1
|
Sherman KM, Silveira CJ, Yan M, Yu L, Leon A, Klages K, White LG, Smith HM, Wolff SM, Falck A, Muneoka K, Brunauer R, Gaddy D, Suva LJ, Dawson LA. Male Down syndrome Ts65Dn mice have impaired bone regeneration. Bone 2024; 192:117374. [PMID: 39675408 DOI: 10.1016/j.bone.2024.117374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Trisomy of human chromosome 21 (Ts21) individuals present with a spectrum of low bone mineral density (BMD) that predisposes this vulnerable group to skeletal injuries. To determine the bone regenerative capacity of Down syndrome (DS) mice, male and female Dp16 and Ts65Dn DS mice underwent amputation of the digit tip (the terminal phalanx (P3)). This is a well-established mammalian model of bone regeneration that restores the amputated skeletal segment and all associated soft tissues. P3 amputation was performed in 8-week-old male and female DS mice and WT controls and followed by in vivo μCT, histology and immunofluorescence. Following P3 amputation, the bone degradation phase was attenuated in both Dp16 and Ts65Dn males. In Dp16 males, P3 regeneration was delayed but complete by 63 days post amputation (DPA); however, male Ts65Dn exhibited attenuated regeneration by 63 DPA. In both Dp16 and Ts65Dn female DS mice, P3 regenerates were indistinguishable from WT by 42 DPA. In Ts65Dn males, osteoclasts and eroded bone surface were significantly reduced, and osteoblast number significantly decreased in the regenerating digit. In Ts65Dn females, no significant differences were observed in any osteoclast or osteoblast parameter. Like Ts21 individuals and DS mice with sex differences in bone mass, these data expand the characteristic sexually dimorphism to include bone resorption and regeneration in response to skeletal injury in Ts65Dn mice. These observations suggest that sex differences contribute to the poor bone healing of DS and compound the increased risk of bone injury in the Ts21 population.
Collapse
Affiliation(s)
- Kirby M Sherman
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Catrina J Silveira
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Mingquan Yan
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Ling Yu
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Abigail Leon
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Kasey Klages
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Lauren G White
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Hannah M Smith
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Sarah M Wolff
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Alyssa Falck
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Ken Muneoka
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Regina Brunauer
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America; LBG Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria.
| | - Dana Gaddy
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Larry J Suva
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Lindsay A Dawson
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| |
Collapse
|
2
|
Zhang S, Wang H, Meng Y, Li M, Li Y, Ye X, Duan S, Xiao S, Lu H, Zhong K. Ethyl butyrate inhibits caudal fin regeneration in adult zebrafish by disrupting extracellular matrix remodeling. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107111. [PMID: 39366190 DOI: 10.1016/j.aquatox.2024.107111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/14/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
Wound healing and tissue regeneration are influenced by a variety of factors. Adverse lifestyle habits, such as excessive alcohol consumption, delay wound healing and increase the risk of secondary infections. Ethyl butyrate is a common food additive widely used to enhance the aroma of alcoholic beverages. This additive is generally considered harmless to human health in both industrial and domestic settings. However, the ecotoxicity and its effects on wound healing have not been elucidated. In this study, we used zebrafish as the experimental animal, and the caudal fins were amputated to explore the effects of ethyl butyrate on wound healing and tissue regeneration. The effect of ethyl butyrate on blastema and bone regeneration and its impact on the transcriptional levels of regeneration-related genes and inflammation-related genes were evaluated. RNA-seq was conducted to determine the differentially expressed genes (DEGs) between the treatment and the control groups. KEGG and GO analysis was conducted to explore the functions of DEGs. Significantly enriched GO terms and KEGG pathways were identified to explore the molecular mechanism underlying the inhibition of zebrafish caudal fin regeneration by ethyl butyrate. The results demonstrated that ethyl butyrate significantly inhibited the regeneration of zebrafish caudal fins, including blastema and bone regeneration. Ethyl butyrate exposure significantly downregulated the expression of genes associated with bone and blastema regeneration and inflammation response. KEGG and GO functional analyses revealed that the DEGs were associated with significant enrichment of extracellular matrix-receptor interactions. Ethyl butyrate treatment downregulated the expression of most extracellular matrix-related genes. These findings indicate that ethyl butyrate potentially modulates pathways associated with the structure, adhesion, modification, and degradation of the extracellular matrix, thereby disrupting extracellular matrix remodeling, inhibiting wound inflammation, impairing blastema and bone regeneration and ultimately hindering caudal fin regeneration. In summary, the findings demonstrate that ethyl butyrate disrupts extracellular matrix remodeling and inhibits the regeneration of zebrafish caudal fins. These results provide valuable insights into the rational use of ethyl butyrate and further investigation of wound healing mechanisms.
