1
|
Foest JJ, Bogdziewicz M, Pesendorfer MB, Ascoli D, Cutini A, Nussbaumer A, Verstraeten A, Beudert B, Chianucci F, Mezzavilla F, Gratzer G, Kunstler G, Meesenburg H, Wagner M, Mund M, Cools N, Vacek S, Schmidt W, Vacek Z, Hacket-Pain A. Widespread breakdown in masting in European beech due to rising summer temperatures. GLOBAL CHANGE BIOLOGY 2024; 30:e17307. [PMID: 38709196 DOI: 10.1111/gcb.17307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 05/07/2024]
Abstract
Climate change effects on tree reproduction are poorly understood, even though the resilience of populations relies on sufficient regeneration to balance increasing rates of mortality. Forest-forming tree species often mast, i.e. reproduce through synchronised year-to-year variation in seed production, which improves pollination and reduces seed predation. Recent observations in European beech show, however, that current climate change can dampen interannual variation and synchrony of seed production and that this masting breakdown drastically reduces the viability of seed crops. Importantly, it is unclear under which conditions masting breakdown occurs and how widespread breakdown is in this pan-European species. Here, we analysed 50 long-term datasets of population-level seed production, sampled across the distribution of European beech, and identified increasing summer temperatures as the general driver of masting breakdown. Specifically, increases in site-specific mean maximum temperatures during June and July were observed across most of the species range, while the interannual variability of population-level seed production (CVp) decreased. The declines in CVp were greatest, where temperatures increased most rapidly. Additionally, the occurrence of crop failures and low seed years has decreased during the last four decades, signalling altered starvation effects of masting on seed predators. Notably, CVp did not vary among sites according to site mean summer temperature. Instead, masting breakdown occurs in response to warming local temperatures (i.e. increasing relative temperatures), such that the risk is not restricted to populations growing in warm average conditions. As lowered CVp can reduce viable seed production despite the overall increase in seed count, our results warn that a covert mechanism is underway that may hinder the regeneration potential of European beech under climate change, with great potential to alter forest functioning and community dynamics.
Collapse
Affiliation(s)
- Jessie J Foest
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Michał Bogdziewicz
- Faculty of Biology, Forest Biology Center, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Mario B Pesendorfer
- Department of Forest and Soil Sciences, Institute of Forest Ecology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Davide Ascoli
- Department of Agriculture, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Andrea Cutini
- CREA - Research Centre for Forestry and Wood, Arezzo, Italy
| | - Anita Nussbaumer
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Arne Verstraeten
- Research Institute for Nature and Forest (INBO), Geraardsbergen, Belgium
| | - Burkhard Beudert
- Department of Conservation and Research, Bavarian Forest National Park, Grafenau, Germany
| | | | | | - Georg Gratzer
- Department of Forest and Soil Sciences, Institute of Forest Ecology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Georges Kunstler
- Université Grenoble Alpes, INRAE, LESSEM, Saint-Martin-d'Hères, France
| | - Henning Meesenburg
- Department of Environmental Control, Northwest German Forest Research Institute, Göttingen, Germany
| | - Markus Wagner
- Department of Environmental Control, Northwest German Forest Research Institute, Göttingen, Germany
| | - Martina Mund
- Forestry Research and Competence Centre Gotha, Gotha, Germany
| | - Nathalie Cools
- Research Institute for Nature and Forest (INBO), Geraardsbergen, Belgium
| | - Stanislav Vacek
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Wolfgang Schmidt
- Department of Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany
| | - Zdeněk Vacek
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
2
|
Kazasidis O, Jacob J. Machine learning identifies straightforward early warning rules for human Puumala hantavirus outbreaks. Sci Rep 2023; 13:3585. [PMID: 36869118 PMCID: PMC9984366 DOI: 10.1038/s41598-023-30596-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Human Puumala virus (PUUV) infections in Germany fluctuate multi-annually, following fluctuations of the bank vole population size. We applied a transformation to the annual incidence values and established a heuristic method to develop a straightforward robust model for the binary human infection risk at the district level. The classification model was powered by a machine-learning algorithm and achieved 85% sensitivity and 71% precision, despite using only three weather parameters from the previous years as inputs, namely the soil temperature in April of two years before and in September of the previous year, and the sunshine duration in September of two years before. Moreover, we introduced the PUUV Outbreak Index that quantifies the spatial synchrony of local PUUV-outbreaks, and applied it to the seven reported outbreaks in the period 2006-2021. Finally, we used the classification model to estimate the PUUV Outbreak Index, achieving 20% maximum uncertainty.
