1
|
Kanarek P, Breza-Boruta B, Bogiel T. In the Depths of Wash Water: Isolation of Opportunistic Bacteria from Fresh-Cut Processing Plants. Pathogens 2024; 13:768. [PMID: 39338959 PMCID: PMC11435197 DOI: 10.3390/pathogens13090768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
The fruit and vegetable industry in post-harvest processing plants is characterized by a substantial consumption of water resources. Wash waters may serve as an environment for the periodic or permanent habitation of microorganisms, particularly if biofilm forms on the inner walls of tanks and flushing channels. Despite the implementation of integrated food safety monitoring systems in numerous countries, foodborne pathogens remain a global public health and food safety concern, particularly for minimally processed food products such as vegetables and fruits. This necessitates the importance of studies that will explore wash water quality to safeguard minimally processed food against foodborne pathogen contamination. Therefore, the current study aimed to isolate and identify bacteria contaminating the wash waters of four fresh-cut processing plants (Poland) and to evaluate the phenotypic antibiotic resistance profiles in selected species. Bacteria were isolated using membrane filtration and identified through mass spectrometry, followed by antibiotic susceptibility testing according to EUCAST guidelines. The results revealed that the level of contamination with total aerobic bacteria in the water ranged from 1.30 × 106 cfu/mL to 2.54 × 108 cfu/mL. Among the isolates, opportunistic pathogens including Enterococcus faecalis, Pseudomonas aeruginosa, Klebsiella oxytoca, Klebsiella pneumoniae, Serratia marcescens, and Proteus vulgaris strains were identified. An especially noteworthy result was the identification of cefepime-resistant K. oxytoca isolates. These findings highlight the importance of monitoring the microbial microflora in minimally processed foods and the need for appropriate sanitary control procedures to minimize the risk of pathogen contamination, ensuring that products remain safe and of high quality throughout the supply chain.
Collapse
Affiliation(s)
- Piotr Kanarek
- Department of Microbiology and Food Technology, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, 6 Bernardyńska Street, 85-029 Bydgoszcz, Poland;
| | - Barbara Breza-Boruta
- Department of Microbiology and Food Technology, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, 6 Bernardyńska Street, 85-029 Bydgoszcz, Poland;
| | - Tomasz Bogiel
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 Skłodowska-Curie Street, 85-094 Bydgoszcz, Poland
| |
Collapse
|
2
|
da Silva Guedes J, Velilla-Rodriguez D, González-Fandos E. Microbiological Quality and Safety of Fresh Rabbit Meat with Special Reference to Methicillin-Resistant S. aureus (MRSA) and ESBL-Producing E. coli. Antibiotics (Basel) 2024; 13:256. [PMID: 38534691 DOI: 10.3390/antibiotics13030256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
The purpose of this investigation was to evaluate the microbial quality and safety of rabbit meat. A total of 49 rabbit meat samples were taken at the retail level. The mesophiles, staphylococci, Enterobacterales, and Pseudomonas spp. counts were 4.94 ± 1.08, 2.59 ± 0.70, 2.82 ± 0.67, and 3.23 ± 0.76 log CFU/g, respectively. Campylobacter spp. were not detected in any sample. Listeria monocytogenes was isolated from one sample (2.04%) at levels below 1.00 log CFU/g. Multi-resistant S aureus was found in seven samples (14.9%). Methicillin-resistant S. aureus, S. epidermidis, S. haemolyticus, M. caseolyticus, and M. sciuri were found in a sample each (10.20%), and all of them were multi-resistant. Multi-resistant ESBL-producing E. coli were detected in two samples from the same retailer (4.08%). The high resistance found in methicillin-resistant staphylococci and ESBL-producing E. coli is of particular concern, and suggests that special measures should be taken in rabbit meat.
