cues and on multiple cellular processes that take place both within the epidermis and in other participating tissues. A variety of modulators are involved, including growth factors, cytokines, matrix metalloproteinases, cellular receptors, and extracellular matrix components. Here we focus on the involvement of the extracellular matrix proteins that impact epidermal regeneration during wound healing.
Collapse
Affiliation(s)
- Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS - Université Lyon 1, Institut de Biologie et Chimie des Protéines, SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, F-69367, France.
| | - Marine Montmasson
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS - Université Lyon 1, Institut de Biologie et Chimie des Protéines, SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, F-69367, France
| | - Cécile Garnier
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS - Université Lyon 1, Institut de Biologie et Chimie des Protéines, SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, F-69367, France
| |
Collapse
|
33
|
Chu GY, Chen YF, Chen HY, Chan MH, Gau CS, Weng SM. Stem cell therapy on skin: Mechanisms, recent advances and drug reviewing issues. J Food Drug Anal 2018; 26:14-20. [PMID: 29389549 PMCID: PMC9332639 DOI: 10.1016/j.jfda.2017.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/28/2017] [Accepted: 10/14/2017] [Indexed: 11/18/2022] Open
Abstract
Stem cell products and its clinical applications have been widely discussed in recent years, particularly when the Japanese “induced pluripotent stem cells” founder Dr. Yamanaka was awarded as Nobel Prize laureate in 2013. For decades, major progresses have been achieved in the stem cell biology field, and more and more evidence showed that skin stem cells are involved in the process of skin repair. Stem/progenitor cells of the epidermis are recognized to play the most essential role in the tissue regeneration of skin. In this review, we first illustrated basic stem cell characteristics and various stem cell subtypes resided in the skin. Second, we provided several literatures to elucidate how stem/progenitor cells collaborate in the process of skin repair with the evidence from animal model studies and in vitro experiments. Third, we also introduced several examples of skin cell products on the pharmaceutic market and the ongoing clinical trials aiming for unmet medical difficulties of skin. Last but not least, we summarized general reviewing concerns and some disputatious issues on dermatological cell products. With this concise review, we hope to provide further beneficial suggestions for the development of more effective and safer dermatological stem/progenitor cell products in the future.
Collapse
Affiliation(s)
- Gong-Yau Chu
- Center for Drug Evaluation, Taipei 11557,
Taiwan
- Department of Dermatology, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 11101,
Taiwan
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei 11221,
Taiwan
- Department of Dermatology, Kang-Ning General Hospital, Taipei 11490,
Taiwan
| | - Yu-Fu Chen
- Department of Speech Language Pathology and Audiology, National Taipei University of Nursing and Health Sciences, Taipei 11219,
Taiwan
| | | | | | | | - Shih-Ming Weng
- Center for Drug Evaluation, Taipei 11557,
Taiwan
- Department of Speech Language Pathology and Audiology, National Taipei University of Nursing and Health Sciences, Taipei 11219,
Taiwan
- Corresponding author. 3F No. 465, Sec. 6, Zhongxiao E. Rd., Taipei 11557, Taiwan. E-mail address: (S.-M. Weng)
| |
Collapse
|
34
|
Tarzemany R, Jiang G, Jiang JX, Larjava H, Häkkinen L. Connexin 43 Hemichannels Regulate the Expression of Wound Healing-Associated Genes in Human Gingival Fibroblasts. Sci Rep 2017; 7:14157. [PMID: 29074845 PMCID: PMC5658368 DOI: 10.1038/s41598-017-12672-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/18/2017] [Indexed: 02/01/2023] Open
Abstract
Connexin 43 (Cx43) is the most ubiquitous connexin in various cells, and presents as hemichannels (HCs) and gap junctions (GJs) on the cell membrane. We have recently shown that Cx43 abundance was strongly reduced in fibroblasts of human gingival wounds, and blocking Cx43 function in cultured human gingival fibroblasts (GFBLs) strongly regulated the expression of wound healing-related genes. However, it is not known whether these responses involved Cx43 HCs or GJs. Here we show that Cx43 assembled into distinct GJ and HC plaques in GFBLs both in vivo and in vitro. Specific blockage of Cx43 HC function by TAT-Gap19, a Cx43 mimetic peptide, significantly upregulated the expression of several MMPs, TGF-β signaling molecules, Tenascin-C, and VEGF-A, while pro-fibrotic molecules, including several extracellular matrix proteins and myofibroblast and cell contractility-related molecules, were significantly downregulated. These changes were linked with TAT-Gap19-induced suppression of ATP signaling and activation of the ERK1/2 signaling pathway. Collectively, our data suggest that reduced Cx43 HC function could promote fast and scarless gingival wound healing. Thus, selective suppression of Cx43 HCs may provide a novel target to modulate wound healing.
