1
|
George AJ. Ethics, virtues and xenotransplantation. Perfusion 2024; 39:334-343. [PMID: 36382884 PMCID: PMC10900854 DOI: 10.1177/02676591221140767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Early in 2022 the first pig to human cardiac xenotransplant was performed. The graft initially performed well, and rejection was well controlled. However, the graft failed, and the patient died 60 days after the procedure. The ethical issues relating to xenotransplantation include the risk/benefit to the individual, the risk of porcine-derived infectious agents crossing into humans, animal welfare and rights, issues of human and animal identity and concerns relating to fair allocation of organs and appropriate use of resources.These ethical issues are often addressed using emotional arguments, or through consequentialist or deontological lens. An alternative is to use approaches based on virtue ethics to understand the moral purpose (telos) of the research and the virtues (character traits) needed to be a good research clinician. In this review we will consider the virtues of justice, courage, temperance and practical wisdom, as well as the role of clinical curiosity, and their application to xenotransplantation. This provides an alternative approach for the clinical academic and others involved in the research to reflect on their practice.
Collapse
Affiliation(s)
- Andrew Jt George
- Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
2
|
Pan J, Ye F, Li H, Yu C, Mao J, Xiao Y, Chen H, Wu J, Li J, Fei L, Wu Y, Meng X, Guo G, Wang Y. Dissecting the immune discrepancies in mouse liver allograft tolerance and heart/kidney allograft rejection. Cell Prolif 2024; 57:e13555. [PMID: 37748771 PMCID: PMC10905343 DOI: 10.1111/cpr.13555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/23/2023] [Accepted: 09/15/2023] [Indexed: 09/27/2023] Open
Abstract
The liver is the most tolerogenic of transplanted organs. However, the mechanisms underlying liver transplant tolerance are not well understood. The comparison between liver transplantation tolerance and heart/kidney transplantation rejection will deepen our understanding of tolerance and rejection in solid organs. Here, we built a mouse model of liver, heart and kidney allograft and performed single-cell RNA sequencing of 66,393 cells to describe the cell composition and immune cell interactions at the early stage of tolerance or rejection. We also performed bulk RNA-seq of mouse liver allografts from Day 7 to Day 60 post-transplantation to map the dynamic transcriptional variation in spontaneous tolerance. The transcriptome of lymphocytes and myeloid cells were characterized and compared in three types of organ allografts. Cell-cell interaction networks reveal the coordinated function of Kupffer cells, macrophages and their associated metabolic processes, including insulin receptor signalling and oxidative phosphorylation in tolerance induction. Cd11b+ dendritic cells (DCs) in liver allografts were found to inhibit cytotoxic T cells by secreting anti-inflammatory cytokines such as Il10. In summary, we profiled single-cell transcriptome analysis of mouse solid organ allografts. We characterized the immune microenvironment of mouse organ allografts in the acute rejection state (heart, kidney) and tolerance state (liver).
Collapse
Affiliation(s)
- Jun Pan
- Department of Thyroid Surgery, the First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Fang Ye
- Liangzhu LaboratoryZhejiang UniversityHangzhouChina
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Hui Li
- Key Laboratory of Combined Multiorgan Transplantation, Ministry of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Chengxuan Yu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jiajia Mao
- Kidney Disease Center, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Yanyu Xiao
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Haide Chen
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Junqing Wu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jiaqi Li
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Lijiang Fei
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yijun Wu
- Department of Thyroid Surgery, the First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Xiaoming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of PharmacyAnhui Medical University, The Key Laboratory of Anti‐inflammatory of Immune Medicines, Ministry of EducationHefeiChina
| | - Guoji Guo
- Liangzhu LaboratoryZhejiang UniversityHangzhouChina
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative MedicineDr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative MedicineHangzhouZhejiangChina
| | - Yingying Wang
- Kidney Disease Center, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| |
Collapse
|
3
|
Blake MJ, Steer CJ. Chimeric Livers: Interspecies Blastocyst Complementation and Xenotransplantation for End-Stage Liver Disease. Hepat Med 2024; 16:11-29. [PMID: 38379783 PMCID: PMC10878318 DOI: 10.2147/hmer.s440697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/10/2024] [Indexed: 02/22/2024] Open
Abstract
Orthotopic liver transplantation (OLT) currently serves as the sole definitive treatment for thousands of patients suffering from end-stage liver disease; and the existing supply of donor livers for OLT is drastically outpaced by the increasing demand. To alleviate this significant gap in treatment, several experimental approaches have been devised with the aim of either offering interim support to patients waiting on the transplant list or bioengineering complete livers for OLT by infusing them with fresh hepatic cells. Recently, interspecies blastocyst complementation has emerged as a promising method for generating complete organs in utero over a short timeframe. When coupled with gene editing technology, it has brought about a potentially revolutionary transformation in regenerative medicine. Blastocyst complementation harbors notable potential for generating complete human livers in large animals, which could be used for xenotransplantation in humans, addressing the scarcity of livers for OLT. Nevertheless, substantial experimental and ethical challenges still need to be overcome to produce human livers in larger domestic animals like pigs. This review compiles the current understanding of interspecies blastocyst complementation and outlines future possibilities for liver xenotransplantation in humans.