Collapse
Affiliation(s)
- Sijie Zhang
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Shiyuan South Rd, Ganzhou, Jiangxi 341000, China
| | - Hao Wang
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Shiyuan South Rd, Ganzhou, Jiangxi 341000, China
| | - Yunlong Meng
- School of Medicine, Tongji University, Shanghai 200000, China
| | - Mijia Li
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Shiyuan South Rd, Ganzhou, Jiangxi 341000, China
| | - Yang Li
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Shiyuan South Rd, Ganzhou, Jiangxi 341000, China
| | - Xinhao Ye
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Shiyuan South Rd, Ganzhou, Jiangxi 341000, China
| | - Shiyi Duan
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Shiyuan South Rd, Ganzhou, Jiangxi 341000, China
| | - Shimei Xiao
- National Center of Quality Testing and Inspection for Tungsten and Rare Earth Products, Ganzhou 341000, China; Jiangxi Institute of Tungsten and Rare Earth, Ganzhou 341000, China
| | - Huiqiang Lu
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Shiyuan South Rd, Ganzhou, Jiangxi 341000, China
| | - Keyuan Zhong
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Shiyuan South Rd, Ganzhou, Jiangxi 341000, China.
| |
Collapse
|
3
|
Tan FH, Bronner ME. Regenerative loss in the animal kingdom as viewed from the mouse digit tip and heart. Dev Biol 2024; 507:44-63. [PMID: 38145727 PMCID: PMC10922877 DOI: 10.1016/j.ydbio.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
The myriad regenerative abilities across the animal kingdom have fascinated us for centuries. Recent advances in developmental, molecular, and cellular biology have allowed us to unearth a surprising diversity of mechanisms through which these processes occur. Developing an all-encompassing theory of animal regeneration has thus proved a complex endeavor. In this chapter, we frame the evolution and loss of animal regeneration within the broad developmental constraints that may physiologically inhibit regenerative ability across animal phylogeny. We then examine the mouse as a model of regeneration loss, specifically the experimental systems of the digit tip and heart. We discuss the digit tip and heart as a positionally-limited system of regeneration and a temporally-limited system of regeneration, respectively. We delve into the physiological processes involved in both forms of regeneration, and how each phase of the healing and regenerative process may be affected by various molecular signals, systemic changes, or microenvironmental cues. Lastly, we also discuss the various approaches and interventions used to induce or improve the regenerative response in both contexts, and the implications they have for our understanding regenerative ability more broadly.
Collapse
Affiliation(s)
- Fayth Hui Tan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
4
|
Jou V, Lehoczky JA. Toeing the line between regeneration and fibrosis. Front Cell Dev Biol 2023; 11:1217185. [PMID: 37325560 PMCID: PMC10267333 DOI: 10.3389/fcell.2023.1217185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023] Open
Abstract
Understanding the remarkable capacity of vertebrates to naturally regenerate injured body parts has great importance for potential translation into human therapeutic applications. As compared to other vertebrates, mammals have low regenerative capacity for composite tissues like the limb. However, some primates and rodents can regenerate the distal tips of their digits following amputation, indicating that at least very distal mammalian limb tissues are competent for innate regeneration. It follows that successful digit tip regenerative outcome is highly dependent on the location of the amputation; those proximal to the position of the nail organ do not regenerate and result in fibrosis. This distal regeneration versus proximal fibrosis duality of the mouse digit tip serves as a powerful model to investigate the driving factors in determining each process. In this review, we present the current understanding of distal digit tip regeneration in the context of cellular heterogeneity and the potential for different cell types to function as progenitor cells, in pro-regenerative signaling, or in moderating fibrosis. We then go on to discuss these themes in the context of what is known about proximal digit fibrosis, towards generating hypotheses for these distinct healing processes in the distal and proximal mouse digit.