Collapse
Affiliation(s)
- Jessica da Silva Guedes
- Food Technology Department, CIVA Research Center, University of La Rioja, Madre de Dios 53, 26006 Logrono, Spain
| | - David Velilla-Rodriguez
- Food Technology Department, CIVA Research Center, University of La Rioja, Madre de Dios 53, 26006 Logrono, Spain
| | - Elena González-Fandos
- Food Technology Department, CIVA Research Center, University of La Rioja, Madre de Dios 53, 26006 Logrono, Spain
| |
Collapse
|
3
|
Kwon H, Park SY, Lee S, Kim SG, Park SC, Kim YB, Han JE, Kim JH. Genomic and biological characteristics of a novel lytic phage, vB_MscM-PMS3, infecting the opportunistic zoonotic pathogen Mammaliicoccus sciuri. Arch Virol 2023; 169:4. [PMID: 38079005 DOI: 10.1007/s00705-023-05940-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023]
Abstract
Mammaliicoccus sciuri is an opportunistic zoonotic pathogen in humans and animals. We isolated the Mammaliicoccus phage vB_MscM-PMS3, which was also able to infect and lyse M. sciuri and M. lentus. The phage genome is a linear dsDNA that is 147,811 bp in length and contains 206 ORFs and three tRNA genes. It showed low genome coverage (< 17%) and sequence identity (< 91.3%) to other phage genomes. Phylogenetic analysis based on the whole genome and major capsid protein revealed that this phage clustered with members of the subfamily Twortvirinae of the family Herelleviridae, but it was distinctly separated from the other members, indicating its uniqueness.
Collapse
Affiliation(s)
- Hyemin Kwon
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seon Young Park
- Division of Animal and Dairy Sciences, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seungki Lee
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Sang Guen Kim
- Department of Biological Sciences, Kyonggi University, Suwon, 16227, Republic of Korea
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ye Bin Kim
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Jee Eun Han
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Ji Hyung Kim
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam, 13120, Republic of Korea.
| |
Collapse
|
4
|
Martinez-Laorden A, Arraiz-Fernandez C, Gonzalez-Fandos E. Microbiological Quality and Safety of Fresh Quail Meat at the Retail Level. Microorganisms 2023; 11:2213. [PMID: 37764057 PMCID: PMC10537602 DOI: 10.3390/microorganisms11092213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
The objective of this study was to evaluate the microbiological quality and safety of 37 fresh quail meats. Mesophiles, Pseudomonas spp., Enterobacteriaceae, and staphylococci counts were 5.25 ± 1.14, 3.92 ± 1.17, 3.09 ± 1.02, and 2.80 ± 0.64 log CFU/g, respectively. Listeria monocytogenes was detected in seven samples (18.92%). Campylobacter jejuni was detected in one sample (2.70%). Clostridium perfringens was not detected in any sample. The dominant bacteria were Pseudomonas spp. (30.46%), Micrococcaceae (19.87%), lactic acid bacteria (14.57%), and Enterobacteriaceae (11.92%). Brochotrix thermosphacta and enterococci were isolated to a lesser extent, 7.28% and 1.99%, respectively. The dominant Enterobacteriaceae found were Escherichia coli (42.53%). ESBL-producing E. coli was detected in one sample (2.70%), showing resistance to 16 antibiotics. Sixteen different Staphylococcus spp. and three Mammaliicoccus spp. were identified, the most common being S. cohnii (19.86%) and M. sciuri (17.02%). S. aureus and S. epidermidis were also found in one and four samples, respectively. Methicillin-resistant M. sciuri and S. warneri were found in 13.51% and 10.81% of quail samples, respectively. These bacteria showed an average of 6.20 and 18.50 resistances per strain, respectively. The high resistance observed in ESBL-producing E. coli and methicillin-resistant S. warneri is of special concern. Measures should be adopted to reduce the contamination of quail meat.