Collapse
Affiliation(s)
- Orestis Kazasidis
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests / Institute for Epidemiology and Pathogen Diagnostics, Rodent Research, Toppheideweg 88, 48161, Münster, Germany.
| | - Jens Jacob
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests / Institute for Epidemiology and Pathogen Diagnostics, Rodent Research, Toppheideweg 88, 48161, Münster, Germany
| |
Collapse
|
3
|
Brun A, Greusard M, Reynes JM, Grenier M, Bamoulid J, Giraudoux P, Lepiller Q, Chirouze C, Bouiller K, Bailly B. Description of an outbreak of hemorrhagic fever with renal syndrome in the southern Jura Mountains, France, in 2021. Infect Dis Now 2023; 53:104639. [PMID: 36621612 DOI: 10.1016/j.idnow.2022.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/09/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023]
Abstract
OBJECTIVE The aim of our study was to describe the 2021 Hemorrhagic Fever with Renal Syndrome (HFRS) outbreak in the southern Jura Mountains. PATIENTS AND METHODS We included all laboratory-confirmed cases of HFRS reported between April and September 2021 in the three local hospitals. RESULTS A total of 90 patients were enrolled in the study: 73 hospitalized and 17 non-hospitalized patients. Transient myopia was only reported in non-hospitalized patients. Forty (44.4 %) patients underwent medical imaging before hantavirus diagnosis. Twenty-one patients (28.8 %) had a plasma creatinine level > 353.6 µmol/L, no patient developed severe metabolic disorder. Only one patient was dialyzed. A pacemaker was implanted before diagnosis of HFRS due to severe bradycardia in one patient. Sudden death was reported in one patient. CONCLUSION This hantavirus epidemic led to numerous hospitalizations, one dialysis treatment, and one death. Early diagnosis by rapid test could avoid unnecessary investigations.
Collapse
Affiliation(s)
- A Brun
- Department of infectious disease, Hospital of Lons Le Saunier, F-39000 Lons Le Saunier, France
| | - M Greusard
- Department of general medicine, Hospital of Besancon, F-25000, France
| | - J M Reynes
- Institut Pasteur, Université Paris Cité, Unité Environnement et Risques Infectieux, Centre National de Référence des Hantavirus, Paris, France
| | - M Grenier
- Department of medical laboratory, Hospital of Lons Le Saunier, F-39000 Lons Le Saunier, France
| | - J Bamoulid
- Department of nephrology, University Hospital of Besancon, F-25000 Besançon, France
| | - P Giraudoux
- Chrono-environment, University of Bourgogne Franche-Comté/CNRS, F-25000 Besançon, France
| | - Q Lepiller
- Department of Virology, University Hospital of Besancon F-25000, France
| | - C Chirouze
- UMR-CNRS 6249 Chrono-environnement, Université Bourgogne Franche-Comté, F-25000 Besançon, France; Department of infectious disease, University Hospital of Besancon F-25000, France
| | - K Bouiller
- UMR-CNRS 6249 Chrono-environnement, Université Bourgogne Franche-Comté, F-25000 Besançon, France; Department of infectious disease, University Hospital of Besancon F-25000, France
| | - B Bailly
- Department of infectious disease, Hospital of Lons Le Saunier, F-39000 Lons Le Saunier, France; Department of infectious disease, University Hospital of Besancon F-25000, France.