Collapse
Affiliation(s)
- Vivian Jou
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, MA, United States
| | - Jessica A. Lehoczky
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, MA, United States
| |
Collapse
|
5
|
Castilla-Ibeas A, Zdral S, Galán L, Haro E, Allou L, Campa VM, Icardo JM, Mundlos S, Oberg KC, Ros MA. Failure of digit tip regeneration in the absence of Lmx1b suggests Lmx1b functions disparate from dorsoventral polarity. Cell Rep 2023; 42:111975. [PMID: 36641754 DOI: 10.1016/j.celrep.2022.111975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/07/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
Mammalian digit tip regeneration is linked to the presence of nail tissue, but a nail-explicit model is missing. Here, we report that nail-less double-ventral digits of ΔLARM1/2 mutants that lack limb-specific Lmx1b enhancers fail to regenerate. To separate the nail's effect from the lack of dorsoventral (DV) polarity, we also interrogate double-dorsal double-nail digits and show that they regenerate. Thus, DV polarity is not a prerequisite for regeneration, and the nail requirement is supported. Transcriptomic comparison between wild-type and non-regenerative ΔLARM1/2 mutant blastemas reveals differential upregulation of vascularization and connective tissue functional signatures in wild type versus upregulation of inflammation in the mutant. These results, together with the finding of Lmx1b expression in the postnatal dorsal dermis underneath the nail and uniformly in the regenerative blastema, open the possibility of additional Lmx1b roles in digit tip regeneration, in addition to the indirect effect of mediating the formation of the nail.
Collapse
Affiliation(s)
- Alejandro Castilla-Ibeas
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC; CSIC-SODERCAN-UC), Santander, Spain
| | - Sofía Zdral
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC; CSIC-SODERCAN-UC), Santander, Spain
| | - Laura Galán
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC; CSIC-SODERCAN-UC), Santander, Spain
| | - Endika Haro
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC; CSIC-SODERCAN-UC), Santander, Spain
| | - Lila Allou
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Víctor M Campa
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC; CSIC-SODERCAN-UC), Santander, Spain
| | - Jose M Icardo
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria, Santander, Spain
| | - Stefan Mundlos
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Kerby C Oberg
- Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Marian A Ros
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC; CSIC-SODERCAN-UC), Santander, Spain.
| |
Collapse
|
6
|
Ketcham PD, Imholt F, Yan M, Smith HM, Asrar S, Yu L, Dolan CP, Qureshi O, Lin YL, Xia I, Hall PC, Falck AR, Sherman KM, Gaddy D, Suva LJ, Muneoka K, Brunauer R, Dawson LA. Microcomputed tomography staging of bone histolysis in the regenerating mouse digit. Wound Repair Regen 2023; 31:17-27. [PMID: 36177656 DOI: 10.1111/wrr.13054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/10/2022] [Accepted: 09/14/2022] [Indexed: 01/25/2023]
Abstract
Humans and mice have the ability to regenerate the distal digit tip, the terminal phalanx (P3) in response to amputation. What distinguishes P3 regeneration from regenerative failure is formation of the blastema, a proliferative structure that undergoes morphogenesis to regenerate the amputated tissues. P3 regeneration is characterised by the phases of inflammation, tissue histolysis and expansive bone degradation with simultaneous blastema formation, wound closure and finally blastemal differentiation to restore the amputated structures. While each regenerating digit faithfully progresses through all phases of regeneration, phase progression has traditionally been delineated by time, that is, days postamputation (DPA), yet there is widespread variability in the timing of the individual phases. To diminish variability between digits during tissue histolysis and blastema formation, we have established an in-vivo method using microcomputed tomography (micro CT) scanning to identify five distinct stages of the early regeneration response based on anatomical changes of the digit stump. We report that categorising the initial phases of digit regeneration by stage rather than time greatly diminishes the variability between digits with respect to changes in bone volume and length. Also, stages correlate with the levels of cell proliferation, osteoclast recruitment and osteoprogenitor cell recruitment. Importantly, micro CT staging provides a means to estimate open versus closed digit wounds. We demonstrate two spatially distinct and stage specific bone repair/regeneration responses that occur during P3 regeneration. Collectively, these studies showcase the utility of micro CT imaging to infer the composition of radiolucent soft tissues during P3 blastema formation. Specifically, the staging system identifies the onset of cell proliferation, osteoclastogenesis, osteoprogenitor recruitment, the spatial initiation of de novo bone formation and epidermal closure.