Collapse
Affiliation(s)
- Madelyn J Blake
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Clifford J Steer
- Departments of Medicine, and Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
4
|
Terrault NA, Francoz C, Berenguer M, Charlton M, Heimbach J. Liver Transplantation 2023: Status Report, Current and Future Challenges. Clin Gastroenterol Hepatol 2023; 21:2150-2166. [PMID: 37084928 DOI: 10.1016/j.cgh.2023.04.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/23/2023]
Abstract
Liver transplantation offers live-saving therapy for patients with complications of cirrhosis and stage T2 hepatocellular carcinoma. The demand for organs far outstrips the supply, and innovations aimed at increasing the number of usable deceased donors as well as alternative donor sources are a major focus. The etiologies of cirrhosis are shifting over time, with more need for transplantation among patients with alcohol-associated liver disease and nonalcoholic/metabolic fatty liver disease and less for viral hepatitis, although hepatitis B remains an important indication for transplant in countries with high endemicity. The rise in transplantation for alcohol-associated liver disease and nonalcoholic/metabolic fatty liver disease has brought attention to how patients are selected for transplantation and the strategies needed to prevent recurrent disease. In this review, we present a status report on the most pressing topics in liver transplantation and future challenges.
Collapse
Affiliation(s)
- Norah A Terrault
- Division of Gastrointestinal and Liver Diseases, University of Southern California, Los Angeles, California.
| | - Claire Francoz
- Liver Intensive Care and Liver Transplantation Unit, Hepatology, Hospital Beaujon, Clichy, France
| | - Marina Berenguer
- Hepatology and Liver Transplantation Unit, Hospital Universitario la Fe - IIS La Fe Valencia; CiberEHD and University of Valencia, Valencia, Spain
| | - Michael Charlton
- Transplantation Institute, University of Chicago, Chicago, Illinois
| | - Julie Heimbach
- William von Liebig Center for Transplantation, Mayo Clinic Rochester, Minnesota
| |
Collapse
|
5
|
Pisani S, Mauri V, Negrello E, Mauramati S, Alaimo G, Auricchio F, Benazzo M, Dorati R, Genta I, Conti B, Ferretti VV, De Silvestri A, Pietrabissa A, Marconi S. Assessment of different manufacturing techniques for the production of bioartificial scaffolds as soft organ transplant substitutes. Front Bioeng Biotechnol 2023; 11:1186351. [PMID: 37441194 PMCID: PMC10333585 DOI: 10.3389/fbioe.2023.1186351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction: The problem of organs' shortage for transplantation is widely known: different manufacturing techniques such as Solvent casting, Electrospinning and 3D Printing were considered to produce bioartificial scaffolds for tissue engineering purposes and possible transplantation substitutes. The advantages of manufacturing techniques' combination to develop hybrid scaffolds with increased performing properties was also evaluated. Methods: Scaffolds were produced using poly-L-lactide-co-caprolactone (PLA-PCL) copolymer and characterized for their morphological, biological, and mechanical features. Results: Hybrid scaffolds showed the best properties in terms of viability (>100%) and cell adhesion. Furthermore, their mechanical properties were found to be comparable with the reference values for soft tissues (range 1-10 MPa). Discussion: The created hybrid scaffolds pave the way for the future development of more complex systems capable of supporting, from a morphological, mechanical, and biological standpoint, the physiological needs of the tissues/organs to be transplanted.
