1
|
Mitchell AK, Bliss RR, Church FC. Exercise, Neuroprotective Exerkines, and Parkinson's Disease: A Narrative Review. Biomolecules 2024; 14:1241. [PMID: 39456173 PMCID: PMC11506540 DOI: 10.3390/biom14101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disease in which treatment often includes an exercise regimen. Exercise is neuroprotective in animal models of PD, and, more recently, human clinical studies have verified exercise's disease-modifying effect. Aerobic exercise and resistance training improve many of PD's motor and non-motor symptoms, while neuromotor therapy and stretching/flexibility exercises positively contribute to the quality of life in people with PD. Therefore, understanding the role of exercise in managing this complex disorder is crucial. Exerkines are bioactive substances that are synthesized and released during exercise and have been implicated in several positive health outcomes, including neuroprotection. Exerkines protect neuronal cells in vitro and rodent PD models in vivo. Aerobic exercise and resistance training both increase exerkine levels in the blood, suggesting a role for exerkines in the neuroprotective theory. Many exerkines demonstrate the potential for protecting the brain against pathological missteps caused by PD. Every person (people) with Parkinson's (PwP) needs a comprehensive exercise plan tailored to their unique needs and abilities. Here, we provide an exercise template to help PwP understand the importance of exercise for treating PD, describe barriers confronting many PwP in their attempt to exercise, provide suggestions for overcoming these barriers, and explore the role of exerkines in managing PD. In conclusion, exercise and exerkines together create a powerful neuroprotective system that should contribute to slowing the chronic progression of PD.
Collapse
Affiliation(s)
- Alexandra K. Mitchell
- Department of Health Sciences, Division of Physical Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | | | - Frank C. Church
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Qu J, Dang S, Sun YY, Zhang T, Jiang H, Lu HZ. METTL21C mediates autophagy and formation of slow-twitch muscle fibers in mice after exercise. Genes Genet Syst 2024; 99:n/a. [PMID: 38417894 DOI: 10.1266/ggs.23-00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024] Open
Abstract
Homeostasis is essential for muscle repair and regeneration after skeletal muscle exercise. This study investigated the role of methyltransferase-like 21C (METTL21C) in skeletal muscle of mice after exercise and the potential mechanism. First, muscle samples were collected at 2, 4 and 6 weeks after exercise, and liver glycogen, muscle glycogen, blood lactic acid and triglyceride were assessed. Moreover, the expression levels of autophagy markers and METTL21C in skeletal muscle were analyzed. The results showed that the expression levels of METTL21C and MYH7 in the gastrocnemius muscle of mice in the exercise group were significantly higher after exercise than those in the control group, which suggested that long-term exercise promoted the formation of slow-twitch muscle fibers in mouse skeletal muscle. Likewise, the autophagy capacity was enhanced with the prolongation of exercise in muscles. The findings were confirmed in mouse C2C12 cells. We discovered that knockdown of Mettl21c reduced the expression of MYH7 and the autophagy level in mouse myoblasts. These findings indicate that METTL21C promotes skeletal muscle homeostasis after exercise by enhancing autophagy, and also contributes to myogenic differentiation and the formation of slow muscle fibers.
Collapse
Affiliation(s)
- Jing Qu
- Institute of Physical Education, Shaanxi University of Technology
| | - Shuai Dang
- School of Biological Science and Engineering, Shaanxi University of Technology
- Department of Medical, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University
| | - Yuan-Yuan Sun
- School of Biological Science and Engineering, Shaanxi University of Technology
| | - Tao Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology
| | - Hai Jiang
- Institute of Physical Education, Shaanxi University of Technology
| | - Hong-Zhao Lu
- School of Biological Science and Engineering, Shaanxi University of Technology
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology
| |
Collapse
|
3
|
Zhu Y, Zhou X, Zhu A, Xiong S, Xie J, Bai Z. Advances in exercise to alleviate sarcopenia in older adults by improving mitochondrial dysfunction. Front Physiol 2023; 14:1196426. [PMID: 37476691 PMCID: PMC10355810 DOI: 10.3389/fphys.2023.1196426] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023] Open
Abstract
