1
|
Marinari G, Iannetta D, Holash RJ, Zagatto AM, Keir DA, Murias JM. Heavy-intensity priming exercise extends the V̇o 2max plateau and increases peak-power output during ramp-incremental exercise. Am J Physiol Regul Integr Comp Physiol 2024; 327:R164-R172. [PMID: 38842514 DOI: 10.1152/ajpregu.00016.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
This study investigated whether a heavy-intensity priming exercise precisely prescribed within the heavy-intensity domain would lead to a greater peak-power output (POpeak) and a longer maximal oxygen uptake (V̇o2max) plateau. Twelve recreationally active adults participated in this study. Two visits were required: 1) a step-ramp-step test [ramp-incremental (RI) control], and 2) an RI test preceded by a priming exercise within the heavy-intensity domain (RI primed). A piecewise equation was used to quantify the V̇o2 plateau duration (V̇o2plateau-time). The mean response time (MRT) was computed during the RI control condition. The delta (Δ) V̇o2 slope (S; mL·min-1·W-1) and V̇o2-Y intercept (Y; mL·min-1) within the moderate-intensity domain between conditions (RI primed minus RI control) were also assessed using a novel graphical analysis. V̇o2plateau-time (P = 0.001; d = 1.27) and POpeak (P = 0.003; d = 1.08) were all greater in the RI primed. MRT (P < 0.001; d = 2.45) was shorter in the RI primed compared with the RI control. A larger ΔV̇o2plateau-time was correlated with a larger ΔMRT between conditions (r = -0.79; P = 0.002). This study demonstrated that heavy-intensity priming exercise lengthened the V̇o2plateau-time and increased POpeak. The overall faster RI-V̇o2 responses seem to be responsible for the longer V̇o2plateau-time. Specifically, a shorter MRT, but not changes in RI-V̇o2-slopes, was associated with a longer V̇o2plateau-time following priming exercise.NEW & NOTEWORTHY It remains unclear whether priming exercise extends the maximal oxygen uptake (V̇o2max) plateau and increases peak-power output (POpeak) during ramp-incremental (RI) tests. This study demonstrates that a priming exercise, precisely prescribed within the heavy-intensity domain, extends the plateau at V̇o2max and leads to a greater POpeak. Specifically, the extended V̇o2max plateau was associated with accelerated RI-V̇o2 responses.
Collapse
Affiliation(s)
- Gabriele Marinari
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Danilo Iannetta
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | | | - Alessandro M Zagatto
- Laboratory of Physiology and Sport Performance (LAFIDE), Department of Physical Education, School of Sciences, São Paulo State University-UNESP, Bauru, Brazil
| | - Daniel A Keir
- School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
- Toronto General Research Institute, Toronto General Hospital, Toronto, Ontario, Canada
| | - Juan M Murias
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
2
|
Lei T, Fujii N, Zhang X, Wang F, Mündel T, Wang I, Chen Y, Nishiyasu T, Amano T, Dobashi K, Wang L, Yeh T, Kondo N, Goulding RP. The effects of high-intensity exercise training and detraining with and without active recovery on postexercise hypotension in young men. Physiol Rep 2023; 11:e15862. [PMID: 38129108 PMCID: PMC10737682 DOI: 10.14814/phy2.15862] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 12/23/2023] Open
Abstract
Whether high-intensity exercise training and detraining combined with skeletal muscle pump (MP) could alter the magnitude of postexercise hypotension has not been investigated. We therefore sought to determine whether the combination of MP (unloaded back-pedaling) with 4 weeks of high-intensity exercise training and detraining could alter the magnitude of postexercise hypotension. Fourteen healthy men underwent 4 weeks of high-intensity exercise training (5 consecutive days per week for 15 min per session at 40% of the difference between the gas exchange threshold and maximal oxygen uptake [i.e., Δ40%]) followed by detraining for 4 weeks. Assessments were conducted at Pre-training (Pre), Post-training (Post) and after Detraining with (MP) and without MP (Con). The exercise test in the Pre, Post and the Detraining consisted of 15 min exercise at Δ40% followed by 1 h of recovery. At all time-points, the postexercise reduction in mean arterial pressure (MAP) was reduced in MP compared to Con (all p < 0.01). Four weeks of high-intensity exercise training resulted in a reduction in the magnitude of postexercise hypotension (i.e., the change in MAP from baseline was mitigated) across both trials (All p < 0.01) when compared to Pre and Detraining. Following Detraining, the reduction of MAP from baseline was reduced compared to Pre, but was not different from Post. We conclude that high-intensity exercise training combined with skeletal MP reduces the magnitude of postexercise hypotension, and this effect is partially retained for 4 weeks following the complete cessation of high-intensity exercise training.