Collapse
Affiliation(s)
- Silvia Pisani
- Department of Otorhinolaryngology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Valeria Mauri
- SC General Surgery 2, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Erika Negrello
- SC General Surgery 2, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Simone Mauramati
- Department of Otorhinolaryngology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gianluca Alaimo
- Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| | - Ferdinando Auricchio
- Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| | - Marco Benazzo
- Department of Otorhinolaryngology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | | | - Annalisa De Silvestri
- SSD Biostatistica e Clinical Trial Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Andrea Pietrabissa
- SC General Surgery 2, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Surgery, University of Pavia, Pavia, Italy
| | - Stefania Marconi
- Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
- Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
6
|
Ajima K, Tsuda N, Takaki T, Furusako S, Matsumoto S, Shinohara K, Yamashita Y, Amano S, Oyama C, Shimoda M. A porcine islet-encapsulation device that enables long-term discordant xenotransplantation in immunocompetent diabetic mice. CELL REPORTS METHODS 2023; 3:100370. [PMID: 36814843 PMCID: PMC9939365 DOI: 10.1016/j.crmeth.2022.100370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/29/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
Islet transplantation is an effective treatment for type 1 diabetes (T1D). However, a shortage of donors and the need for immunosuppressants are major issues. The ideal solution is to develop a source of insulin-secreting cells and an immunoprotective method. No bioartificial pancreas (BAP) devices currently meet all of the functions of long-term glycemic control, islet survival, immunoprotection, discordant xenotransplantation feasibility, and biocompatibility. We developed a device in which porcine islets were encapsulated in a highly stable and permeable hydrogel and a biocompatible immunoisolation membrane. Discordant xenotransplantation of the device into diabetic mice improved glycemic control for more than 200 days. Glycemic control was also improved in new diabetic mice "relay-transplanted" with the device after its retrieval. The easily retrieved devices exhibited almost no adhesion or fibrosis and showed sustained insulin secretion even after the two xenotransplantations. This device has the potential to be a useful BAP for T1D.
Collapse
Affiliation(s)
- Kumiko Ajima
- Pancreatic Islet Cell Transplantation Project, Research Institute National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-ku, Tokyo 162-8655, Japan
| | - Naoto Tsuda
- Biomaterials Business Division, Mochida Pharmaceutical Co., Ltd., 722 Uenohara, Jimba, Gotemba, Shizuoka 412-8524, Japan
| | - Tadashi Takaki
- Pancreatic Islet Cell Transplantation Project, Research Institute National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-ku, Tokyo 162-8655, Japan
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
- Takeda-CiRA Joint Program (T-CiRA), 2-26-1 Muraoka-higashi, Fujisawa-shi, Kanagawa 251-8555, Japan
| | - Shoji Furusako
- Biomaterials Business Division, Mochida Pharmaceutical Co., Ltd., 1-7 Yotsuya, Shinjuku-ku, Tokyo 160-8515, Japan
| | - Shigeki Matsumoto
- Biomaterials Business Division, Mochida Pharmaceutical Co., Ltd., 722 Uenohara, Jimba, Gotemba, Shizuoka 412-8524, Japan
| | - Koya Shinohara
- Pancreatic Islet Cell Transplantation Project, Research Institute National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-ku, Tokyo 162-8655, Japan
| | - Yzumi Yamashita
- Pancreatic Islet Cell Transplantation Project, Research Institute National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-ku, Tokyo 162-8655, Japan
| | - Sayaka Amano
- Pancreatic Islet Cell Transplantation Project, Research Institute National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-ku, Tokyo 162-8655, Japan
| | - Chinatsu Oyama
- Communal Laboratory, Research Institute National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Masayuki Shimoda
- Pancreatic Islet Cell Transplantation Project, Research Institute National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-ku, Tokyo 162-8655, Japan
| |
Collapse
|
7
|
Meng Q, Wu W, Zhang W, Yuan J, Yang L, Zhang X, Tao K. IL-18BP Improves Early Graft Function and Survival in Lewis-Brown Norway Rat Orthotopic Liver Transplantation Model. Biomolecules 2022; 12:biom12121801. [PMID: 36551229 PMCID: PMC9775331 DOI: 10.3390/biom12121801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Interleukin-18 (IL-18) can effectively activate natural killer (NK) cells and induce large concentrations of interferon-γ (IFN-γ). In healthy humans, IL-18 binding protein (IL-18BP) can inhibit the binding of IL-18 to IL-18R and counteract the biological action of IL-18 due to its high concentration and high affinity, thus preventing the production of IFN-γ and inhibiting NK-cell activation. Through previous studies and the phenomena observed by our group in pig-non-human primates (NHPs) liver transplantation experiments, we proposed that the imbalance in IL-18/IL-18BP expression upon transplantation encourages the activation, proliferation, and cytotoxic effects of NK cells, ultimately causing acute vascular rejection of the graft. In this research, we used Lewis-Brown Norway rat orthotopic liver transplantation (OLTx) as a model of acute vascular rejection. AAV8-Il18bp viral vectors as gene delivery vehicles were constructed for gene therapy to overexpress IL-18BP and alleviate NK-cell rejection of the graft after transplantation. The results showed that livers overexpressing IL-18BP had reduced damage and could function longer after transplantation, effectively improving the survival time of the recipients.