Collapse
Affiliation(s)
| | | | - Elena Gonzalez-Fandos
- Food Technology Department, CIVA Research Center, University of La Rioja, Madre de Dios 53, 26006 Logroño, La Rioja, Spain
| |
Collapse
|
5
|
Khan A, Sohail S, Yaseen S, Fatima S, Wisal A, Ahmed S, Nasir M, Irfan M, Karim A, Basharat Z, Khan Y, Aurongzeb M, Raza SK, Alshahrani MY, Morel CM, Hassan SS. Exploring and targeting potential druggable antimicrobial resistance targets ArgS, SecY, and MurA in Staphylococcus sciuri with TCM inhibitors through a subtractive genomics strategy. Funct Integr Genomics 2023; 23:254. [PMID: 37495774 DOI: 10.1007/s10142-023-01179-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023]
Abstract
Staphylococcus sciuri (also currently Mammaliicoccus sciuri) are anaerobic facultative and non-motile bacteria that cause significant human pathogenesis such as endocarditis, wound infections, peritonitis, UTI, and septic shock. Methicillin-resistant S. sciuri (MRSS) strains also infects animals that include healthy broilers, cattle, dogs, and pigs. The emergence of MRSS strains thereby poses a serious health threat and thrives the scientific community towards novel treatment options. Herein, we investigated the druggable genome of S. sciuri by employing subtractive genomics that resulted in seven genes/proteins where only three of them were predicted as final targets. Further mining the literature showed that the ArgS (WP_058610923), SecY (WP_058611897), and MurA (WP_058612677) are involved in the multi-drug resistance phenomenon. After constructing and verifying the 3D protein homology models, a screening process was carried out using a library of Traditional Chinese Medicine compounds (consisting of 36,043 compounds). The molecular docking and simulation studies revealed the physicochemical stability parameters of the docked TCM inhibitors in the druggable cavities of each protein target by identifying their druggability potential and maximum hydrogen bonding interactions. The simulated receptor-ligand complexes showed the conformational changes and stability index of the secondary structure elements. The root mean square deviation (RMSD) graph showed fluctuations due to structural changes in the helix-coil-helix and beta-turn-beta changes at specific points where the pattern of the RMSD and root mean square fluctuation (RMSF) (< 1.0 Å) support any major domain shifts within the structural framework of the protein-ligand complex and placement of ligand was well complemented within the binding site. The β-factor values demonstrated instability at few points while the radius of gyration for structural compactness as a time function for the 100-ns simulation of protein-ligand complexes showed favorable average values and denoted the stability of all complexes. It is assumed that such findings might facilitate researchers to robustly discover and develop effective therapeutics against S. sciuri alongside other enteric infections.
Collapse
Affiliation(s)
- Aafareen Khan
- Department of Chemistry, Islamia College Peshawar, Peshawar, 25000, KP, Pakistan
| | - Saman Sohail
- Department of Chemistry, Islamia College Peshawar, Peshawar, 25000, KP, Pakistan
| | - Seerat Yaseen
- Abbasi Shaheed Hospital, Karachi Medical and Dental College, Karachi, Pakistan
| | - Sareen Fatima
- Department of Microbiology, University of Balochistan, Quetta, Balochistan, Pakistan
| | - Ayesha Wisal
- Department of Chemistry, Islamia College Peshawar, Peshawar, 25000, KP, Pakistan
| | - Sufyan Ahmed
- Abbasi Shaheed Hospital, Karachi Medical and Dental College, Karachi, Pakistan
| | - Mahrukh Nasir
- Dr. Panjwani Center for Molecular Medicine, International Center for Chemical and Biological Sciences (ICCBS-PCMD), University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Irfan
- Dr. Panjwani Center for Molecular Medicine, International Center for Chemical and Biological Sciences (ICCBS-PCMD), University of Karachi, Karachi, 75270, Pakistan
| | - Asad Karim
- Dr. Panjwani Center for Molecular Medicine, International Center for Chemical and Biological Sciences (ICCBS-PCMD), University of Karachi, Karachi, 75270, Pakistan
| | - Zarrin Basharat
- Alpha Genomics (Private) Limited, Islamabad, 44710, Pakistan
| | - Yasmin Khan
- Dr. Panjwani Center for Molecular Medicine, International Center for Chemical and Biological Sciences (ICCBS-PCMD), University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Aurongzeb
- Faculty of Engineering Sciences & Technology, Hamdard University, Karachi, 74600, Pakistan
| | - Syed Kashif Raza
- Faculty of Rehabilitation and Allied Health Sciences (FRAHS), Riphah International University, Faisalabad, Pakistan
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha, 9088, Saudi Arabia
| | - Carlos M Morel
- Centre for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Building "Expansão", 8Th Floor Room 814, Av. Brasil 4036 - Manguinhos, Rio de Janeiro, RJ, 21040-361, Brazil.
| | - Syed S Hassan
- Dr. Panjwani Center for Molecular Medicine, International Center for Chemical and Biological Sciences (ICCBS-PCMD), University of Karachi, Karachi, 75270, Pakistan.