Collapse
Affiliation(s)
- Rana Tarzemany
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Guoqiao Jiang
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Jean X Jiang
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas, 78229-3900, USA
| | - Hannu Larjava
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Lari Häkkinen
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
35
|
Sharma V, Kohli N, Moulding D, Afolabi H, Hook L, Mason C, García-Gareta E. Design of a Novel Two-Component Hybrid Dermal Scaffold for the Treatment of Pressure Sores. Macromol Biosci 2017; 17. [PMID: 28895290 DOI: 10.1002/mabi.201700185] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/31/2017] [Indexed: 12/16/2022]
Abstract
The aim of this study is to design a novel two-component hybrid scaffold using the fibrin/alginate porous hydrogel Smart Matrix combined to a backing layer of plasma polymerized polydimethylsiloxane (Sil) membrane to make the fibrin-based dermal scaffold more robust for the treatment of the clinically challenging pressure sores. A design criteria are established, according to which the Sil membranes are punched to avoid collection of fluid underneath. Manual peel test shows that native silicone does not attach to the fibrin/alginate component while the plasma polymerized silicone membranes are firmly bound to fibrin/alginate. Structural characterization shows that the fibrin/alginate matrix is intact after the addition of the Sil membrane. By adding a Sil membrane to the original fibrin/alginate scaffold, the resulting two-component scaffolds have a significantly higher shear or storage modulus G'. In vitro cell studies show that dermal fibroblasts remain viable, proliferate, and infiltrate the two-component hybrid scaffolds during the culture period. These results show that the design of a novel two-component hybrid dermal scaffold is successful according to the proposed design criteria. To the best of the authors' knowledge, this is the first study that reports the combination of a fibrin-based scaffold with a plasma-polymerized silicone membrane.
Collapse
Affiliation(s)
- Vaibhav Sharma
- Regenerative Biomaterials Group, RAFT Institute of Plastic Surgery, Mount Vernon Hospital, Northwood, HA6 2RN, UK.,Department of Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
| | - Nupur Kohli
- Regenerative Biomaterials Group, RAFT Institute of Plastic Surgery, Mount Vernon Hospital, Northwood, HA6 2RN, UK
| | - Dale Moulding
- Institute of Child Health, University College London, UCL Great Ormond Street, 30 Guilford Street, London, WC1N 1EH, UK
| | - Halimat Afolabi
- Regenerative Biomaterials Group, RAFT Institute of Plastic Surgery, Mount Vernon Hospital, Northwood, HA6 2RN, UK
| | - Lilian Hook
- Regenerative Biomaterials Group, RAFT Institute of Plastic Surgery, Mount Vernon Hospital, Northwood, HA6 2RN, UK
| | - Chris Mason
- Department of Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
| | - Elena García-Gareta
- Regenerative Biomaterials Group, RAFT Institute of Plastic Surgery, Mount Vernon Hospital, Northwood, HA6 2RN, UK
| |
Collapse
|
36
|
Pereira RF, Sousa A, Barrias CC, Bayat A, Granja PL, Bártolo PJ. Advances in bioprinted cell-laden hydrogels for skin tissue engineering. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s40898-017-0003-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Tang S, Tan Q, Zhou Y, Lü Q. [Research progress of adipose-derived stem cells in skin wound healing]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2017; 31:745-750. [PMID: 29798659 DOI: 10.7507/1002-1892.201701003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective To review the research progress of adipose-derived stem cells (ADSCs) in skin wound healing. Methods The recent experiments and clinical studies on the role of ADSCs in skin wound healing were extensively retrieved and analyzed. Additionally, possible mechanisms and novel application strategies were proposed. Results As confirmed by in vitro and in vivo experiments and clinical studies, ADSCs promote skin wound healing mainly by two mechanisms: differentiation to target cells that participate in skin wound healing and cytokines paracrine to promote proliferation and migration of various cell lines that are mandatory to promote skin wound healing. Moreover, scaffold materials and cell sheet technology may further add to the potency of ADSCs in promoting skin wound healing. Conclusion Remarkable progress has been made in the application of ADSCs in skin wound healing. Further studies are needed to explore the application methods of ADSCs.