| |
Collapse
|
4
|
Princk C, Drewes S, Meyer‐Schlinkmann KM, Saathoff M, Binder F, Freise J, Tenner B, Weiss S, Hofmann J, Esser J, Runge M, Jacob J, Ulrich RG, Dreesman J. Cluster of human Puumala orthohantavirus infections due to indoor exposure?-An interdisciplinary outbreak investigation. Zoonoses Public Health 2022; 69:579-586. [PMID: 35312223 PMCID: PMC9539979 DOI: 10.1111/zph.12940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/02/2022]
Abstract
Puumala orthohantavirus (PUUV) is the most important hantavirus species in Europe, causing the majority of human hantavirus disease cases. In central and western Europe, the occurrence of human infections is mainly driven by bank vole population dynamics influenced by beech mast. In Germany, hantavirus epidemic years are observed in 2- to 5-year intervals. Many of the human infections are recorded in summer and early autumn, coinciding with peaks in bank vole populations. Here, we describe a molecular epidemiological investigation in a small company with eight employees of whom five contracted hantavirus infections in late 2017. Standardized interviews with employees were conducted to assess the circumstances under which the disease cluster occurred, how the employees were exposed and which counteractive measures were taken. Initially, two employees were admitted to hospital and serologically diagnosed with hantavirus infection. Subsequently, further investigations were conducted. By means of a self-administered questionnaire, three additional symptomatic cases could be identified. The hospital patients' sera were investigated and revealed in one patient a partial PUUV L segment sequence, which was identical to PUUV sequences from several bank voles collected in close proximity to company buildings. This investigation highlights the importance of a One Health approach that combines efforts from human and veterinary medicine, ecology and public health to reveal the origin of hantavirus disease clusters.
Collapse
Affiliation(s)
- Christina Princk
- Public Health Agency of Lower SaxonyHannoverGermany
- Present address:
Department of Clinical EpidemiologyLeibniz Institute for Prevention Research and Epidemiology—BIPSBremenGermany
| | - Stephan Drewes
- Friedrich‐Loeffler‐InstitutFederal Research Institute for Animal HealthInstitute of Novel and Emerging Infectious DiseasesGreifswald‐Insel RiemsGermany
| | | | - Marion Saathoff
- Lower Saxony State Office for Consumer Protection and Food SafetyOldenburg/HannoverGermany
| | - Florian Binder
- Friedrich‐Loeffler‐InstitutFederal Research Institute for Animal HealthInstitute of Novel and Emerging Infectious DiseasesGreifswald‐Insel RiemsGermany
| | - Jona Freise
- Lower Saxony State Office for Consumer Protection and Food SafetyOldenburg/HannoverGermany
| | - Beate Tenner
- Institute of VirologyCharité ‐ Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Sabrina Weiss
- Institute of VirologyCharité ‐ Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Present address:
Centre for International Health Protection – Public Health Laboratory SupportRobert Koch‐InstituteBerlinGermany
| | - Jörg Hofmann
- Institute of VirologyCharité ‐ Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Jutta Esser
- Practice of Laboratory MedicineDepartment of Dermatology, Environmental Medicine, Health TheoryUniversity OsnabrückOsnabrückGermany
| | - Martin Runge
- Lower Saxony State Office for Consumer Protection and Food SafetyOldenburg/HannoverGermany
| | - Jens Jacob
- Julius Kühn‐Institute (JKI),Federal Research Centre for Cultivated PlantsInstitute for Plant Protection in Horticulture and Forests, Vertebrate ResearchMünsterGermany
| | - Rainer G. Ulrich
- Friedrich‐Loeffler‐InstitutFederal Research Institute for Animal HealthInstitute of Novel and Emerging Infectious DiseasesGreifswald‐Insel RiemsGermany
| | | |
Collapse
|
5
|
Camp JV, Spruill-Harrell B, Owen RD, Solà-Riera C, Williams EP, Eastwood G, Sawyer AM, Jonsson CB. Mixed Effects of Habitat Degradation and Resources on Hantaviruses in Sympatric Wild Rodent Reservoirs within a Neotropical Forest. Viruses 2021; 13:85. [PMID: 33435494 PMCID: PMC7827808 DOI: 10.3390/v13010085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 12/23/2022] Open
Abstract
Understanding the ecology of rodent-borne hantaviruses is critical to assessing the risk of spillover to humans. Longitudinal surveys have suggested that hantaviral prevalence in a given host population is tightly linked to rodent ecology and correlates with changes in the species composition of a rodent community over time and/or habitat composition. We tested two hypotheses to identify whether resource addition and/or habitat composition may affect hantavirus prevalence among two sympatric reservoir hosts in a neotropical forest: (i) increased food resources will alter the rodent community and thus hantaviral prevalence; and (ii) host abundance and viral seroprevalence will be associated with habitat composition. We established a baseline of rodent-virus prevalence in three grid pairs of distinct habitat compositions and subjected one grid of each pair to resource augmentation. Increased rodent species diversity was observed on grids where food was added versus untreated control grids during the first post-treatment sampling session. Resource augmentation changed species community composition, yet it did not affect the prevalence of hantavirus in the host population over time, nor was there evidence of a dilution effect. Secondly, we show that the prevalence of the virus in the respective reservoir hosts was associated with habitat composition at two spatial levels, independent of resource addition, supporting previous findings that habitat composition is a primary driver of the prevalence of hantaviruses in the neotropics.