Collapse
Affiliation(s)
- Qiang Meng
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Weikang Wu
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Wenjie Zhang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi’an 710032, China
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an 710032, China
| | - Juzheng Yuan
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Long Yang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Xuan Zhang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi’an 710032, China
- Correspondence: (X.Z.); (K.T.)
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi’an 710032, China
- Correspondence: (X.Z.); (K.T.)
| |
Collapse
|
8
|
Lu TF, Sun B, Yu TY, Wu YJ, Zhou J, Wu SG. Porcine Endogenous Retroviruses: Quantification of the Viral Copy Number for the Four Miniature Pig Breeds in China. Front Microbiol 2022; 13:840347. [PMID: 35369498 PMCID: PMC8965148 DOI: 10.3389/fmicb.2022.840347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Domestic pigs has served not only as one of the most important economy livestock but also as ideal organ-source animals owing to similarity in anatomy, physiology, and organ size to humans. Howerer, the barrier of the cross-species transmission risk of porcine endogenous retrovirus (PERVs) blocked the pig-to-human xenotransplantation. PERVs are integrated into pigs’ genomes and cannot be eliminated by designated or specified pathogen-free breeding. PERVs are an important biosafety issue in xenotransplantation because they can be released from normal pig cells and infect human cells in vitro under certain conditions. Screening and analyzing the presence of PERVs in pig genome will provide essential parameters for pig breed sources. In China, four miniature pig breeds, such as Guizhou miniature pig (GZ), Bama miniature pig (BM), Wuzhishan miniature pig (WZS), and Juema miniature pig (JM), were the main experimental miniature pig breeds, which were widely used. In this study, PCR was performed to amplify env-A, env-B, and env-C for all individuals from the four breeds. The results revealed that PERV env-A and env-B were detected in all individuals and the lowest ratios of PERV env-C was 17.6% (3/17) in the GZ breed. Then, PERV pol and GAPDH were detected using the droplet digital PCR (ddPCR) method. As the reference of GAPDH copy number, the copy numbers of PERVs were at the median of 12, 16, 14, and 16 in the four miniature pig breeds (GZ, BM, WZS, and JM), respectively. Furthermore, the copy number of the PERV pol gene in many organs from the GZ breed was analyzed using ddPCR. The copy numbers of PERV pol gene were at the median of 7 copies, 8 copies, 8 copies, 11 copies, 5 copies, 6 copies, and 7 copies in heart, liver, spleen, lung, kidney, muscle, and skin, and the maximum number was 11 copies in the lung. The minimum number was 5 copies in the kidney as the reference of GAPDH. These data suggest that GZ breed has the lower PERVs copy number in the genome, and may be an ideal organ-source miniature pig breed for the study of the pig-to-human xenotransplantation.
Collapse
Affiliation(s)
- Tao-Feng Lu
- Institute for Laboratory Animal Research, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Bo Sun
- The First Clinical Medical College, Jinan University, Guangzhou, China
| | - Tai-Yong Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yan-Jun Wu
- Institute for Laboratory Animal Research, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jie Zhou
- Shanghai Laboratory Animal Research Center, Shanghai, China
| | - Shu-Guang Wu
- Institute for Laboratory Animal Research, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
9
|
Nunes Dos Santos RM. Insights Into Pig Liver Xenotransplantation. Gastroenterol Hepatol (N Y) 2022; 18:216-218. [PMID: 35505945 PMCID: PMC9053494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
|
10
|
Cross-Najafi AA, Lopez K, Isidan A, Park Y, Zhang W, Li P, Yilmaz S, Akbulut S, Ekser B. Current Barriers to Clinical Liver Xenotransplantation. Front Immunol 2022; 13:827535. [PMID: 35281047 PMCID: PMC8904558 DOI: 10.3389/fimmu.2022.827535] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/02/2022] [Indexed: 02/05/2023] Open
Abstract
Preclinical trials of pig-to-nonhuman primate liver xenotransplantation have recently achieved longer survival times. However, life-threatening thrombocytopenia and coagulation dysregulation continue to limit preclinical liver xenograft survival times to less than one month despite various genetic modifications in pigs and intensive pharmacological support. Transfusion of human coagulation factors and complex immunosuppressive regimens have resulted in substantial improvements in recipient survival. The fundamental biological mechanisms of thrombocytopenia and coagulation dysregulation remain incompletely understood. Current studies demonstrate that porcine von Willebrand Factor binds more tightly to human platelet GPIb receptors due to increased O-linked glycosylation, resulting in increased human platelet activation. Porcine liver sinusoidal endothelial cells and Kupffer cells phagocytose human platelets in an asialoglycoprotein receptor 1-dependent and CD40/CD154-dependent manner, respectively. Porcine Kupffer cells phagocytose human platelets via a species-incompatible SIRPα/CD47 axis. Key drivers of coagulation dysregulation include constitutive activation of the extrinsic clotting cascade due to failure of porcine tissue factor pathway inhibitor to repress recipient tissue factor. Additionally, porcine thrombomodulin fails to activate human protein C when bound by human thrombin, leading to a hypercoagulable state. Combined genetic modification of these key genes may mitigate liver xenotransplantation-induced thrombocytopenia and coagulation dysregulation, leading to greater recipient survival in pig-to-nonhuman primate liver xenotransplantation and, potentially, the first pig-to-human clinical trial.