- Centre for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Building "Expansão", 8Th Floor Room 814, Av. Brasil 4036 - Manguinhos, Rio de Janeiro, RJ, 21040-361, Brazil.
| |
Collapse
|
6
|
Martínez-Laorden A, Arraiz-Fernández C, González-Fandos E. Microbiological Quality and Safety of Fresh Turkey Meat at Retail Level, Including the Presence of ESBL-Producing Enterobacteriaceae and Methicillin-Resistant S. aureus. Foods 2023; 12:1274. [PMID: 36981199 PMCID: PMC10048072 DOI: 10.3390/foods12061274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
The aim of this work was to study the microbiological safety and quality of marketed fresh turkey meat, with special emphasis on methicillin-resistant S. aureus, ESBL-producing E. coli, and K. pneumoniae. A total of 51 fresh turkey meat samples were collected at retail level in Spain. Mesophile, Pseudomonas spp., enterococci, Enterobacteriaceae, and staphylococci counts were 5.10 ± 1.36, 3.17 ± 0.87, 2.03 ± 0.58, 3.18 ± 1.00, and 2.52 ± 0.96 log CFU/g, respectively. Neither Campylobacter spp. nor Clostridium perfringens was detected in any sample. ESBL-producing K. pneumoniae and E. coli were detected in 22 (43.14%), and three (5.88%) samples, respectively, all of which were multi-resistant. Resistance to antimicrobials of category A (monobactams, and glycilcyclines) and category B (cephalosporins of third or fourth generation, polymixins, and quinolones), according to the European Medicine Agency classification, was found among the Enterobacteriaceae isolates. S. aureus and methicillin-resistant S. aureus were detected in nine (17.65%) and four samples (7.84%), respectively. Resistance to antimicrobials of category A (mupirocin, linezolid, rifampicin, and vancomycin) and category B (cephalosporins of third- or fourth generation) was found among S. aureus, coagulase-negative staphylococci, and M. caseolyticus isolates.
Collapse
Affiliation(s)
| | | | - Elena González-Fandos
- Department of Food Technology, CIVA Research Center, University of La Rioja, Madre de Dios, 26006 Logroño, Spain
| |
Collapse
|
7
|
Bats Are Carriers of Antimicrobial-Resistant Staphylococcaceae in Their Skin. Antibiotics (Basel) 2023; 12:antibiotics12020331. [PMID: 36830242 PMCID: PMC9952117 DOI: 10.3390/antibiotics12020331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/21/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Bats have emerged as potential carriers of zoonotic viruses and bacteria, including antimicrobial-resistant bacteria. Staphylococcaceae has been isolated from their gut and nasopharynx, but there is little information about Staphylococcaceae on bat skin. Therefore, this study aimed to decipher the Staphylococci species in bat skin and their antimicrobial susceptibility profile. One hundred and forty-seven skin swabs were collected from bats during the spring and summer of 2021 and 2022. Bats were captured in different areas of the Metropolitan Region of São Paulo, Brazil, according to the degree of anthropization: Area 1 (Forested), Area 2 (Rural), Area 3 (Residential-A), Area 4 (Slum-- up to two floors), Area 5 (Residential-B-condo buildings), and Area 6 (Industrial). Swabs were kept in peptone water broth at 37 °C for 12 h when bacterial growth was streaked in Mannitol salt agar and incubated at 37 °C for 24 h. The disc-diffusion test evaluated antimicrobial susceptibility. Staphylococcaceae were isolated from 42.8% of bats, mostly from young, from the rural area, and during summer. M. sciuri was the most frequent species; S. aureus was also isolated. About 95% of isolates were resistant to at least one drug, and most strains were penicillin resistant. Eight isolates were methicillin resistant, and the mecA gene was detected in one isolate (S. haemolyticus). Antimicrobial resistance is a One Health issue that is not evaluated enough in bats. The results indicate that bats are carriers of clinically meaningful S. aureus and antimicrobial-resistant bacteria. Finally, the results suggest that we should intensify action plans to control the spread of resistant bacteria.