Collapse
Affiliation(s)
- Paulina D Ketcham
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Felisha Imholt
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA.,Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| | - Mingquan Yan
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Hannah M Smith
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Shabistan Asrar
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Ling Yu
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Connor P Dolan
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA.,DoD-VA Extremity Trauma and Amputation Centre of Excellence, Bethesda, Maryland, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Centre, Bethesda, Maryland, USA
| | - Osama Qureshi
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Yu-Lieh Lin
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Ian Xia
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Patrick C Hall
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Alyssa R Falck
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Kirby M Sherman
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Dana Gaddy
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Larry J Suva
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Ken Muneoka
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Regina Brunauer
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Lindsay A Dawson
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
7
|
Epimorphic regeneration of the mouse digit tip is finite. Stem Cell Res Ther 2022; 13:62. [PMID: 35130972 PMCID: PMC8822779 DOI: 10.1186/s13287-022-02741-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/24/2022] [Indexed: 11/30/2022] Open
Abstract
Background Structural regeneration of amputated appendages by blastema-mediated, epimorphic regeneration is a process whose mechanisms are beginning to be employed for inducing regeneration. While epimorphic regeneration is classically studied in non-amniote vertebrates such as salamanders, mammals also possess a limited ability for epimorphic regeneration, best exemplified by the regeneration of the distal mouse digit tip. A fundamental, but still unresolved question is whether epimorphic regeneration and blastema formation is exhaustible, similar to the finite limits of stem-cell mediated tissue regeneration. Methods In this study, distal mouse digits were amputated, allowed to regenerate and then repeatedly amputated. To quantify the extent and patterning of the regenerated digit, the digit bone as the most prominent regenerating element in the mouse digit was followed by in vivo µCT. Results Analyses revealed that digit regeneration is indeed progressively attenuated, beginning after the second regeneration cycle, but that the pattern is faithfully restored until the end of the fourth regeneration cycle. Surprisingly, when unamputated digits in the vicinity of repeatedly amputated digits were themselves amputated, these new amputations also exhibited a similarly attenuated regeneration response, suggesting a systemic component to the amputation injury response. Conclusions In sum, these data suggest that epimorphic regeneration in mammals is finite and due to the exhaustion of the proliferation and differentiation capacity of the blastema cell source. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02741-2.
Collapse
|
8
|
Aztekin C. Tissues and Cell Types of Appendage Regeneration: A Detailed Look at the Wound Epidermis and Its Specialized Forms. Front Physiol 2021; 12:771040. [PMID: 34887777 PMCID: PMC8649801 DOI: 10.3389/fphys.2021.771040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Therapeutic implementation of human limb regeneration is a daring aim. Studying species that can regrow their lost appendages provides clues on how such a feat can be achieved in mammals. One of the unique features of regeneration-competent species lies in their ability to seal the amputation plane with a scar-free wound epithelium. Subsequently, this wound epithelium advances and becomes a specialized wound epidermis (WE) which is hypothesized to be the essential component of regenerative success. Recently, the WE and specialized WE terminologies have been used interchangeably. However, these tissues were historically separated, and contemporary limb regeneration studies have provided critical new information which allows us to distinguish them. Here, I will summarize tissue-level observations and recently identified cell types of WE and their specialized forms in different regeneration models.
Collapse
Affiliation(s)
- Can Aztekin
- Swiss Federal Institute of Technology Lausanne, EPFL, School of Life Sciences, Lausanne, Switzerland
| |
Collapse
|
9
|
Maan ZN, Rinkevich Y, Barrera J, Chen K, Henn D, Foster D, Bonham CA, Padmanabhan J, Sivaraj D, Duscher D, Hu M, Yan K, Januszyk M, Longaker MT, Weissman IL, Gurtner GC. Epidermal-Derived Hedgehog Signaling Drives Mesenchymal Proliferation during Digit Tip Regeneration. J Clin Med 2021; 10:jcm10184261. [PMID: 34575372 PMCID: PMC8467649 DOI: 10.3390/jcm10184261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 11/23/2022] Open
Abstract
Hand injuries often result in significant functional impairments and are rarely completely restored. The spontaneous regeneration of injured appendages, which occurs in salamanders and newts, for example, has been reported in human fingertips after distal amputation, but this type of regeneration is rare in mammals and is incompletely understood. Here, we study fingertip regeneration by amputating murine digit tips, either distally to initiate regeneration, or proximally, causing fibrosis. Using an unbiased microarray analysis, we found that digit tip regeneration is significantly associated with hair follicle differentiation, Wnt, and sonic hedgehog (SHH) signaling pathways. Viral over-expression and genetic knockouts showed the functional significance of these pathways during regeneration. Using transgenic reporter mice, we demonstrated that, while both canonical Wnt and HH signaling were limited to epidermal tissues, downstream hedgehog signaling (through Gli) occurred in mesenchymal tissues. These findings reveal a mechanism for epidermal/mesenchyme interactions, governed by canonical hedgehog signaling, during digit regeneration. Further research into these pathways could lead to improved therapeutic outcomes after hand injuries in humans.