Sarcopenia is a chronic degenerative disease affecting primarily older adults. A growing aging population is gradually increasing the number of patients suffering from sarcopenia, placing increasing financial pressure on patients' families and society in general. There is a strong link between mitochondrial dysfunction and sarcopenia pathogenesis. As a result, treating sarcopenia by improving mitochondrial dysfunction is an effective strategy. Numerous studies have demonstrated that exercise has a positive effect on mitochondrial dysfunction when treating sarcopenia. Exercise promotes mitochondrial biogenesis and mitochondrial fusion/division to add new mitochondria or improve dysfunctional mitochondria while maintaining mitochondrial calcium homeostasis, mitochondrial antioxidant defense system, and mitochondrial autophagy to promote normal mitochondrial function. Furthermore, exercise can reduce mitochondrial damage caused by aging by inhibiting mitochondrial oxidative stress, mitochondrial DNA damage, and mitochondrial apoptosis. Exercise effectiveness depends on several factors, including exercise duration, exercise intensity, and exercise form. Therefore, Moderate-intensity exercise over 4 weeks potentially mitigates sarcopenia in older adults by ameliorating mitochondrial dysfunction. HIIT has demonstrated potential as a viable approach to addressing sarcopenia in aged rats. However, further investigation is required to validate its efficacy in treating sarcopenia in older adults.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhenmin Bai
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| |
Collapse
|
4
|
Stratos I, Rinas I, Schröpfer K, Hink K, Herlyn P, Bäumler M, Histing T, Bruhn S, Müller-Hilke B, Menger MD, Vollmar B, Mittlmeier T. Effects on Bone and Muscle upon Treadmill Interval Training in Hypogonadal Male Rats. Biomedicines 2023; 11:biomedicines11051370. [PMID: 37239040 DOI: 10.3390/biomedicines11051370] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Testosterone deficiency in males is linked to various pathological conditions, including muscle and bone loss. This study evaluated the potential of different training modalities to counteract these losses in hypogonadal male rats. A total of 54 male Wistar rats underwent either castration (ORX, n = 18) or sham castration (n = 18), with 18 castrated rats engaging in uphill, level, or downhill interval treadmill training. Analyses were conducted at 4, 8, and 12 weeks postsurgery. Muscle force of the soleus muscle, muscle tissue samples, and bone characteristics were analyzed. No significant differences were observed in cortical bone characteristics. Castrated rats experienced decreased trabecular bone mineral density compared to sham-operated rats. However, 12 weeks of training increased trabecular bone mineral density, with no significant differences among groups. Muscle force measurements revealed decreased tetanic force in castrated rats at week 12, while uphill and downhill interval training restored force to sham group levels and led to muscle hypertrophy compared to ORX animals. Linear regression analyses showed a positive correlation between bone biomechanical characteristics and muscle force. The findings suggest that running exercise can prevent bone loss in osteoporosis, with similar bone restoration effects observed across different training modalities.
Collapse
Affiliation(s)
- Ioannis Stratos
- Department of Orthopaedic Surgery, University of Würzburg, 97074 Wuerzburg, Germany
- Department of Trauma, Hand and Reconstructive Surgery, University of Rostock, 18057 Rostock, Germany
| | - Ingmar Rinas
- Department of Trauma, Hand and Reconstructive Surgery, University of Rostock, 18057 Rostock, Germany
| | - Konrad Schröpfer
- Institute for Experimental Surgery, University of Rostock, 18057 Rostock, Germany
| | - Katharina Hink
- Institute for Experimental Surgery, University of Rostock, 18057 Rostock, Germany
| | - Philipp Herlyn
- Department of Trauma, Hand and Reconstructive Surgery, University of Rostock, 18057 Rostock, Germany
| | - Mario Bäumler
- Olympic Training Center Mecklenburg-Vorpommern, 18057 Rostock, Germany
| | - Tina Histing
- Department of Trauma and Reconstructive Surgery, Eberhard-Karls-University Tuebingen, BG Unfallklinik, 72076 Tuebingen, Germany
| | - Sven Bruhn
- Institute of Sport Science, University of Rostock, 18057 Rostock, Germany
| | | | - Michael D Menger
- Institute for Clinical and Experimental Surgery, University of Saarland, 66123 Homburg, Germany
| | - Brigitte Vollmar
- Institute for Experimental Surgery, University of Rostock, 18057 Rostock, Germany
| | - Thomas Mittlmeier
- Department of Trauma, Hand and Reconstructive Surgery, University of Rostock, 18057 Rostock, Germany
| |
Collapse
|
5
|
Balakrishnan R, Thurmond DC. Mechanisms by Which Skeletal Muscle Myokines Ameliorate Insulin Resistance. Int J Mol Sci 2022; 23:4636. [PMID: 35563026 PMCID: PMC9102915 DOI: 10.3390/ijms23094636] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 12/17/2022] Open
Abstract
The skeletal muscle is the largest organ in the body and secretes circulating factors, including myokines, which are involved in various cellular signaling processes. Skeletal muscle is vital for metabolism and physiology and plays a crucial role in insulin-mediated glucose disposal. Myokines have autocrine, paracrine, and endocrine functions, serving as critical regulators of myogenic differentiation, fiber-type switching, and maintaining muscle mass. Myokines have profound effects on energy metabolism and inflammation, contributing to the pathophysiology of type 2 diabetes (T2D) and other metabolic diseases. Myokines have been shown to increase insulin sensitivity, thereby improving glucose disposal and regulating glucose and lipid metabolism. Many myokines have now been identified, and research on myokine signaling mechanisms and functions is rapidly emerging. This review summarizes the current state of the field regarding the role of myokines in tissue cross-talk, including their molecular mechanisms, and their potential as therapeutic targets for T2D.