Collapse
Affiliation(s)
- Shenli Tang
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China;Division of Stem Cell and Tissue Engineering, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Qiuwen Tan
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China;Division of Stem Cell and Tissue Engineering, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Yuting Zhou
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China;Division of Stem Cell and Tissue Engineering, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Qing Lü
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu Sichuan, 610041,
| |
Collapse
|
38
|
Miguel SP, Ribeiro MP, Coutinho P, Correia IJ. Electrospun Polycaprolactone/Aloe Vera_Chitosan Nanofibrous Asymmetric Membranes Aimed for Wound Healing Applications. Polymers (Basel) 2017; 9:E183. [PMID: 30970863 PMCID: PMC6432098 DOI: 10.3390/polym9050183] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/06/2017] [Accepted: 05/19/2017] [Indexed: 12/30/2022] Open
Abstract
Today, none of the wound dressings available on the market is fully capable of reproducing all the features of native skin. Herein, an asymmetric electrospun membrane was produced to mimic both layers of skin. It comprises a top dense layer (manufactured with polycaprolactone) that was designed to provide mechanical support to the wound and a bottom porous layer (composed of chitosan and Aloe Vera) aimed to improve the bactericidal activity of the membrane and ultimately the healing process. The results obtained revealed that the produced asymmetric membranes displayed a porosity, wettability, as well as mechanical properties similar to those presented by the native skin. Fibroblast cells were able to adhere, spread, and proliferate on the surface of the membranes and the intrinsic structure of the two layers of the membrane is capable of avoiding the invasion of microorganisms while conferring bioactive properties. Such data reveals the potential of these asymmetric membranes, in the near future, to be applied as wound dressings.
Collapse
Affiliation(s)
- Sónia P Miguel
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - Maximiano P Ribeiro
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
- UDI-IPG-Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal.
| | - Paula Coutinho
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
- UDI-IPG-Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal.
| | - Ilídio J Correia
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
39
|
Ruf MT, Andreoli A, Vujic G, Itin P, Pluschke G, Schmid P. Exudate collection using wound sponges-An easy, non-invasive and reliable method to explore protease activities in ulcers. Wound Repair Regen 2017; 25:320-326. [PMID: 28370804 DOI: 10.1111/wrr.12517] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 01/19/2017] [Accepted: 02/01/2017] [Indexed: 12/22/2022]
Abstract
Proteases are important for wound healing, but in excessive amounts or left uncontrolled, they may cause healing impairment or other severe wound complications. Point-of-care testing for protease activities in wounds may be useful for monitoring the effectiveness of treatment, and for early identification of wounds that potentially fail to heal. Here we describe an easy, noninvasive method to collect wound fluid for evaluating the protease milieu of wounds. Wound fluids were collected using sterile sponges applied between wound surface and normal wound dressing. Wound fluid could be easily squeezed or centrifuged out of the sponges and was tested for gelatinase (MMP-2 and MMP-9) activities by gel zymography. In addition, we measured polymorphonuclear granulocyte elastase levels by ELISA. Both gelatinases were remarkably stable in sponge derived fluids, as no significant loss was observed even when samples were stored for 3 days at room temperature. Protease levels were highly diverse amongst patients and, in some cases, showed substantial variations in the course of the treatment. The here described wound sponge approach represents a patient-friendly and reliable method to collect wound fluid for evaluating wound healing relevant biomarkers, such as matrix metalloproteinases.