Collapse
|
8
|
Sands K, Carvalho MJ, Spiller OB, Portal EAR, Thomson K, Watkins WJ, Mathias J, Dyer C, Akpulu C, Andrews R, Ferreira A, Hender T, Milton R, Nieto M, Zahra R, Shirazi H, Muhammad A, Akif S, Jan MH, Iregbu K, Modibbo F, Uwaezuoke S, Chan GJ, Bekele D, Solomon S, Basu S, Nandy RK, Naha S, Mazarati JB, Rucogoza A, Gaju L, Mehtar S, Bulabula ANH, Whitelaw A, Walsh TR. Characterisation of Staphylococci species from neonatal blood cultures in low- and middle-income countries. BMC Infect Dis 2022; 22:593. [PMID: 35790903 PMCID: PMC9254428 DOI: 10.1186/s12879-022-07541-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/15/2022] [Indexed: 11/14/2022] Open
Abstract
Background In low- and middle-income countries (LMIC) Staphylococcus aureus is regarded as one of the leading bacterial causes of neonatal sepsis, however there is limited knowledge on the species diversity and antimicrobial resistance caused by Gram-positive bacteria (GPB). Methods We characterised GPB isolates from neonatal blood cultures from LMICs in Africa (Ethiopia, Nigeria, Rwanda, and South Africa) and South-Asia (Bangladesh and Pakistan) between 2015–2017. We determined minimum inhibitory concentrations and performed whole genome sequencing (WGS) on Staphylococci isolates recovered and clinical data collected related to the onset of sepsis and the outcome of the neonate up to 60 days of age. Results From the isolates recovered from blood cultures, Staphylococci species were most frequently identified. Out of 100 S. aureus isolates sequenced, 18 different sequence types (ST) were found which unveiled two small epidemiological clusters caused by methicillin resistant S. aureus (MRSA) in Pakistan (ST8) and South Africa (ST5), both with high mortality (n = 6/17). One-third of S. aureus was MRSA, with methicillin resistance also detected in Staphylococcus epidermidis, Staphylococcus haemolyticus and Mammaliicoccus sciuri. Through additional WGS analysis we report a cluster of M. sciuri in Pakistan identified between July-November 2017. Conclusions In total we identified 14 different GPB bacterial species, however Staphylococci was dominant. These findings highlight the need of a prospective genomic epidemiology study to comprehensively assess the true burden of GPB neonatal sepsis focusing specifically on mechanisms of resistance and virulence across species and in relation to neonatal outcome. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07541-w.
Collapse
|
9
|
Fungwithaya P, Boonchuay K, Narinthorn R, Sontigun N, Sansamur C, Petcharat Y, Thomrongsuwannakij T, Wongtawan T. First study on diversity and antimicrobial-resistant profile of staphylococci in sports animals of Southern Thailand. Vet World 2022; 15:765-774. [PMID: 35497942 PMCID: PMC9047138 DOI: 10.14202/vetworld.2022.765-774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/15/2022] [Indexed: 11/19/2022] Open
Abstract
Background and Aim: Staphylococci are commensal bacteria and opportunistic pathogens found on the skin and mucosa. Sports animals are more prone to injury and illness, and we believe that antimicrobial agents might be extensively used for the treatment and cause the existence of antimicrobial-resistant (AMR) bacteria. This study aimed to investigate the diversity and AMR profile of staphylococci in sports animals (riding horses, fighting bulls, and fighting cocks) in South Thailand. Materials and Methods: Nasal (57 fighting bulls and 33 riding horses) and skin swabs (32 fighting cocks) were taken from 122 animals. Staphylococci were cultured in Mannitol Salt Agar and then identified species by biochemical tests using the VITEK® 2 card for Gram-positive organisms in conjunction with the VITEK® 2 COMPACT machine and genotypic identification by polymerase chain reaction (PCR). Antimicrobial susceptibility tests were performed with VITEK® 2 AST-GN80 test kit cards and VITEK® 2 COMPACT machine. Detection of AMR genes (mecA, mecC, and blaZ) and staphylococcal chromosomal mec (SCCmec) type was evaluated by PCR. Results: Forty-one colonies of staphylococci were isolated, and six species were identified, including Staphylococcus sciuri (61%), Staphylococcus pasteuri (15%), Staphylococcus cohnii (10%), Staphylococcus aureus (7%), Staphylococcus warneri (5%), and Staphylococcus haemolyticus (2%). Staphylococci were highly resistant to two drug classes, penicillin (93%) and cephalosporin (51%). About 56% of the isolates were methicillin-resistant staphylococci (MRS), and the majority was S. sciuri (82%), which is primarily found in horses. Most MRS (82%) were multidrug-resistant. Almost all (96%) of the mecA-positive MRS harbored the blaZ gene. Almost all MRS isolates possessed an unknown type of SCCmec. Interestingly, the AMR rate was notably lower in fighting bulls and cocks than in riding horses, which may be related to the owner’s preference for herbal therapy over antimicrobial drugs. Conclusion: This study presented many types of staphylococci displayed on bulls, cocks, and horses. However, we found a high prevalence of MRS in horses that could be transmitted to owners through close contact activities and might be a source of AMR genotype transmission to other staphylococci.