Collapse
Affiliation(s)
- Arthur A. Cross-Najafi
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kevin Lopez
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Abdulkadir Isidan
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yujin Park
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Wenjun Zhang
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ping Li
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sezai Yilmaz
- Department of Surgery and Liver Transplant Institute, Inonu University Faculty of Medicine, Malatya, Turkey
| | - Sami Akbulut
- Department of Surgery and Liver Transplant Institute, Inonu University Faculty of Medicine, Malatya, Turkey
| | - Burcin Ekser
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Burcin Ekser,
| |
Collapse
|
11
|
Lamm V, Ekser B, Vagefi PA, Cooper DK. Bridging to Allotransplantation-Is Pig Liver Xenotransplantation the Best Option? Transplantation 2022; 106:26-36. [PMID: 33653996 PMCID: PMC10124768 DOI: 10.1097/tp.0000000000003722] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the past 20 y, the number of patients in the United States who died while waiting for a human donor liver totaled >52 000. The median national wait time for patients with acute liver failure and the most urgent liver transplant listing was 7 d in 2018. The need for a clinical "bridge" to allotransplantation is clear. Current options for supporting patients with acute liver failure include artificial liver support devices, extracorporeal liver perfusion, and hepatocyte transplantation, all of which have shown mixed results with regard to survival benefit and are largely experimental. Progress in the transplantation of genetically engineered pig liver grafts in nonhuman primates has grown steadily, with survival of the pig graft extended to almost 1 mo in 2017. Further advances may justify consideration of a pig liver transplant as a clinical bridge to allotransplantation. We provide a brief history of pig liver xenotransplantation, summarize the most recent progress in pig-to-nonhuman primate liver transplantation models, and suggest criteria that may be considered for patient selection for a clinical trial of bridging by genetically engineered pig liver xenotransplantation to liver allotransplantation.
Collapse
Affiliation(s)
- Vladimir Lamm
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Parsia A. Vagefi
- Division of Surgical Transplantation, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX
| | - David K.C. Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
12
|
Cozzi E, Schneeberger S, Bellini MI, Berglund E, Böhmig G, Fowler K, Hoogduijn M, Jochmans I, Marckmann G, Marson L, Neuberger J, Oberbauer R, Pierson RN, Reichart B, Scobie L, White C, Naesens M. Organ transplants of the future: planning for innovations including xenotransplantation. Transpl Int 2021; 34:2006-2018. [PMID: 34459040 DOI: 10.1111/tri.14031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/10/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022]
Abstract
The future clinical application of animal-to-human transplantation (xenotransplantation) is of importance to society as a whole. Favourable preclinical data relevant to cell, tissue and solid organ xenotransplants have been obtained from many animal models utilizing genetic engineering and protocols of pathogen-free husbandry. Findings have reached a tipping point, and xenotransplantation of solid organs is approaching clinical evaluation, the process of which now requires close deliberation. Such discussions include considering when there is sufficient evidence from preclinical animal studies to start first-in-human xenotransplantation trials. The present article is based on evidence and opinions formulated by members of the European Society for Organ Transplantation who are involved in the Transplantation Learning Journey project. The article includes a brief overview of preclinical concepts and biology of solid organ xenotransplantation, discusses the selection of candidates for first-in-human studies and considers requirements for study design and conduct. In addition, the paper emphasizes the need for a regulatory framework for xenotransplantation of solid organs and the essential requirement for input from public and patient stakeholders.