Collapse
Affiliation(s)
| | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, 1500 E. Duarte Road, Duarte, CA 91010, USA;
| |
Collapse
|
6
|
A new paradigm in sarcopenia: Cognitive impairment caused by imbalanced myokine secretion and vascular dysfunction. Biomed Pharmacother 2022; 147:112636. [DOI: 10.1016/j.biopha.2022.112636] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
|
7
|
Liu J, He H, Tang L, Peng Y, Mu J, Lan L, Chen C, Dong Z, Cheng L. Comparison of the effect of bone induction with different exercise modes in mice. Biomed Mater Eng 2022; 33:365-375. [PMID: 35180103 DOI: 10.3233/bme-211341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUD The calcium phosphate biomaterials have excellent bone inductivity, exercise can promote the bone formation of biomaterials in animals, but it is not clear which exercise mode is better. OBJECTIVE To explore the effect of different exercise modes on osteoinduction by calcium phosphate-based biomaterials which were implanted in mice. METHOD The collagen-thermosensitive hydrogel-calcium phosphate (CTC) composite was prepared and transplanted in the thigh muscle of mice, then all mice were divided randomly into four groups (n = 10): the uphill running group, the downhill running group, the swimming group and the control group (conventional breeding). Ten weeks later, the samples were harvested, fixed, decalcified, embedded in paraffin and stained with hematoxylin and eosin (H&E), and then the osteoinduction phenomenon was observed and compared through digital slice scanning system. The area percentage of new bone-related tissues and the number of osteocytes and chondrocytes were counted and calculated. Lastly, the immunohistochemistry of type I collagen (ColI) and osteopontin (OPN) was performed to identify the new bone tissues. RESULTS The area percentage of new bone-related tissues and the number of osteocytes and chondrocytes were positively correlated; ordering from most to least of each group were as followings: the uphill running group > the swimming group > the downhill running group > the control group. The immunostaining of ColI and OPN results showed that both of the two proteins were identified in the new bone tissues, indicating that the CTC composite could induce ectopic bone formation in mice, especially training for uphill running and swimming. CONCLUSION Our results show that uphill running or swimming is a form of exercise that is beneficial to osteogenesis. According to this, we propose treatment with artificial bone transplantation to patients who suffer from bone defects. Patients should do moderate exercise, such as running uphill on the treadmill or swimming.
Collapse
Affiliation(s)
- Juan Liu
- School of Basic Medicine, Chengdu University, Chengdu, China
| | - Hongyan He
- School of Basic Medicine, Chengdu University, Chengdu, China
| | - Lu Tang
- Affiliated Hospital and Clinical College, Chengdu University, Chengdu, China
| | - Yu Peng
- School of Basic Medicine, Chengdu University, Chengdu, China
| | - Junyu Mu
- School of Basic Medicine, Chengdu University, Chengdu, China
| | - Liang Lan
- School of Basic Medicine, Chengdu University, Chengdu, China
| | - Cheng Chen
- School of Basic Medicine, Chengdu University, Chengdu, China
| | - Zhihong Dong
- School of Mechanical Engineering, Chengdu University, Chengdu, China
| | - Lijia Cheng
- School of Basic Medicine, Chengdu University, Chengdu, China
| |
Collapse
|
8
|
Kim DY, Oh SL, Lim JY. Applications of Eccentric Exercise to Improve Muscle and Mobility Function in Older Adults. Ann Geriatr Med Res 2022; 26:4-15. [PMID: 35038818 PMCID: PMC8984170 DOI: 10.4235/agmr.21.0138] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/11/2022] [Indexed: 11/01/2022] Open
Abstract
Muscle aging ultimately leads to the deterioration of human physiological functioning, including declining muscle strength, loss of muscle mass, and decreased quality of life in advanced age. Eccentric exercise is a key intervention that has the potential to ameliorate this problem. Recent studies have focused on evidence-based exercise interventions to prevent declines in muscle strength and physical function in older adults. This paper reviewed relevant literature on the use of eccentric exercise to improve muscle and mobility function in older adults. We explained not only the changes in mobility that occur with aging but also the rationale for and positive effects of eccentric intervention in older adults. We also explored several proposed mechanisms for the intramuscular changes caused by eccentric muscle contraction and considered the safety and side effects accompanying eccentric training. We concluded by suggesting that eccentric exercise is an exercise modality that can potentially improve muscle strength and enhance mobility in older adults.