Collapse
Affiliation(s)
- Punpichaya Fungwithaya
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Centre for One Health, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Excellence Centre for Melioidosis and Other Microorganisms, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| | - Kanpapat Boonchuay
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| | - Ruethai Narinthorn
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| | - Narin Sontigun
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Centre for One Health, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Excellence Centre for Melioidosis and Other Microorganisms, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| | - Chalutwan Sansamur
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Centre for One Health, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| | - Yotsapat Petcharat
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| | - Thotsapol Thomrongsuwannakij
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Centre for One Health, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| | - Tuempong Wongtawan
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Centre for One Health, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Excellence Centre for Melioidosis and Other Microorganisms, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| |
Collapse
|
10
|
A One Health Approach Molecular Analysis of Staphylococcus aureus Reveals Distinct Lineages in Isolates from Miranda Donkeys (Equus asinus) and Their Handlers. Antibiotics (Basel) 2022; 11:antibiotics11030374. [PMID: 35326837 PMCID: PMC8944429 DOI: 10.3390/antibiotics11030374] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/24/2022] [Accepted: 03/04/2022] [Indexed: 12/11/2022] Open
Abstract
Donkeys (Equus asinus) are in decline in Europe. Occupational exposure to farm animals has been associated with increased staphylococci carriage. We aimed to isolate S. aureus and coagulase-negative staphylococci (CoNS) from donkeys and handlers and characterize the antimicrobial resistance profiles and genetic lineages of S. aureus strains. Oral and nasal swab samples were collected from 49 Miranda donkeys and 23 handlers from 15 different farms. Staphylococci species were identified by MALDI-TOF MS. The presence of antimicrobial resistance genes and virulence factors was investigated by PCR. Molecular typing was performed in S. aureus isolates. From the 49 donkey samples, 4 S. aureus (8.2%) and 21 CoNS (42.9%) were isolated. Ten handlers (43.5%) were carriers of S. aureus and 4 (17.4%) carried CoNS. The CoNS isolates showed resistance to several classes of antimicrobials encoded by the mecA, aph (3′)-IIIa, ant (4′)-Ia, tetM, tetK, lnuA, ermB, ermC, dfrA and dfrG genes. S. aureus isolates were resistant to penicillin, aminoglicosides and tetracycline harboring the blaZ, aph (3′)-IIIa, tetL, tetM and tetK genes. All S. aureus isolates from donkeys belonged to ST49 and spa-type t208 while the strains isolated from the handlers were ascribed to 3 STs and 7 spa-types. However, human isolates were from different STs than the donkey isolates. Donkeys are mainly colonized by methicillin-resistant S. sciuri. S. aureus transmission between donkeys and their handlers appears not to have occurred since the isolates belonged to different genetic lineages.
Collapse
|
11
|
Cai Y, Zheng L, Lu Y, Zhao X, Sun Y, Tang X, Xiao J, Wang C, Tong C, Zhao L, Xiao Y, Zhao X, Xue H. Inducible Resistance to β-Lactams in Oxacillin-Susceptible mecA1-Positive Staphylococcus sciuri Isolated From Retail Pork. Front Microbiol 2021; 12:721426. [PMID: 34745029 PMCID: PMC8564388 DOI: 10.3389/fmicb.2021.721426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/27/2021] [Indexed: 11/20/2022] Open
Abstract
Most isolated strains of Staphylococcus sciuri contain mecA1, the evolutionary origin of mecA, but are sensitive to β-lactams (OS-MRSS, oxacillin-susceptible mecA1-positive S. sciuri). In order to improve the efficacy of antibiotic treatment, it is important to clarify whether the resistance of OS-MRSS to β-lactams is an inducible phenotype. In this study, three OS-MRSS strains with oxacillin MIC = 1 μg/ml were isolated from 29 retail pork samples. The resistance of OS-MRSS to β-lactams (MIC > 256 μg/ml) was found to be induced by oxacillin, and the induced resistance was observed to remain stable within a certain period of time. Interestingly, the induced β-lactam resistance was not caused by mecA1, heterogeneous resistance, or any genetic mutation, but mainly due to increased wall teichoic acid (WTA) synthesis that thickened the cell wall. The induced strains also showed slower growth rate, as well as decreased adhesion ability and biofilm thickness. These phenotypes were found to be achieved through altered gene expression in associated pathways, such as the citrate cycle and pentose phosphate pathway. The results challenge the traditional antibiotic sensitivity test. In the presence of β-lactam antibiotics, OS-MRSS that was initially sensitive to β-lactams was observed to gradually develop β-lactam resistance in several days. This often-neglected phenomenon in antibiotic sensitivity tests requires further research attention.