Collapse
Affiliation(s)
- Emanuele Cozzi
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, Transplant Immunology Unit, Padua University Hospital, Padua, Italy
| | - Stefan Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Maria Irene Bellini
- Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
- Department of Emergency Medicine and Surgery, Azienda Ospedaliera San Camillo Forlanini, Rome, Italy
| | - Erik Berglund
- Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Transplantation Surgery, Karolinska Institute and ITB-MED, Stockholm, Sweden
| | - Georg Böhmig
- Division of Nephrology and Dialysis, Medical University Vienna, Vienna, Austria
| | - Kevin Fowler
- The Voice of the Patient, Inc., Chicago, IL, USA
| | - Martin Hoogduijn
- Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ina Jochmans
- Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Georg Marckmann
- Institute of Ethics, History and Theory of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Lorna Marson
- The Edinburgh Transplant Centre, Royal Infirmary of Edinburgh, Edinburgh, UK
| | | | | | - Richard N Pierson
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Bruno Reichart
- Walter Brendel Center for Experimental Medicine, LMU Munich, Munich, Germany
| | - Linda Scobie
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | | | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
13
|
Improved efficiencies in the generation of multigene-modified pigs by recloning and using sows as the recipient. ZYGOTE 2021; 30:103-110. [PMID: 34176529 DOI: 10.1017/s0967199421000423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study was performed to improve production efficiency at the level of recipient pig and donor nuclei of transgenic cloned pigs used for xenotransplantation. To generate transgenic pigs, human endothelial protein C receptor (hEPCR) and human thrombomodulin (hTM) genes were introduced using the F2A expression vector into GalT-/-/hCD55+ porcine neonatal ear fibroblasts used as donor cells and cloned embryos were transferred to the sows and gilts. Cloned fetal kidney cells were also used as donor cells for recloning to increase production efficiency. Pregnancy and parturition rates after embryo transfer and preimplantation developmental competence were compared between cloned embryos derived from adult and fetal cells. Significantly higher parturition rates were shown in the group of sows (50.0 vs. 4.1%), natural oestrus (20.8 vs. 0%), and ovulated ovary (16.7 vs. 5.6%) compared with gilt, induced and non-ovulated, respectively (P < 0.05). When using gilts as recipients, final parturitions occurred in only the fetal cell groups and significantly higher blastocyst rates (15.1% vs. 21.3%) were seen (P < 0.05). Additionally, gene expression levels related to pluripotency were significantly higher in the fetal cell group (P < 0.05). In conclusion, sows can be recommended as recipients due to their higher efficiency in the generation of transgenic cloned pigs and cloned fetal cells also can be recommended as donor cells through correct nuclear reprogramming.
Collapse
|
14
|
Carvalho-Oliveira M, Valdivia E, Blasczyk R, Figueiredo C. Immunogenetics of xenotransplantation. Int J Immunogenet 2021; 48:120-134. [PMID: 33410582 DOI: 10.1111/iji.12526] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/06/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Xenotransplantation may become the highly desired solution to close the gap between the availability of donated organs and number of patients on the waiting list. In recent years, enormous progress has been made in the development of genetically engineered donor pigs. The introduced genetic modifications showed to be efficient in prolonging xenograft survival. In this review, we focus on the type of immune responses that may target xeno-organs after transplantation and promising immunogenetic modifications that show a beneficial effect in ameliorating or eliminating harmful xenogeneic immune responses. Increasing histocompatibility of xenografts by eliminating genetic discrepancies between species will pave their way into clinical application.
Collapse
Affiliation(s)
- Marco Carvalho-Oliveira
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany.,TRR127 - Biology of Xenogeneic Cell and Organ Transplantation - from bench to bedside, Hannover, Germany
| | - Emilio Valdivia
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Constanca Figueiredo
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany.,TRR127 - Biology of Xenogeneic Cell and Organ Transplantation - from bench to bedside, Hannover, Germany
| |
Collapse
|
15
|
The resurgent landscape of xenotransplantation of pig organs in nonhuman primates. SCIENCE CHINA-LIFE SCIENCES 2020; 64:697-708. [PMID: 32975720 DOI: 10.1007/s11427-019-1806-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022]
Abstract
Organ shortage is a major bottleneck in allotransplantation and causes many wait-listed patients to die or become too sick for transplantation. Genetically engineered pigs have been discussed as a potential alternative to allogeneic donor organs. Although xenotransplantation of pig-derived organs in nonhuman primates (NHPs) has shown sequential advances in recent years, there are still underlying problems that need to be completely addressed before clinical applications, including (i) acute humoral xenograft rejection; (ii) acute cellular rejection; (iii) dysregulation of coagulation and inflammation; (iv) physiological incompatibility; and (v) cross-species infection. Moreover, various genetic modifications to the pig donor need to be fully characterized, with the aim of identifying the ideal transgene combination for upcoming clinical trials. In addition, suitable pretransplant screening methods need to be confirmed for optimal donor-recipient matching, ensuring a good outcome from xenotransplantation. Herein, we summarize the understanding of organ xenotransplantation in pigs-to-NHPs and highlight the current status and recent progress in extending the survival time of pig xenografts and recipients. We also discuss practical strategies for overcoming the obstacles to xenotransplantation mentioned above to further advance transplantation of pig organs in the clinic.