Collapse
Affiliation(s)
- Marie-Thérèse Ruf
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Arianna Andreoli
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Gabriel Vujic
- Department of Dermatology, University Hospital Basel, Basel, Switzerland
| | - Peter Itin
- Department of Dermatology, University Hospital Basel, Basel, Switzerland
| | - Gerd Pluschke
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Peter Schmid
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
40
|
Castellanos G, Bernabé-García Á, Moraleda JM, Nicolás FJ. Amniotic membrane application for the healing of chronic wounds and ulcers. Placenta 2017; 59:146-153. [PMID: 28413063 DOI: 10.1016/j.placenta.2017.04.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 12/12/2022]
Abstract
Wound healing usually follows a predictable sequence and prognosis of events. Its evolutionary process is the result of a complicated interaction between patient-related factors, the wound, the treatment used and the skills and knowledge of the professionals who treat them. Only through a meticulous initial assessment of the wound is it possible to identify the factors that contribute to its complexity. The challenge for professionals will be to implement efficient therapies at the right time and in the most cost-efficient way in order to reduce associated problems, treat the symptoms and expectations of the patients and achieve adequate wound healing whenever possible. This is particularly evident in big chronic wounds with considerable tissue loss, which become senescent in the process of inflammation or proliferation losing the ability to epithelialize. Generally, chronic wounds do not respond to current treatments, therefore they need special interventions. AM is a tissue of particular interest as a biological dressing and it has well-documented reepithelialization effects which are in part related to its capacity to synthesize and release biological active factors. Our studies have demonstrated that amniotic membrane (AM) is able to induce epithelialization in chronic wounds that were unable to epithelialize. AM induces several signaling pathways that are involved in cell migration and/or proliferation. Additionally, AM is able to selectively antagonize the anti-proliferative effect of transforming growth factor-ß (TGF-β) by modifying the genetic program that TGF-β induces on keratinocytes. The combined effect of AM on keratinocytes, promoting cell proliferation/migration and antagonizing the effect of TGF-β is the perfect combination, allowing chronic wounds to move out of their non-healing state and progress into epithelialization.
Collapse
Affiliation(s)
- Gregorio Castellanos
- Surgery Service, Virgen de La Arrixaca University Clinical Hospital, El Palmar, Murcia, Spain
| | - Ángel Bernabé-García
- Molecular Oncology and TGF-ß, Research Unit, Virgen de La Arrixaca University Hospital, El Palmar, Murcia, Spain
| | - José M Moraleda
- Cell Therapy Unit, Virgen de La Arrixaca University Clinical Hospital, El Palmar, Murcia, Spain
| | - Francisco J Nicolás
- Molecular Oncology and TGF-ß, Research Unit, Virgen de La Arrixaca University Hospital, El Palmar, Murcia, Spain.
| |
Collapse
|
41
|
Wang C, Zhu F, Cui Y, Ren H, Xie Y, Li A, Ji L, Qu X, Qiu D, Yang Z. An easy-to-use wound dressing gelatin-bioactive nanoparticle gel and its preliminary in vivo study. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:10. [PMID: 27915402 DOI: 10.1007/s10856-016-5823-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 11/28/2016] [Indexed: 06/06/2023]
Abstract
Beyond promoting hard tissue repairing, bioactive glasses (BGs) have also been proved to be beneficial for wound healing. Nano-scale BGs prepared by sol-gel method were found to have a better performance as they have a larger specific surface area. In this work, bioactive nanoparticles (nBPs) with mean diameter of 12 nm (BP-12) instead of conventional BGs were mixed with gelatin to form an easy-to-use hydrogel as a dressing for skin wound. It was found that the composite of BP-12 and gelatin could form a hydrogel (BP-12/Gel) under 25 °C, which showed pronounced thixotropy at a practically accessible shear rate, therefore become easy to be used for wound cover. In vitro, the composite hydrogel of BP-12 and gelatin had good biocompatibility with the fibroblast cells. In vivo, rapid cutaneous-tissue regeneration and tissue-structure formation within 7 days was observed in the wound-healing experiment performed in rats. This hydrogel is thus a promising easy-to-use wound dressing material.
Collapse
Affiliation(s)
- Chen Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Feiyan Zhu
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yang Cui
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Huihui Ren
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yue Xie
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ailing Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lijun Ji
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Xiaozhong Qu
- University of Chinese Academy of Sciences, Beijing, 100190, China.
| | - Dong Qiu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100190, China.