Collapse
Affiliation(s)
- Dae Young Kim
- Department of Rehabilitation Medicine, Aging and Mobility Biophysics Laboratory, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.,Health and Exercise Science Laboratory, Institute of Sports Science, Seoul National University, Seoul, Republic of Korea
| | - Seung Lyul Oh
- Department of Rehabilitation Medicine, Aging and Mobility Biophysics Laboratory, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.,Institute on Aging, Seoul National University, Seoul, Republic of Korea
| | - Jae-Young Lim
- Department of Rehabilitation Medicine, Aging and Mobility Biophysics Laboratory, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.,Institute on Aging, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Pang BPS, Chan WS, Chan CB. Mitochondria Homeostasis and Oxidant/Antioxidant Balance in Skeletal Muscle-Do Myokines Play a Role? Antioxidants (Basel) 2021; 10:antiox10020179. [PMID: 33513795 PMCID: PMC7911667 DOI: 10.3390/antiox10020179] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are the cellular powerhouses that generate adenosine triphosphate (ATP) to substantiate various biochemical activities. Instead of being a static intracellular structure, they are dynamic organelles that perform constant structural and functional remodeling in response to different metabolic stresses. In situations that require a high ATP supply, new mitochondria are assembled (mitochondrial biogenesis) or formed by fusing the existing mitochondria (mitochondrial fusion) to maximize the oxidative capacity. On the other hand, nutrient overload may produce detrimental metabolites such as reactive oxidative species (ROS) that wreck the organelle, leading to the split of damaged mitochondria (mitofission) for clearance (mitophagy). These vital processes are tightly regulated by a sophisticated quality control system involving energy sensing, intracellular membrane interaction, autophagy, and proteasomal degradation to optimize the number of healthy mitochondria. The effective mitochondrial surveillance is particularly important to skeletal muscle fitness because of its large tissue mass as well as its high metabolic activities for supporting the intensive myofiber contractility. Indeed, the failure of the mitochondrial quality control system in skeletal muscle is associated with diseases such as insulin resistance, aging, and muscle wasting. While the mitochondrial dynamics in cells are believed to be intrinsically controlled by the energy content and nutrient availability, other upstream regulators such as hormonal signals from distal organs or factors generated by the muscle itself may also play a critical role. It is now clear that skeletal muscle actively participates in systemic energy homeostasis via producing hundreds of myokines. Acting either as autocrine/paracrine or circulating hormones to crosstalk with other organs, these secretory myokines regulate a large number of physiological activities including insulin sensitivity, fuel utilization, cell differentiation, and appetite behavior. In this article, we will review the mechanism of myokines in mitochondrial quality control and ROS balance, and discuss their translational potential.
Collapse
|
10
|
Exercise-Induced Myokines can Explain the Importance of Physical Activity in the Elderly: An Overview. Healthcare (Basel) 2020; 8:healthcare8040378. [PMID: 33019579 PMCID: PMC7712334 DOI: 10.3390/healthcare8040378] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 12/12/2022] Open
Abstract
Physical activity has been found to aid the maintenance of health in the elderly. Exercise-induced skeletal muscle contractions lead to the production and secretion of many small proteins and proteoglycan peptides called myokines. Thus, studies on myokines are necessary for ensuring the maintenance of skeletal muscle health in the elderly. This review summarizes 13 myokines regulated by physical activity that are affected by aging and aims to understand their potential roles in metabolic diseases. We categorized myokines into two groups based on regulation by aerobic and anaerobic exercise. With aging, the secretion of apelin, β-aminoisobutyric acid (BAIBA), bone morphogenetic protein 7 (BMP-7), decorin, insulin-like growth factor 1 (IGF-1), interleukin-15 (IL-15), irisin, stromal cell-derived factor 1 (SDF-1), sestrin, secreted protein acidic rich in cysteine (SPARC), and vascular endothelial growth factor A (VEGF-A) decreased, while that of IL-6 and myostatin increased. Aerobic exercise upregulates apelin, BAIBA, IL-15, IL-6, irisin, SDF-1, sestrin, SPARC, and VEGF-A expression, while anaerobic exercise upregulates BMP-7, decorin, IGF-1, IL-15, IL-6, irisin, and VEGF-A expression. Myostatin is downregulated by both aerobic and anaerobic exercise. This review provides a rationale for developing exercise programs or interventions that maintain a balance between aerobic and anaerobic exercise in the elderly.
Collapse
|
11
|
Cha E, Jung KI, Yoo WK, Shin DE, Ohn SH. Non-Powered automatic velocity-controlled wheeled walker improves gait and satisfaction in patients with hip fracture when walking downhill: A cross-over study. Gait Posture 2020; 82:227-232. [PMID: 32979701 DOI: 10.1016/j.gaitpost.2020.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/02/2020] [Accepted: 09/10/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND A standard four-wheeled walker is commonly used after surgery for hip fracture to aid ambulation. However, elderly patients experience some difficulties and are at risk for falls; therefore, attempts are being made to address these issues. RESEARCH QUESTION Does the non-powered automatic velocity-controlled (NPAVEC) wheeled walker improves the gait and satisfaction of patients with hip fractures when walking downhill using it? METHODS In this cross-over study, 21 participants performed three trials of walking downhill with two walkers (an NPAVEC wheeled walker and a standard four-wheeled walker) at a self-selected speed. We compared the lower limb surface electromyography data and self-reported satisfaction scores for both walkers. RESULTS Regarding the affected limb, the NPAVEC wheeled walker increased contraction in the vastus medialis (p = 0.003) and tibialis anterior (p = 0.014), and biceps femoris of the unaffected limb (p = 0.01). Additionally, participants reported greater satisfaction when using the NPAVEC wheeled walker (p < 0.001). SIGNIFICANCE An NPAVEC wheeled walker, compared to a four-wheeled walker, can assist patients recovering from hip fracture when walking downhill by improving the gait and increasing satisfaction.