Collapse
Affiliation(s)
- Jeremy V. Camp
- Institute of Virology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| | - Briana Spruill-Harrell
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (B.S.-H.); (E.P.W.)
| | - Robert D. Owen
- Centro para el Desarrollo de la Investigación Científica, Asunción C.P. 1371, Paraguay;
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Carles Solà-Riera
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 141 86 Stockholm, Sweden;
| | - Evan P. Williams
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (B.S.-H.); (E.P.W.)
| | - Gillian Eastwood
- Department of Microbiology, University of Tennessee-Knoxville, Knoxville, TN 37996, USA; (G.E.); (A.M.S.)
| | - Aubrey M. Sawyer
- Department of Microbiology, University of Tennessee-Knoxville, Knoxville, TN 37996, USA; (G.E.); (A.M.S.)
| | - Colleen B. Jonsson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (B.S.-H.); (E.P.W.)
| |
Collapse
|
6
|
Faber M, Krüger DH, Auste B, Stark K, Hofmann J, Weiss S. Molecular and epidemiological characteristics of human Puumala and Dobrava-Belgrade hantavirus infections, Germany, 2001 to 2017. ACTA ACUST UNITED AC 2020; 24. [PMID: 31411134 PMCID: PMC6693291 DOI: 10.2807/1560-7917.es.2019.24.32.1800675] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction Two hantavirus species, Puumala (PUUV) and Dobrava-Belgrade (DOBV) virus (genotype Kurkino), are endemic in Germany. Recent PUUV outbreaks raised questions concerning increasing frequency of outbreaks and expansion of PUUV endemic areas. Aims To describe the epidemiology of human PUUV and DOBV infections in Germany. Methods We conducted an observational retrospective study analysing national hantavirus surveillance data notified to the national public health institute and hantavirus nucleotide sequences from patients collected at the national consultation laboratory between 2001 and 2017. Matching molecular sequences with surveillance data, we conducted epidemiological, phylogenetic and phylogeographic analyses. Results In total, 12,148 cases of symptomatic hantavirus infection were notified 2001–17 (mean annual incidence: 0.87/100,000; range: 0.09–3.51). PUUV infections showed a highly variable space-time disease incidence pattern, causing large outbreaks every 2–3 years with peaks in early summer and up to 3,000 annually reported cases. Sex-specific differences in disease presentation were observed. Of 202 PUUV nucleotide sequences obtained from cases, 189 (93.6%) fall into well-supported phylogenetic clusters corresponding to different endemic areas in Germany. DOBV infections caused few, mostly sporadic cases in autumn and winter in the north and east of Germany. Conclusions The frequency of PUUV outbreaks increased between 2001 and 2017 but our data does not support the suggested expansion of endemic areas. The epidemiology of PUUV and DOBV-Kurkino infections differs in several aspects. Moreover, the latter are relatively rare and combining efforts and data of several countries to identify risk factors and develop specific recommendations for prevention could be worthwhile.
Collapse
Affiliation(s)
- Mirko Faber
- Department for Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Detlev H Krüger
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany
| | - Brita Auste
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany
| | - Klaus Stark
- Department for Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Jörg Hofmann
- These authors contributed equally and share last authorship.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany
| | - Sabrina Weiss
- These authors contributed equally and share last authorship.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany
| |
Collapse
|
7
|
Spatial dynamics of a zoonotic orthohantavirus disease through heterogenous data on rodents, rodent infections, and human disease. Sci Rep 2019; 9:2329. [PMID: 30787344 PMCID: PMC6382775 DOI: 10.1038/s41598-019-38802-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 12/31/2018] [Indexed: 02/08/2023] Open
Abstract
Zoonotic diseases are challenging to study from the ecological point of view as, broadly speaking, datasets tend to be either detailed on a small spatial extent, or coarse on a large spatial extent. Also, there are many ways to assess zoonotic disease transmission systems, from pathogens to hosts to humans. We explore the complementarity of datasets considering the pathogen in its host, the host and human cases in the context of Puumala orthohantavirus infection in Germany. We selected relevant environmental predictors using a conceptual framework based on resource-based habitats. This framework assesses the functions, and associated environmental resources of the pathogen and associated host. A resource-based habitat framework supports variable selection and result interpretation. Multiplying ‘keyholes’ to view a zoonotic disease transmission system is valuable, but requires a strong conceptual framework to select and interpret environmental explanatory variables. This study highlights the usefulness of a structured, ecology-based approach to study drivers of zoonotic diseases at the level of virus, host, and human - not only for PUUV but also for other zoonotic pathogens. Our results show that human disease cases are best explained by a combination of variables related to zoonotic pathogen circulation and human exposure.