| | - Zhenzhong Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
42
|
Figueira DR, Miguel SP, de Sá KD, Correia IJ. Production and characterization of polycaprolactone- hyaluronic acid/chitosan- zein electrospun bilayer nanofibrous membrane for tissue regeneration. Int J Biol Macromol 2016; 93:1100-1110. [DOI: 10.1016/j.ijbiomac.2016.09.080] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/08/2016] [Accepted: 09/20/2016] [Indexed: 12/25/2022]
|
43
|
Kimmel H, Gittleman H. Retrospective observational analysis of the use of an architecturally unique dermal regeneration template (Derma Pure®) for the treatment of hard-to-heal wounds. Int Wound J 2016; 14:666-672. [PMID: 27619480 PMCID: PMC7950120 DOI: 10.1111/iwj.12667] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 01/22/2023] Open
Abstract
The purpose of this analysis was to evaluate the use of DermaPure, a decellularised human skin allograft, in the treatment of a variety of challenging wounds. This retrospective observational analysis reviewed a total of 37 patients from 29 different wound clinics across the USA. Each patient received one application of DermaPure which was followed until complete closure. A statistical analysis was performed with the end point being complete healing. All wounds on average, had a duration of 56 weeks and healed in an average time of 10·58 weeks. Individual wound categories included diabetic foot ulcers, which healed in 8·21 weeks; venous leg ulcers, which healed in 11·29 weeks; and surgical/traumatic wounds, which healed in 11·8 weeks.
Collapse
Affiliation(s)
- Howard Kimmel
- Department of Surgery, Buckeye Foot Care, Brook Park, OH, USA
| | | |
Collapse
|
44
|
Valerio IL, Sabino JM, Dearth CL. Plastic Surgery Challenges in War Wounded II: Regenerative Medicine. Adv Wound Care (New Rochelle) 2016; 5:412-419. [PMID: 27679752 DOI: 10.1089/wound.2015.0655] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/03/2015] [Indexed: 02/02/2023] Open
Abstract
Background: A large volume of service members have sustained complex injuries during Operations Iraqi Freedom (OIF) and Enduring Freedom (OEF). These injuries are complicated by contamination with particulate and foreign materials, have high rates of bacterial and/or fungal infections, are often composite-type defects with massive soft tissue wounds, and usually have multisystem involvement. While traditional treatment modalities remain a mainstay for optimal wound care, traditional reconstruction approaches alone may be inadequate to fully address the scope and magnitude of such massive complex wounds. As a result of these difficult clinical problems, the use of regenerative medicine therapies, such as autologous adipose tissue grafting, stem cell therapies, nerve allografts, and dermal regenerate templates/extracellular matrix scaffolds, is increased as adjuncts to traditional reconstructive measures. Basic and Clinical Science Advances: The beneficial applications of regenerative medicine therapies have been well characterized in both in vitro studies and in vivo animal studies. The use of these regenerative medicine techniques in the treatment of combat casualty injuries has been increasing throughout the recent war conflicts. Clinical Care Relevance: Military medicine has shown positive results when utilizing certain regenerative medicine modalities in treating complex war wounds. As a result, multi-institution clinical trials are underway to further evaluate these observations and reconstruction measures. Conclusion: Successful combat casualty wound care often requires a combination of traditional aspects of the reconstructive ladder/elevator with adoption of various regenerative medicine therapies. Due to the recent OIF/OEF conflicts, a high volume of combat casualties have benefited from adoption of regenerative medicine therapies and increased access to innovative clinical trials. Furthermore, many of these patients have had long-term follow-up to report on clinical outcomes that substantiate current treatment paradigms and concepts within regenerative medicine, reconstructive, and rehabilitation care. These results are applicable to not only combat casualty care but also to nonmilitary patients.