Collapse
Affiliation(s)
- Eunsil Cha
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea.
| | - Kwang-Ik Jung
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea.
| | - Woo-Kyoung Yoo
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea.
| | - Dong Eui Shin
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea.
| | - Suk Hoon Ohn
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea.
| |
Collapse
|
12
|
Portier H, Benaitreau D, Pallu S. Does Physical Exercise Always Improve Bone Quality in Rats? Life (Basel) 2020; 10:life10100217. [PMID: 32977460 PMCID: PMC7598192 DOI: 10.3390/life10100217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
For decades, the osteogenic effect from different physical activities on bone in rodents remained uncertain. This literature review presents for the first time the effects on five exercise models (treadmill running, wheel running, swimming, resistance training and vibration modes) in three different experimental rat groups (males, females, osteopenic) on bone quality. The bone parameters presented are bone mineral density, micro-architectural and mechanical properties, and osteoblast/osteocyte and osteoclast parameters. This review shows that physical activities have a positive effect (65% of the results) on bone status, but we clearly observed a difference amongst the different protocols. Even if treadmill running is the most used protocol, the resistance training constitutes the first exercise model in term of osteogenic effects (87% of the whole results obtained on this model). The less osteogenic model is the vibration mode procedure (31%). It clearly appears that the gender plays a role on the bone response to swimming and wheel running exercises. Besides, we did not observe negative results in the osteopenic population with impact training, wheel running and vibration activities. Moreover, about osteoblast/osteocyte parameters, we conclude that high impact and resistance exercise (such jumps and tower climbing) seems to increase bone formation more than running or aerobic exercise. Among the different protocols, literature has shown that the treadmill running procedure mainly induces osteogenic effects on the viability of the osteocyte lineage in both males and females or ovariectomized rats; running in voluntary wheels contributes to a negative effect on bone metabolism in older male models; whole-body vertical vibration is not an osteogenic exercise in female and ovariectomized rats; whereas swimming provides controversial results in female models. For osteoclast parameters only, running in a voluntary wheel for old males, the treadmill running program at high intensity in ovariectomized rats, and the swimming program in a specific ovariectomy condition have detrimental consequences.
Collapse
Affiliation(s)
- Hugues Portier
- Laboratoire de Biologie Bioingénierie et Bioimagerie Ostéo-Articulaire (B3OA), Université Paris, UMR CNRS 7052, INSERM U1273, 10 Av de Verdun, 75010 Paris, France;
- Collegium Science & Technique, 2 allée du château, Université d’Orléans. 45100 Orléans, France;
- Correspondence: ; Tel.: +33-782-309-433
| | - Delphine Benaitreau
- Collegium Science & Technique, 2 allée du château, Université d’Orléans. 45100 Orléans, France;
| | - Stéphane Pallu
- Laboratoire de Biologie Bioingénierie et Bioimagerie Ostéo-Articulaire (B3OA), Université Paris, UMR CNRS 7052, INSERM U1273, 10 Av de Verdun, 75010 Paris, France;
- Collegium Science & Technique, 2 allée du château, Université d’Orléans. 45100 Orléans, France;
| |
Collapse
|
13
|
Physical Exercise and Myokines: Relationships with Sarcopenia and Cardiovascular Complications. Int J Mol Sci 2020; 21:ijms21103607. [PMID: 32443765 PMCID: PMC7279354 DOI: 10.3390/ijms21103607] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle is capable of secreting different factors in order to communicate with other tissues. These mediators, the myokines, show potentially far-reaching effects on non-muscle tissues and can provide a molecular interaction between muscle and body physiology. Sarcopenia is a chronic degenerative neuromuscular disease closely related to cardiomyopathy and chronic heart failure, which influences the production and release of myokines. Our objective was to explore the relationship between myokines, sarcopenia, and cardiovascular diseases (CVD). The autocrine, paracrine, and endocrine actions of myokines include regulation of energy expenditure, insulin sensitivity, lipolysis, free fatty acid oxidation, adipocyte browning, glycogenolysis, glycogenesis, and general metabolism. A sedentary lifestyle accelerates the aging process and is a risk factor for developing sarcopenia, metabolic syndrome, and CVD. Increased adipose tissue resulting from the decrease in muscle mass in patients with sarcopenia may also be involved in the pathology of CVD. Myokines are protagonists in the complex condition of sarcopenia, which is associated with adverse clinical outcomes in patients with CVD. The discovery of new pathways and the link between myokines and CVD remain a cornerstone toward multifaceted interventions and perhaps the minimization of the damage resulting from muscle loss induced by factors such as atherosclerosis.