Collapse
|
8
|
Cunze S, Kochmann J, Kuhn T, Frank R, Dörge DD, Klimpel S. Spatial and temporal patterns of human Puumala virus (PUUV) infections in Germany. PeerJ 2018; 6:e4255. [PMID: 29404206 PMCID: PMC5797684 DOI: 10.7717/peerj.4255] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/19/2017] [Indexed: 11/25/2022] Open
Abstract
Background Worldwide, the number of recorded human hantavirus infections as well as the number of affected countries is on the rise. In Europe, most human hantavirus infections are caused by the Puumala virus (PUUV), with bank voles (Myodes glareolus) as reservoir hosts. Generally, infection outbreaks have been related to environmental conditions, particularly climatic conditions, food supply for the reservoir species and land use. However, although attempts have been made, the insufficient availability of environmental data is often hampering accurate temporal and spatially explicit models of human hantavirus infections. Methods In the present study, dynamics of human PUUV infections between 2001 and 2015 were explored using ArcGIS in order to identify spatio-temporal patterns. Results Percentage cover of forest area was identified as an important factor for the spatial pattern, whereas beech mast was found explaining temporal patterns of human PUUV infections in Germany. High numbers of infections were recorded in 2007, 2010 and 2012 and areas with highest records were located in Baden-Wuerttemberg (southwest Germany) and North Rhine-Westphalia (western Germany). Conclusion More reliable data on reservoir host distribution, pathogen verification as well as an increased awareness of physicians are some of the factors that should improve future human infection risk assessments in Germany.
Collapse
Affiliation(s)
- Sarah Cunze
- Goethe University Frankfurt, Institute of Ecology, Diversity and Evolution, Frankfurt am Main, Germany.,Senckenberg Biodiversity and Climate Research Centre, Senckenberg Research Institute and Natural History Museum, Frankfurt am Main, Germany
| | - Judith Kochmann
- Goethe University Frankfurt, Institute of Ecology, Diversity and Evolution, Frankfurt am Main, Germany.,Senckenberg Biodiversity and Climate Research Centre, Senckenberg Research Institute and Natural History Museum, Frankfurt am Main, Germany
| | - Thomas Kuhn
- Goethe University Frankfurt, Institute of Ecology, Diversity and Evolution, Frankfurt am Main, Germany.,Senckenberg Biodiversity and Climate Research Centre, Senckenberg Research Institute and Natural History Museum, Frankfurt am Main, Germany
| | - Raphael Frank
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| | - Dorian D Dörge
- Goethe University Frankfurt, Institute of Ecology, Diversity and Evolution, Frankfurt am Main, Germany.,Senckenberg Biodiversity and Climate Research Centre, Senckenberg Research Institute and Natural History Museum, Frankfurt am Main, Germany
| | - Sven Klimpel
- Goethe University Frankfurt, Institute of Ecology, Diversity and Evolution, Frankfurt am Main, Germany.,Senckenberg Biodiversity and Climate Research Centre, Senckenberg Research Institute and Natural History Museum, Frankfurt am Main, Germany
| |
Collapse
|
9
|
Drewes S, Straková P, Drexler JF, Jacob J, Ulrich RG. Assessing the Diversity of Rodent-Borne Viruses: Exploring of High-Throughput Sequencing and Classical Amplification/Sequencing Approaches. Adv Virus Res 2017; 99:61-108. [PMID: 29029730 DOI: 10.1016/bs.aivir.2017.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Rodents are distributed throughout the world and interact with humans in many ways. They provide vital ecosystem services, some species are useful models in biomedical research and some are held as pet animals. However, many rodent species can have adverse effects such as damage to crops and stored produce, and they are of health concern because of the transmission of pathogens to humans and livestock. The first rodent viruses were discovered by isolation approaches and resulted in break-through knowledge in immunology, molecular and cell biology, and cancer research. In addition to rodent-specific viruses, rodent-borne viruses are causing a large number of zoonotic