Collapse
Affiliation(s)
- Ian L. Valerio
- Division of Burn, Wound, and Trauma, Department of Plastic and Reconstructive Surgery, The Ohio State University, Columbus, Ohio
- Department of Plastic and Reconstructive Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Jennifer M. Sabino
- Department of Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Christopher L. Dearth
- DoD–VA Extremity Trauma and Amputation Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland
| |
Collapse
|
45
|
Ashrafi M, Sebastian A, Shih B, Greaves N, Alonso-Rasgado T, Baguneid M, Bayat A. Whole genome microarray data of chronic wound debridement prior to application of dermal skin substitutes. Wound Repair Regen 2016; 24:870-875. [DOI: 10.1111/wrr.12460] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/27/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Mohammed Ashrafi
- Plastic and Reconstructive Surgery Research, Centre for Dermatological Research, Institute of Inflammation and Repair, University of Manchester; Manchester United Kingdom
| | - Anil Sebastian
- Plastic and Reconstructive Surgery Research, Centre for Dermatological Research, Institute of Inflammation and Repair, University of Manchester; Manchester United Kingdom
| | - Barbara Shih
- Plastic and Reconstructive Surgery Research, Centre for Dermatological Research, Institute of Inflammation and Repair, University of Manchester; Manchester United Kingdom
| | - Nicholas Greaves
- Plastic and Reconstructive Surgery Research, Centre for Dermatological Research, Institute of Inflammation and Repair, University of Manchester; Manchester United Kingdom
| | - Teresa Alonso-Rasgado
- Bioengineering Group, School of Materials; University of Manchester; Manchester United Kingdom
| | - Mohamed Baguneid
- Wythenshawe Hospital; University Hospital South Manchester NHS Foundation Trust; Manchester United Kingdom
| | - Ardeshir Bayat
- Plastic and Reconstructive Surgery Research, Centre for Dermatological Research, Institute of Inflammation and Repair, University of Manchester; Manchester United Kingdom
| |
Collapse
|
46
|
Iacovides D, Rizki G, Lapathitis G, Strati K. Direct conversion of mouse embryonic fibroblasts into functional keratinocytes through transient expression of pluripotency-related genes. Stem Cell Res Ther 2016; 7:98. [PMID: 27473056 PMCID: PMC4966867 DOI: 10.1186/s13287-016-0357-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/12/2016] [Accepted: 06/29/2016] [Indexed: 01/14/2023] Open
Abstract
The insufficient ability of specialized cells such as neurons, cardiac myocytes, and epidermal cells to regenerate after tissue damage poses a great challenge to treat devastating injuries and ailments. Recent studies demonstrated that a diverse array of cell types can be directly derived from embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), or somatic cells by combinations of specific factors. The use of iPSCs and direct somatic cell fate conversion, or transdifferentiation, holds great promise for regenerative medicine as these techniques may circumvent obstacles related to immunological rejection and ethical considerations. However, producing iPSC-derived keratinocytes requires a lengthy two-step process of initially generating iPSCs and subsequently differentiating into skin cells, thereby elevating the risk of cellular damage accumulation and tumor formation. In this study, we describe the reprogramming of mouse embryonic fibroblasts into functional keratinocytes via the transient expression of pluripotency factors coupled with directed differentiation. The isolation of an iPSC intermediate is dispensable when using this method. Cells derived with this approach, termed induced keratinocytes (iKCs), morphologically resemble primary keratinocytes. Furthermore they express keratinocyte-specific markers, downregulate mesenchymal markers as well as the pluripotency factors Oct4, Sox2, and Klf4, and they show important functional characteristics of primary keratinocytes. iKCs can be further differentiated by high calcium administration in vitro and are capable of regenerating a fully stratified epidermis in vivo. Efficient conversion of somatic cells into keratinocytes could have important implications for studying genetic skin diseases and designing regenerative therapies to ameliorate devastating skin conditions.
Collapse
Affiliation(s)
- Demetris Iacovides
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Gizem Rizki
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus.,Current address: Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Georgios Lapathitis
- Transgenic Mouse Facility, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Katerina Strati
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus.
| |
Collapse
|
47
|
In situ eNOS/NO up-regulation-a simple and effective therapeutic strategy for diabetic skin ulcer. Sci Rep 2016; 6:30326. [PMID: 27453476 PMCID: PMC4958962 DOI: 10.1038/srep30326] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/04/2016] [Indexed: 01/04/2023] Open
Abstract
Decreased nitric oxide (NO) synthesis and increased NO consumption in diabetes induces the inadequate blood flow to tissues that is primarily responsible for the pathogenesis and refractoriness of diabetic skin ulcers. The present study proposed a simple and effective therapeutic strategy for diabetic skin ulcers—in situ up-regulation of endothelial nitric oxide synthase (eNOS) expression and NO synthesis by statin-loaded tissue engineering scaffold (TES). In vitro experiments on human umbilical vein endothelial cells indicated that the statin-loaded TES relieved the high-glucose induced decrease in cell viability and promoted NO synthesis under high-glucose conditions. In a rat model of diabetes, the statin-loaded TES promoted eNOS expression and NO synthesis in/around the regenerated tissues. Subsequently, accelerated vascularization and elevated blood supply were observed, followed by rapid wound healing. These findings suggest that the in situ up-regulation of eNOS/NO by a statin-loaded TES may be a useful therapeutic method for intractable diabetic skin wounds.