Collapse
|
14
|
Borok MJ, Mademtzoglou D, Relaix F. Bu-M-P-ing Iron: How BMP Signaling Regulates Muscle Growth and Regeneration. J Dev Biol 2020; 8:jdb8010004. [PMID: 32053985 PMCID: PMC7151139 DOI: 10.3390/jdb8010004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/16/2022] Open
Abstract
The bone morphogenetic protein (BMP) pathway is best known for its role in promoting bone formation, however it has been shown to play important roles in both development and regeneration of many different tissues. Recent work has shown that the BMP proteins have a number of functions in skeletal muscle, from embryonic to postnatal development. Furthermore, complementary studies have recently demonstrated that specific components of the pathway are required for efficient muscle regeneration.
Collapse
Affiliation(s)
- Matthew J Borok
- Inserm, IMRB U955-E10, 94010 Créteil, France; (M.J.B.); (D.M.)
- Faculté de santé, Université Paris Est, 94000 Creteil, France
| | - Despoina Mademtzoglou
- Inserm, IMRB U955-E10, 94010 Créteil, France; (M.J.B.); (D.M.)
- Faculté de santé, Université Paris Est, 94000 Creteil, France
| | - Frederic Relaix
- Inserm, IMRB U955-E10, 94010 Créteil, France; (M.J.B.); (D.M.)
- Faculté de santé, Université Paris Est, 94000 Creteil, France
- Ecole Nationale Veterinaire d’Alfort, 94700 Maison Alfort, France
- Etablissement Français du Sang, 94017 Créteil, France
- APHP, Hopitaux Universitaires Henri Mondor, DHU Pepsy & Centre de Référence des Maladies Neuromusculaires GNMH, 94000 Créteil, France
- Correspondence: ; Tel.: +33-149-813-940
| |
Collapse
|
15
|
Cui X, Zhang Y, Wang Z, Yu J, Kong Z, Ružić L. High-intensity interval training changes the expression of muscle RING-finger protein-1 and muscle atrophy F-box proteins and proteins involved in the mechanistic target of rapamycin pathway and autophagy in rat skeletal muscle. Exp Physiol 2019; 104:1505-1517. [PMID: 31357248 DOI: 10.1113/ep087601] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/17/2019] [Indexed: 12/18/2022]
Abstract
NEW FINDINGS What is the central question of this study? What are the adaptations of protein synthesis and degradation that occur in skeletal muscle in response to high-intensity interval training (HIIT), and what are the magnitudes of the changes in response to HIIT, compared to moderate-intensity continuous training (MICT), and the mechanisms underlying these changes? What is the main finding and its importance? HIIT is more effective than MICT in altering the expression of muscle RING-finger protein-1 and muscle atrophy F-box, and enhancing the autophagic flux in rat soleus muscle. In addition, HIIT could activate the mechanistic target of rapamycin pathway. These findings suggest that HIIT might be an effective exercise strategy for health promotion in skeletal muscle. ABSTRACT This study aimed to investigate the impact of high-intensity interval training (HIIT) on the proteins involved in protein synthesis, the ubiquitin-proteasome system (UPS) and autophagy in skeletal muscle of middle-aged rats. Nine-month-old male Wistar rats (n = 56) were randomly divided into three groups: a control (C) group, a moderate-intensity continuous training (MICT) group and a HIIT group. Rats in the training groups ran on treadmills 5 days per week for 8 weeks. The MICT group ran for 50 min at 60% V ̇ O 2 max , while the HIIT group ran for 3 min at 80% of V ̇ O 2 max six times separated by 3-min periods at 40% V ̇ O 2 max . Aerobic endurance, number of autophagosomes and expression of proteins involved in protein synthesis and degradation in the soleus muscle were measured at three time points: before training, after 4 weeks and after 8 weeks of training. Compared to the C group, HIIT and MICT increased the expression of phosphorylated mechanistic target of rapamycin (mTOR) after 8 weeks (P < 0.05 and P < 0.01, respectively). HIIT increased the expression of muscle RING-finger protein-1 (MuRF-1) after 4 weeks (P < 0.01), and decreased its expression after 8 weeks (P < 0.01). Both HIIT and MICT decreased the expression of muscle atrophy F-box (MAFbx) after 4 weeks (P < 0.05). HIIT improved the expression of microtubule-associated protein 1A/1B-light chain 3 (LC3)-II (P < 0.05), and decreased the P62 content (P < 0.01) after 4 weeks. The LC3II/LC3I ratio was increased after 8 weeks (P < 0.01). This study demonstrated that HIIT could activate the mTOR pathway, alter the expression of MuRF-1 and MAFbx proteins, and enhance autophagic flux in soleus muscle of middle-aged rats.