diseases. Most prominent examples are reemerging outbreaks of human hemorrhagic fever disease cases caused by arena- and hantaviruses. In addition, rodents are reservoirs for vector-borne pathogens, such as tick-borne encephalitis virus and Borrelia spp., and may carry human pathogenic agents, but likely are not involved in their transmission to human. In our days, next-generation sequencing or high-throughput sequencing (HTS) is revolutionizing the speed of the discovery of novel viruses, but other molecular approaches, such as generic RT-PCR/PCR and rolling circle amplification techniques, contribute significantly to the rapidly ongoing process. However, the current knowledge still represents only the tip of the iceberg, when comparing the known human viruses to those known for rodents, the mammalian taxon with the largest species number. The diagnostic potential of HTS-based metagenomic approaches is illustrated by their use in the discovery and complete genome determination of novel borna- and adenoviruses as causative disease agents in squirrels. In conclusion, HTS, in combination with conventional RT-PCR/PCR-based approaches, resulted in a drastically increased knowledge of the diversity of rodent viruses. Future improvements of the used workflows, including bioinformatics analysis, will further enhance our knowledge and preparedness in case of the emergence of novel viruses. Classical virological and additional molecular approaches are needed for genome annotation and functional characterization of novel viruses, discovered by these technologies, and evaluation of their zoonotic potential.
Collapse
Affiliation(s)
- Stephan Drewes
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Petra Straková
- Institute of Vertebrate Biology v.v.i., Academy of Sciences, Brno, Czech Republic
| | - Jan F Drexler
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany; German Center for Infection Research (DZIF), Germany
| | - Jens Jacob
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Münster, Germany
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany; German Center for Infection Research (DZIF), Partner site Hamburg-Luebeck-Borstel-Insel Riems, Greifswald-Insel Riems, Germany.
| |
Collapse
|
10
|
Drewes S, Turni H, Rosenfeld UM, Obiegala A, Straková P, Imholt C, Glatthaar E, Dressel K, Pfeffer M, Jacob J, Wagner-Wiening C, Ulrich RG. Reservoir-Driven Heterogeneous Distribution of Recorded Human Puumala virus Cases in South-West Germany. Zoonoses Public Health 2016; 64:381-390. [PMID: 27918151 DOI: 10.1111/zph.12319] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Indexed: 01/19/2023]
Abstract
Endemic regions for Puumala virus (PUUV) are located in the most affected federal state Baden-Wuerttemberg, South-West Germany, where high numbers of notified human hantavirus disease cases have been occurring for a long time. The distribution of human cases in Baden-Wuerttemberg is, however, heterogeneous, with a high number of cases recorded during 2012 in four districts (H districts) but a low number or even no cases recorded in four other districts (L districts). Bank vole monitoring during 2012, following a beech (Fagus sylvatica) mast year, resulted in the trapping of 499 bank voles, the host of PUUV. Analyses indicated PUUV prevalences of 7-50% (serological) and 1.8-27.5% (molecular) in seven of eight districts, but an absence of PUUV in one L district. The PUUV prevalence differed significantly between bank voles in H and L districts. In the following year 2013, 161 bank voles were trapped, with reduced bank vole abundance in almost all investigated districts except one. In 2013, no PUUV infections were detected in voles from seven of eight districts. In conclusion, the linear modelling approach indicated that the heterogeneous distribution of human PUUV cases in South-West Germany was caused by different factors including the abundance of PUUV RNA-positive bank voles, as well as by the interaction of beech mast and the proportional coverage of beech and oak (Quercus spec.) forest per district. These results can aid developing local public health risk management measures and early warning models.