Collapse
|
48
|
Generation of Two Biological Wound Dressings as a Potential Delivery System of Human Adipose-Derived Mesenchymal Stem Cells. ASAIO J 2016; 61:718-25. [PMID: 26418201 PMCID: PMC4632116 DOI: 10.1097/mat.0000000000000277] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human adipose-derived mesenchymal stem cells (hADMSCs) are believed to be potential key factors for starting the regenerative process after tissue injury. However, an efficient method of delivering these regenerative cells to an external wound site is still lacking. Human amnion and pig skin have long been used as skin wound dressings for the treatment of burns and other skin lesions. Herein, we present the generation of two constructs using these two biomaterials as effective scaffolds for the culture of hADMSCs. It was found that hADMSCs seeded onto radiosterilized human amnion and pig skin are viable and proliferate. These cells are able to migrate over these scaffolds as demonstrated by using time-lapse microscopy. In addition, the scaffolds induce hADMSCs to secrete interleukin-10, an important negative regulator of inflammation, and interleukin-1β, a proinflammatory protein. The interplay between these two proteins has been proven to be vital for a balanced restoration of all necessary tissues. Thus, radiosterilized human amnion and pig skin are likely suitable scaffolds for delivery of hADMSCs transplants that could promote tissue regeneration in skin injuries like patients with burn injuries.
Collapse
|
49
|
Effects of supercritical carbon dioxide processing on the properties of chitosan–alginate membranes. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2015.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
50
|
Nicholas MN, Jeschke MG, Amini-Nik S. Cellularized Bilayer Pullulan-Gelatin Hydrogel for Skin Regeneration. Tissue Eng Part A 2016; 22:754-64. [PMID: 27072720 PMCID: PMC4876533 DOI: 10.1089/ten.tea.2015.0536] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/12/2016] [Indexed: 12/24/2022] Open
Abstract
Skin substitutes significantly reduce the morbidity and mortality of patients with burn injuries and chronic wounds. However, current skin substitutes have disadvantages related to high costs and inadequate skin regeneration due to highly inflammatory wounds. Thus, new skin substitutes are needed. By combining two polymers, pullulan, an inexpensive polysaccharide with antioxidant properties, and gelatin, a derivative of collagen with high water absorbency, we created a novel inexpensive hydrogel-named PG-1 for "pullulan-gelatin first generation hydrogel"-suitable for skin substitutes. After incorporating human fibroblasts and keratinocytes onto PG-1 using centrifugation over 5 days, we created a cellularized bilayer skin substitute. Cellularized PG-1 was compared to acellular PG-1 and no hydrogel (control) in vivo in a mouse excisional skin biopsy model using newly developed dome inserts to house the skin substitutes and prevent mouse skin contraction during wound healing. PG-1 had an average pore size of 61.69 μm with an ideal elastic modulus, swelling behavior, and biodegradability for use as a hydrogel for skin substitutes. Excellent skin cell viability, proliferation, differentiation, and morphology were visualized through live/dead assays, 5-bromo-2'-deoxyuridine proliferation assays, and confocal microscopy. Trichrome and immunohistochemical staining of excisional wounds treated with the cellularized skin substitute revealed thicker newly formed skin with a higher proportion of actively proliferating cells and incorporation of human cells compared to acellular PG-1 or control. Excisional wounds treated with acellular or cellularized hydrogels showed significantly less macrophage infiltration and increased angiogenesis 14 days post skin biopsy compared to control. These results show that PG-1 has ideal mechanical characteristics and allows ideal cellular characteristics. In vivo evidence suggests that cellularized PG-1 promotes skin regeneration and may help promote wound healing in highly inflammatory wounds, such as burns and chronic wounds.
Collapse
Affiliation(s)
- Mathew N Nicholas
- Department of Surgery, Sunnybrook Research Institute, Ross Tilley Burn Centre, University of Toronto , Toronto, Ontario, Canada
| | - Marc G Jeschke
- Department of Surgery, Sunnybrook Research Institute, Ross Tilley Burn Centre, University of Toronto , Toronto, Ontario, Canada
| | - Saeid Amini-Nik
- Department of Surgery, Sunnybrook Research Institute, Ross Tilley Burn Centre, University of Toronto , Toronto, Ontario, Canada
| |
Collapse
|