Collapse
Affiliation(s)
- Xinwen Cui
- China Institute of Sport Science, Dongcheng District, Beijing, China.,Beijing Sport University, Haidian District, Beijing, China
| | - Yimin Zhang
- Beijing Sport University, Haidian District, Beijing, China
| | - Zan Wang
- Beijing Sport University, Haidian District, Beijing, China
| | - Jingjing Yu
- Beijing Sport University, Haidian District, Beijing, China
| | - Zhenxing Kong
- Beijing Sport University, Haidian District, Beijing, China
| | - Lana Ružić
- Faculty of Kinesiology, University of Zagreb, Department of Sport and Exercise Medicine, Zagreb, Croatia
| |
Collapse
|
16
|
Li FH, Sun L, Wu DS, Gao HE, Min Z. Proteomics-based identification of different training adaptations of aged skeletal muscle following long-term high-intensity interval and moderate-intensity continuous training in aged rats. Aging (Albany NY) 2019; 11:4159-4182. [PMID: 31241467 PMCID: PMC11623340 DOI: 10.18632/aging.102044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 06/17/2019] [Indexed: 11/25/2022]
Abstract
Aging-associated loss of skeletal muscle mass and force increases the risk of falls, impairs mobility, and leads to a reduced quality of life. High-intensity interval training (HIIT) is superior to moderate-intensity continuous training (MICT) for improving morphological and metabolic adaptations of skeletal muscle in older adults, but the underlying mechanism is unknown. Aged female rats underwent HIIT and MICT for 8 months, and their differential impacts on skeletal muscle proteome were investigated. HIIT resulted in a larger improvement in grip strength and fiber cross-sectional area, with similar increases in inclined plane performance and time to exhaustion. Proteomic analysis showed that common training adaptations of both protocols included changes to muscle contraction, focal adhesion signaling, mitochondrial function, apoptosis and regeneration, and anti-oxidation, whereas protein processing in the endoplasmic reticulum and adipocytokine signaling were specifically altered in the MICT and HIIT groups, respectively. Immunoblotting showed that upregulation of the adiponectin/AMPK signaling pathway may be associated with improvements in autophagy, oxidative stress, mitochondrial function, and apoptosis in aged skeletal muscle following HIIT. Thus, understanding the molecular differences in training adaptations from these two exercise modalities may aid in combatting sarcopenia.
Collapse
Affiliation(s)
- Fang-Hui Li
- School of Sport Sciences, Nanjing Normal University, Nanjing, China
| | - Lei Sun
- School of Sport Sciences, Nanjing Normal University, Nanjing, China
| | - Da-Shuai Wu
- School of Sport Sciences, Nanjing Normal University, Nanjing, China
| | - Hao-En Gao
- School of Sport Sciences, Nanjing Normal University, Nanjing, China
| | - Zhu Min
- School of Sport Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
17
|
Kim JS, Takanche JS, Kim JE, Jeong SH, Han SH, Yi HK. Schisandra chinensis extract ameliorates age-related muscle wasting and bone loss in ovariectomized rats. Phytother Res 2019; 33:1865-1877. [PMID: 31074579 DOI: 10.1002/ptr.6375] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/22/2022]
Abstract
Exercise and healthy diet consumption support healthy aging. Schisandra chinensis (Turcz.) also known as "Baill." has anti-inflammatory and antioxidant properties. However, the role of S. chinensis as an antiaging compound has yet to be demonstrated. This study elucidated the antiaging effect of S. chinensis ethanol-hexane extract (C1) and the effect of C1 treatment on muscle and bone following physical exercise in ovariectomized (OVX) rats. RAW 264.7, human diploid fibroblasts (HDFs), C2C12 myoblasts, bone marrow macrophages, and MC3T3-E1 cells were used for in vitro, and muscle and bone of OVX rats were used for in vivo study to demonstrate the effect of C1. The C1 significantly inhibited the expression of inflammatory molecules, β-galactosidase activity, and improved antioxidant activity via down-regulation of reactive oxygen species in RAW 264.7 and aged HDF cells. The C1 with exercise improved muscle regeneration in skeletal muscle of OVX rats by promoting mitochondrial biogenesis and autophagy. C1 induced osteoblast differentiation, and C1 + exercise modulated the bone formation and bone resorption in OVX rats. C1 exhibited anti-inflammatory, antioxidant, myogenic, and osteogenic effects. C1 with exercise improved age-related muscle wasting and bone loss. Therefore, S. chinensis may be a potential prevent agent for age-related diseases such as sarcopenia and osteoporosis.