Collapse
|
16
|
|
17
|
Rasmussen MK. Porcine cytochrome P450 3A: current status on expression and regulation. Arch Toxicol 2020; 94:1899-1914. [PMID: 32172306 DOI: 10.1007/s00204-020-02710-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022]
Abstract
The cytochrome P450s (CYPs) constitute a family of enzymes maintaining vital functions in the body and are mostly recognized for their significant role in detoxification. Of the CYP subfamilies, CYP3A, is one of the most active in the clearance of drugs and other xenobiotics. During the last decades, much focus has been on exploring different models for human CYP3A regulation, expression and activity. In that respect, the growing knowledge of the porcine CYP3As is of great interest. Although many aspects of porcine CYP3A regulation and activity are still unknown, the current literature provides a basic understanding of the porcine CYP3As that can be used e.g., when translating results from studies done in the porcine model into human settings. In this review, the current knowledge about porcine CYP3A expression, regulation, activity and metabolic significance are highlighted. Future research needs are also identified.
Collapse
|
18
|
Wuensch A, Kameritsch P, Sfriso R, Jemiller E, Bähr A, Kurome M, Kessler B, Kemter E, Kupatt C, Reichart B, Rieben R, Wolf E, Klymiuk N. Genetically encoded Ca
2+
‐sensor reveals details of porcine endothelial cell activation upon contact with human serum. Xenotransplantation 2020; 27:e12585. [DOI: 10.1111/xen.12585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/17/2019] [Accepted: 01/15/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Annegret Wuensch
- Chair for Molecular Animal Breeding and Biotechnology LMU Munich Munich Germany
| | - Petra Kameritsch
- Walter‐Brendel Center for Experimental Surgery LMU Munich Munich Germany
| | - Riccardo Sfriso
- Department for BioMedical Research (DBMR) University of Bern Bern Switzerland
| | - Eva‐Maria Jemiller
- Chair for Molecular Animal Breeding and Biotechnology LMU Munich Munich Germany
| | - Andrea Bähr
- Clinic for Cardiology TU Munich Munich Germany
| | - Mayuko Kurome
- Chair for Molecular Animal Breeding and Biotechnology LMU Munich Munich Germany
| | - Barbara Kessler
- Chair for Molecular Animal Breeding and Biotechnology LMU Munich Munich Germany
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology LMU Munich Munich Germany
| | | | | | - Robert Rieben
- Department for BioMedical Research (DBMR) University of Bern Bern Switzerland
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology LMU Munich Munich Germany
| | - Nikolai Klymiuk
- Chair for Molecular Animal Breeding and Biotechnology LMU Munich Munich Germany
| |
Collapse
|
19
|
Carithers Jr. RL. LIVER TRANSPLANTATION: WILL XENOTRANSPLANTATION BE THE ANSWER TO THE DONOR ORGAN SHORTAGE? TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2020; 131:270-285. [PMID: 32675865 PMCID: PMC7358479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Since the first report of a successful liver transplant in 1968, access to this operation has dramatically improved. In 2018, 8,250 patients underwent liver transplantation in the United States. Despite this remarkable advance, a persistent shortage of donor organs remains the primary obstacle to optimal utilization of this life-saving operation. Over the past two decades, transplant professionals have pursued two broad strategies to overcome this roadblock: increasing the number of donor organs and decreasing the number of patients requiring transplantation through advances in medical interventions. Despite these efforts, more than 13,500 patients remained on liver transplant waiting lists at the end of 2018. Almost 1,200 died while waiting, and 1,350 were removed from wait lists because they had become too sick to survive the operation. Clearly, a dramatic new approach to the donor organ shortage is needed. One effort, first attempted by surgeons in the 1960s, was to utilize donor organs from other species (xenotransplantation). The major obstacle to xenotransplantation acceptance has been the fear of transmitting new infectious diseases from animals to humans. As the twentieth century came to a close, national moratoria on xenotransplantation ended both research and clinical activities in this field. The recent discoveries that modern gene-editing techniques can be used to eliminate the retrovirus that is ubiquitous in pigs and that retrovirus-free pigs can be cloned has reopened the possibility that xenotransplantation may be a potentially game-changing approach to eliminating the donor shortage for liver and other solid organ transplant recipients. In response to these advances, the FDA has released comprehensive industry guidelines regarding all aspects of xenotransplantation. This release has resulted in numerous preclinical studies in which organs from genetically modified pigs are transplanted into various nonhuman primates (NHPs). Use of a variety of gene-editing and immunosuppressive techniques has greatly increased the survival of recipient animals in the past few years. Survival of NHP renal transplant recipients has been extended to 435 days, functional cardiac transplant recipients to 195 days, and liver transplant recipients to 29 days. Current research studies using various gene modification strategies combined with newer immunosuppressive protocols are attempting to further extend the survival of these experimental animals. These encouraging results have raised the possibility that clinical xenotransplantation in humans is just beyond the horizon. The most likely candidates for initial clinical studies probably will be kidney transplant recipients who are difficult to crossmatch for human organs, neonates with severe congenital heart disease, and liver transplant candidates with acute liver failure.