Collapse
Affiliation(s)
- Yifei Cai
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Liangjun Zheng
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Yao Lu
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Xu Zhao
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Yanting Sun
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Xingyuan Tang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Jinhe Xiao
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Chen Wang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Chao Tong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Lili Zhao
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Yingping Xiao
- Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xin Zhao
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Huping Xue
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| |
Collapse
|
12
|
The Resistome and Mobilome of Multidrug-Resistant Staphylococcus sciuri C2865 Unveil a Transferable Trimethoprim Resistance Gene, Designated dfrE, Spread Unnoticed. mSystems 2021; 6:e0051121. [PMID: 34374564 PMCID: PMC8407400 DOI: 10.1128/msystems.00511-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Methicillin-resistant Staphylococcus sciuri (MRSS) strain C2865 from a stranded dog in Nigeria was trimethoprim (TMP) resistant but lacked formerly described staphylococcal TMP-resistant dihydrofolate reductase genes (dfr). Whole-genome sequencing, comparative genomics, and pan-genome analyses were pursued to unveil the molecular bases for TMP resistance via resistome and mobilome profiling. MRSS C2865 comprised a species subcluster and positioned just above the intraspecies boundary. Lack of species host tropism was observed. S. sciuri exhibited an open pan-genome, while MRSS C2865 harbored the highest number of unique genes (75% associated with mobilome). Within this fraction, we discovered a transferable TMP resistance gene, named dfrE, which confers high-level TMP resistance in Staphylococcus aureus and Escherichia coli. dfrE was located in a novel multidrug resistance mosaic plasmid (pUR2865-34) encompassing adaptive, mobilization, and segregational stability traits. dfrE was formerly denoted as dfr_like in Exiguobacterium spp. from fish farm sediment in China but escaped identification in one macrococcal and diverse staphylococcal genomes in different Asian countries. dfrE shares the highest identity with dfr of soil-related Paenibacillus anaericanus (68%). Data analysis discloses that dfrE has emerged from a single ancestor and places S. sciuri as a plausible donor. C2865 unique fraction additionally enclosed novel chromosomal mobile islands, including a multidrug-resistant pseudo-SCCmec cassette, three apparently functional prophages (Siphoviridae), and an SaPI4-related staphylococcal pathogenicity island. Since dfrE seems not yet common in staphylococcal clinical specimens, our data promote early surveillance and enable molecular diagnosis. We evidence the genome plasticity of S. sciuri and highlight its role as a resourceful reservoir for adaptive traits. IMPORTANCE The discovery and surveillance of antimicrobial resistance genes (AMRG) and their mobilization platforms are critical to understand the evolution of bacterial resistance and to restrain further expansion. Limited genomic data are available on Staphylococcus sciuri; regardless, it is considered a reservoir for critical AMRG and mobile elements. We uncover a transferable staphylococcal TMP resistance gene, named dfrE, in a novel mosaic plasmid harboring additional resistance, adaptive, and self-stabilization features. dfrE is present but evaded detection in diverse species from varied sources geographically distant. Our analyses evidence that the dfrE-carrying element has emerged from a single ancestor and position S. sciuri as the donor species for dfrE spread. We also identify novel mobilizable chromosomal islands encompassing AMRG and three unrelated prophages. We prove high intraspecies heterogenicity and genome plasticity for S. sciuri. This work highlights the importance of genome-wide ecological studies to facilitate identification, characterization, and evolution routes of bacteria adaptive features.
Collapse
|