Collapse
Affiliation(s)
- Jeong-Seok Kim
- Department of Physical Education, College of Education, Jeonju, South Korea.,Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, South Korea
| | - Jyoti Shrestha Takanche
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, South Korea
| | - Ji-Eun Kim
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, South Korea
| | - Seon-Hwa Jeong
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, South Korea
| | - Sin-Hee Han
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, South Korea
| | - Ho-Keun Yi
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, South Korea
| |
Collapse
|
18
|
Kim JS, Jeon J, An JJ, Yi HK. Interval running training improves age-related skeletal muscle wasting and bone loss: Experiments with ovariectomized rats. Exp Physiol 2019; 104:691-703. [PMID: 30843284 DOI: 10.1113/ep087458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 02/18/2019] [Indexed: 12/11/2022]
Abstract
NEW FINDINGS What is the central question of this study? What is the effect and mechanism of interval running training on age-related muscle wasting and bone loss in an ovariectomized rat model? What is the main finding and its importance? Interval running training improved muscle growth and osteogenic differentiation by enhancing the expression of bone morphogenic proteins and sirtuins in ageing-induced ovariectomized rats. Therefore, the repetition of low and high intensities within a single exercise bout, such as interval running training, may be recommended as a practical intervention to prevent skeletal muscle wasting and bone loss in the elderly. ABSTRACT Effective prophylactic strategies are needed for the suppression of age-related muscle wasting and bone loss after menopause. Exercise training is attractive due to its potential for improving energy metabolism, as well as age-related muscle wasting and bone loss. In particular, interval running (IR) training involves a repetition of low and high intensities within a single exercise bout. Therefore, this study elucidated the effect of interval training on muscle and bone health, as well as anti-ageing, in ovariectomized (OVX) rats. The anti-ageing effect of IR on muscle and bone was tested using western blotting and micro-computed tomography analysis, tartrate-resistant acid phosphatase and immunohistochemical staining. IR significantly inhibited the expression of inflammatory molecules, and improved antioxidant activity via down-regulation of mitogen-activated protein kinases (MAPKs) in the ageing-induced OVX rats skeletal muscle. IR compared with continuous running (CR) improved muscle mass and growth in OVX rats by the promotion of muscle growth-related factors including MyoD, myogenin, phospho-mechanistic target of rapamycin (p-mTOR), sirtuins (SIRTs), and bone morphogenic proteins (BMPs). IR also effectively recovered OVX-induced bone loss via the down-regulation of bone resorption and osteoclast formation in receptor activator of nuclear factor κB ligand (RANKL)-treated bone marrowmacrophages (BMMs). In particular, IR led to high expression of SIRT1 and 6, which promoted osteogenic differentiation and bone formation via modulating the BMP signalling pathway compared with CR training. The in vivo effect of IR was confirmed by immunohistochemical staining with the improvement of bone formation molecules such as BMPs and SIRTs. These results suggested that IR training affected myogenic and osteogenic formation. So, IR training may be considered for prevention of muscle wasting and bone loss for the elderly.
Collapse
Affiliation(s)
- Jeong-Seok Kim
- College of Natural Science, Chonbuk National University, 664-14 Dukjin-dong, Dukjin-ku, Jeonju, Chonbuk, Republic of Korea
| | - Jin Jeon
- College of Education, Chonbuk National University, 664-14 Dukjin-dong, Dukjin-ku, Jeonju, Chonbuk, Republic of Korea
| | - Jin-Jeong An
- College of Education, Chonbuk National University, 664-14 Dukjin-dong, Dukjin-ku, Jeonju, Chonbuk, Republic of Korea
| | - Ho-Keun Yi
- Schoolo of Dentistry, Chonbuk National University, 664-14 Dukjin-dong, Dukjin-ku, Jeonju, Chonbuk, 561-756, Republic of Korea
| |
Collapse
|
19
|
Piccirillo R. Exercise-Induced Myokines With Therapeutic Potential for Muscle Wasting. Front Physiol 2019; 10:287. [PMID: 30984014 PMCID: PMC6449478 DOI: 10.3389/fphys.2019.00287] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/04/2019] [Indexed: 12/26/2022] Open
Abstract
Skeletal muscle is a highly vascularized tissue that can secrete proteins called myokines. These muscle-secreted factors exert biological functions in muscle itself (autocrine effect) or on short- or long-distant organs (paracrine/endocrine effects) and control processes such as metabolism, angiogenesis, or inflammation. Widely differing diseases ranging from genetic myopathies to cancers are emerging as causing dysregulated secretion of myokines from skeletal muscles. Myokines are also involved in the control of muscle size and may be important to be restored to normal levels to alleviate muscle wasting in various conditions, such as cancer, untreated diabetes, chronic obstructive pulmonary disease, aging, or heart failure. Interestingly, many myokines are induced by exercise (muscle-derived exerkines) and some even by specific types of physical activity, but more studies are needed on this issue. Most exercise-induced myokines travel throughout the body by means of extracellular vesicles. Restoring myokines by physical activity may be added to the list of mechanisms by which exercise exerts preventative or curative effects against a large number of diseases, including the deleterious muscle wasting they may cause. Extending our understanding about which myokines could be usefully restored in certain diseases might help in prescribing more tailored exercise or myokine-based drugs.
Collapse
Affiliation(s)
- Rosanna Piccirillo
- Department of Neurosciences, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy
| |
Collapse
|