Collapse
Affiliation(s)
- S Drewes
- Friedrich-Loeffler-Institut, Institute for Novel and Emerging Infectious Diseases, Greifswald - Insel Riems, Germany
| | - H Turni
- Stauss & Turni Gutachterbüro, Tübingen, Germany
| | - U M Rosenfeld
- Friedrich-Loeffler-Institut, Institute for Novel and Emerging Infectious Diseases, Greifswald - Insel Riems, Germany
| | - A Obiegala
- Veterinärmedizinische Fakultät, Institut für Tierhygiene und Öffentliches Veterinärwesen, University Leipzig, Leipzig, Germany
| | - P Straková
- Friedrich-Loeffler-Institut, Institute for Novel and Emerging Infectious Diseases, Greifswald - Insel Riems, Germany.,Institute of Vertebrate Biology v.v.i., Academy of Sciences, Masaryk University, Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - C Imholt
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Münster, Germany
| | - E Glatthaar
- Forstzoologisches Institut, Arbeitsbereich Wildtierökologie und Wildtiermanagement, Universität Freiburg, Freiburg, Germany
| | - K Dressel
- sine-Institut gGmbH, Munich, Germany
| | - M Pfeffer
- Veterinärmedizinische Fakultät, Institut für Tierhygiene und Öffentliches Veterinärwesen, University Leipzig, Leipzig, Germany
| | - J Jacob
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Münster, Germany
| | - C Wagner-Wiening
- Landesgesundheitsamt Baden-Württemberg, Referat 95 - Epidemiologie und Gesundheitsberichterstattung, Sachgebietsleitung: Infektionsepidemiologische Meldesysteme (SG4), Stuttgart, Germany
| | - R G Ulrich
- Friedrich-Loeffler-Institut, Institute for Novel and Emerging Infectious Diseases, Greifswald - Insel Riems, Germany
| |
Collapse
|
11
|
Abstract
Puumala virus (PUUV) causes many human infections in large parts of Europe and can lead to mild to moderate disease. The bank vole (Myodes glareolus) is the only reservoir of PUUV in Central Europe. A commercial PUUV rapid field test for rodents was validated for bank-vole blood samples collected in two PUUV-endemic regions in Germany (North Rhine-Westphalia and Baden-Württemberg). A comparison of the results of the rapid field test and standard ELISAs indicated a test efficacy of 93-95%, largely independent of the origin of the antigens used in the ELISA. In ELISAs, reactivity for the German PUUV strain was higher compared to the Swedish strain but not compared to the Finnish strain, which was used for the rapid field test. In conclusion, the use of the rapid field test can facilitate short-term estimation of PUUV seroprevalence in bank-vole populations in Germany and can aid in assessing human PUUV infection risk.
Collapse
|
12
|
Monchatre-Leroy E, Crespin L, Boué F, Marianneau P, Calavas D, Hénaux V. Spatial and Temporal Epidemiology of Nephropathia Epidemica Incidence and Hantavirus Seroprevalence in Rodent Hosts: Identification of the Main Environmental Factors in Europe. Transbound Emerg Dis 2016; 64:1210-1228. [PMID: 26996739 DOI: 10.1111/tbed.12494] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Indexed: 01/05/2023]
Abstract
In Europe, the increasing number of nephropathia epidemica (NE) infections in humans, caused by Puumala virus carried by bank voles (Myodes glareolus), has triggered studies of environmental factors driving these infections. NE infections have been shown to occur in specific geographical areas characterized by environmental factors that influence the distribution and dynamics of host populations and virus persistence in the soil. Here, we review the influence of environmental conditions (including climate factors, food availability and habitat conditions) with respect to incidence in humans and seroprevalence in rodents, considering both direct and indirect transmission pathways. For each type of environmental factor, results and discrepancies between studies are presented and examined in the light of biological hypotheses. Overall, food availability and temperature appear to be the main drivers of host seroprevalence and NE incidence, but data quality and statistical approaches varied greatly among studies. We highlight the issues that now need to be addressed and suggest improvements for study design in regard to the current knowledge on hantavirus epidemiology.
Collapse
Affiliation(s)
| | - L Crespin
- INRA, UR346 d'Epidémiologie Animale, F63122 Saint Genès Champanelle, Université de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France
| | - F Boué
- Laboratoire de la rage et de la faune sauvage, ANSES, Nancy, France
| | - P Marianneau
- Unité de virologie, Laboratoire de Lyon, ANSES, Lyon, France
| | - D Calavas
- Unité d'épidémiologie, Laboratoire de Lyon, ANSES, Lyon, France
| | - V Hénaux
- Unité d'épidémiologie, Laboratoire de Lyon, ANSES, Lyon, France
| |
Collapse
|