Collapse
Affiliation(s)
- Robert L. Carithers Jr.
- Correspondence and reprint requests: Robert L. Carithers, Jr., MD, University of Washington Medical Center, 1959 NE Pacific Street, Seattle, Washington 98195206-218-6615
| |
Collapse
|
20
|
|
21
|
Wang Q, Zhang X, Wang B, Bai G, Pan D, Yang P, Tao K, Li X, Dou K. Immortalization of porcine hepatocytes with a α-1,3-galactosyltransferase knockout background. Xenotransplantation 2019; 27:e12550. [PMID: 31435990 DOI: 10.1111/xen.12550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/15/2019] [Accepted: 07/24/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND In vivo pig liver xenotransplantation preclinical trials appear to have poor efficiency compared to heart or kidney xenotransplantation because of xenogeneic rejection, including coagulopathy, and particularly thrombocytopenia. In contrast, ex vivo pig liver (wild type) perfusion systems have been proven to be effective in "bridging" liver failure patients until subsequent liver allotransplantation, and transgenic (human CD55/CD59) modifications have even prolonged the duration of pig liver perfusion. Despite the fact that hepatocyte cell lines have also been proposed for extracorporeal blood circulation in conditions of acute liver failure, porcine hepatocyte cell lines, and the GalT-KO background in particular, have not been developed and applied in this field. Herein, we established immortalized wild-type and GalT-KO porcine hepatocyte cell lines, which can be used for artificial liver support systems, cell transplantation, and even in vitro studies of xenotransplantation. METHODS Primary hepatocytes extracted from GalT-KO and wild-type pigs were transfected with SV40 LT lentivirus to establish immortalized GalT-KO porcine hepatocytes (GalT-KO-hep) and wild-type porcine hepatocytes (WT). Hepatocyte biomarkers and function-related genes were assessed by immunofluorescence, periodic acid-Schiff staining, indocyanine green (ICG) uptake, biochemical analysis, ELISA, and RT-PCR. Furthermore, the tumorigenicity of immortalized cells was detected. In addition, a complement-dependent cytotoxicity (CDC) assay was performed with GalT-KO-hep and WT cells. Cell death and viability rates were assessed by flow cytometry and CCK-8 assay. RESULTS GalT-KO and wild-type porcine hepatocytes were successfully immortalized and maintained the characteristics of primary porcine hepatocytes, including albumin secretion, ICG uptake, urea and glycogen production, and expression of hepatocyte marker proteins and specific metabolic enzymes. GalT-KO-hep and WT cells were confirmed as having no tumorigenicity. In addition, GalT-KO-hep cells showed less apoptosis and more viability than WT cells when exposed to complement and xenogeneic serum. CONCLUSIONS Two types of immortalized cell lines of porcine hepatocytes with GalT-KO and wild-type backgrounds were successfully established. GalT-KO-hep cells exhibited higher viability and injury resistance against a xenogeneic immune response.
Collapse
Affiliation(s)
- Quancheng Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xuan Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Bo Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ge Bai
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Dengke Pan
- Organ Transplant and Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Academy of an Transplant Science & Sichuan Provincial People's Hospital, Chengdu, China
| | - Peijun Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiao Li
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Kefeng Dou
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
22
|
Forneris N, Burlak C. Xenotransplantation literature update, May/June 2019. Xenotransplantation 2019; 26:e12547. [PMID: 31392783 DOI: 10.1111/xen.12547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 07/24/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Nicole Forneris
- Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Christopher Burlak
- Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|