Collapse
Affiliation(s)
- Zeshaan N Maan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yuval Rinkevich
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
- Helmholtz Zentrum München, Institute of Regenerative Biology & Medicine, 81377 Munich, Germany
| | - Janos Barrera
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kellen Chen
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dominic Henn
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Deshka Foster
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Clark Andrew Bonham
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jagannath Padmanabhan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dharshan Sivaraj
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dominik Duscher
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Plastic, Reconstructive, Hand and Burn Surgery, BG-Trauma Center, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Michael Hu
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kelley Yan
- Department of Medicine, Division of Digestive and Liver Diseases, Columbia University Medical Center, New York, NY 10032, USA
| | - Michael Januszyk
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael T Longaker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Geoffrey C Gurtner
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
10
|
Storer MA, Miller FD. A finger on the pulse of regeneration: insights into the cellular mechanisms of adult digit tip regeneration. Curr Opin Genet Dev 2021; 70:1-6. [PMID: 34044269 DOI: 10.1016/j.gde.2021.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/11/2021] [Accepted: 04/15/2021] [Indexed: 11/16/2022]
Abstract
In mammals, multi-tissue regeneration is largely restricted to the distal portion of the digit tip and involves the formation of a blastema, a transient, proliferating cell mass that reforms the diverse tissues of the digit. Historically little was known about the mammalian blastema but with recent advances in single cell transcriptomic approaches and genetic lineage tracing, a more precise understanding of this critical structure has begun to emerge. In this review we summarise the cellular mechanisms underlying adult mammalian digit tip regeneration. We posit that understanding how some mammals naturally regenerate complex tissues will lead to strategies for enhancing regenerative abilities in humans.
Collapse
Affiliation(s)
- Mekayla A Storer
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Freda D Miller
- Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4 Canada; Department of Medical Genetics, University of British Columbia, Vancouver, V6T 1Z4 Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, V6T 1Z4 Canada.
| |
Collapse
|
11
|
Brunauer R, Xia IG, Asrar SN, Dawson LA, Dolan CP, Muneoka K. Aging delays epimorphic regeneration in mice. J Gerontol A Biol Sci Med Sci 2021; 76:1726-1733. [PMID: 33970250 DOI: 10.1093/gerona/glab131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Indexed: 11/14/2022] Open
Abstract
Epimorphic regeneration is a multi-tissue regeneration process where amputation does not lead to scarring, but blastema formation and patterned morphogenesis for which cell plasticity and concerted cell-cell interactions are pivotal. Tissue regeneration declines with aging, yet if and how aging impairs epimorphic regeneration is unknown. Here we show for the first time that aging derails the spatiotemporal regulation of epimorphic regeneration in mammals, first, by exacerbating tissue histolysis and delaying wound closure, and second, by impairing blastema differentiation and skeletal regrowth. Surprisingly, aging did not limit stem cell availability in the blastema, but reduced osteoblast-dependent bone formation. Our data suggest that aging delays regeneration not by stem cell exhaustion, but functional defects of differentiated cells that may be driven by an aged wound environment and alterations in the spatiotemporal regulation of regeneration events. Our findings emphasize the importance of accurate timing of signaling events for regeneration, and highlight the need for carefully timed interventions in regenerative medicine.
Collapse
Affiliation(s)
- Regina Brunauer
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Ian G Xia
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Shabistan N Asrar
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Lindsay A Dawson
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Connor P Dolan
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD
| | - Ken Muneoka
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
12
|
The Potential of Nail Mini-Organ Stem Cells in Skin, Nail and Digit Tips Regeneration. Int J Mol Sci 2021; 22:ijms22062864. [PMID: 33799809 PMCID: PMC7998429 DOI: 10.3390/ijms22062864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 12/17/2022] Open
Abstract
Nails are highly keratinized skin appendages that exhibit continuous growth under physiological conditions and full regeneration upon removal. These mini-organs are maintained by two autonomous populations of skin stem cells. The fast-cycling, highly proliferative stem cells of the nail matrix (nail stem cells (NSCs)) predominantly replenish the nail plate. Furthermore, the slow-cycling population of the nail proximal fold (nail proximal fold stem cells (NPFSCs)) displays bifunctional properties by contributing to the peri-nail epidermis under the normal homeostasis and the nail structure upon injury. Here, we discuss nail mini-organ stem cells’ location and their role in skin and nail homeostasis and regeneration, emphasizing their importance to orchestrate the whole digit tip regeneration. Such endogenous regeneration capabilities are observed in rodents and primates. However, they are limited to the region adjacent to the nail’s proximal area, indicating the crucial role of nail mini-organ stem cells in digit restoration. Further, we explore the molecular characteristics of nail mini-organ stem cells and the critical role of the bone morphogenetic protein (BMP) and Wnt signaling pathways in homeostatic nail growth and digit restoration. Finally, we investigate the latest accomplishments in stimulating regenerative responses in regeneration-incompetent injuries. These pioneer results might open up new opportunities to overcome amputated mammalian digits and limbs’ regenerative failures in the future.
Collapse
|