Collapse
Affiliation(s)
- Tze‐Huan Lei
- College of Physical EducationHubei Normal UniversityHuangshiChina
| | - Naoto Fujii
- Institute of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
| | - Xiao Zhang
- Shanghai Normal University Kangcheng Experimental SchoolShanghaiChina
| | - Faming Wang
- Division Animal and Human Health Engineering, Department of Biosystems (BIOSYST)KU LeuvenLeuvenBelgium
| | - Toby Mündel
- Department of KinesiologyBrock UniversitySt. CatharinesOntarioCanada
| | - I‐Lin Wang
- College of Physical EducationHubei Normal UniversityHuangshiChina
| | - Yi‐Ming Chen
- Department of Food ScienceFu Jen Catholic UniversityNew Taipei CityTaiwan
| | - Takeshi Nishiyasu
- Institute of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
| | | | - Kohei Dobashi
- Faculty of EducationHokkaido University of EducationAsahikawaJapan
| | - Lin Wang
- School of Physical EducationWuhan University of TechnologyWuhanChina
| | - Tzu‐Shao Yeh
- School of Public HealthNantong UniversityNantongChina
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology, Graduate School of Human Development and EnvironmentKobe UniversityKobeJapan
| | - Richie P. Goulding
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioral and Human Movement SciencesVrije Universiteit, Amsterdam Movement SciencesAmsterdamthe Netherlands
| |
Collapse
|
3
|
Lei T, Wang I, Chen Y, Liu X, Fujii N, Koga S, Perry B, Mundel T, Wang F, Cao Y, Dobashi K, Kondo N, Li H, Goulding RP. Critical power is a key threshold determining the magnitude of post-exercise hypotension in non-hypertensive young males. Exp Physiol 2023; 108:1409-1421. [PMID: 37712355 PMCID: PMC10988428 DOI: 10.1113/ep091429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/24/2023] [Indexed: 09/16/2023]
Abstract
The effect of different exercise intensities on the magnitude of post-exercise hypotension has not been rigorously clarified with respect to the metabolic thresholds that partition discrete exercise intensity domains (i.e., critical power and the gas exchange threshold (GET)). We hypothesized that the magnitude of post-exercise hypotension would be greater following isocaloric exercise performed above versus below critical power. Twelve non-hypertensive men completed a ramp incremental exercise test to determine maximal oxygen uptake and the GET, followed by five exhaustive constant load trials to determine critical power and W' (work available above critical power). Subsequently, criterion trials were performed at four discrete intensities matched for total work performed (i.e., isocaloric) to determine the impact of exercise intensity on post-exercise hypotension: 10% above critical power (10% > CP), 10% below critical power (10% < CP), 10% above GET (10% > GET) and 10% below GET (10% < GET). The post-exercise decrease (i.e., the minimum post-exercise values) in mean arterial (10% > CP: -12.7 ± 8.3 vs. 10% < CP: v3.5 ± 2.9 mmHg), diastolic (10% > CP: -9.6 ± 9.8 vs. 10% < CP: -1.4 ± 5.0 mmHg) and systolic (10% > CP: -23.8 ± 7.0 vs. 10% < CP: -9.9 ± 4.3 mmHg) blood pressures were greater following exercise performed 10% > CP compared to all other trials (all P < 0.01). No effects of exercise intensity on the magnitude of post-exercise hypotension were observed during exercise performed below critical power (all P > 0.05). Critical power represents a threshold above which the magnitude of post-exercise hypotension is greatly augmented. NEW FINDINGS: What is the central questions of this study? What is the influence of exercise intensity on the magnitude of post-exercise hypotension with respect to metabolic thresholds? What is the main finding and its importance? The magnitude of post-exercise hypotension is greatly increased following exercise performed above critical power. However, below critical power, there was no clear effect of exercise intensity on the magnitude of post-exercise hypotension.
Collapse
Affiliation(s)
- Tze‐Huan Lei
- College of Physical EducationHubei Normal UniversityHuangshiChina
| | - I‐Lin Wang
- College of Physical EducationHubei Normal UniversityHuangshiChina
| | - Yi‐Ming Chen
- Department of Food ScienceFu Jen Catholic UniversityNew Taipei CityTaiwan
| | - Xin‐Hao Liu
- College of Physical EducationHubei Normal UniversityHuangshiChina
| | - Naoto Fujii
- Faculty of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
| | - Shunsaku Koga
- Applied Physiology LaboratoryKobe Design UniversityKobeJapan
| | - Blake Perry
- School of Health SciencesMassey UniversityWellingtonNew Zealand
| | - Toby Mundel
- Department of KinesiologyBrock UniversitySt CatharinesCanada
| | - Faming Wang
- Division Animal and Human Health Engineering, Department of Biosystems (BIOSYST)KU LeuvenLeuvenBelgium
| | - Yinhang Cao
- School of Athletic PerformanceShanghai Sport UniversityShanghaiChina
| | - Kohei Dobashi
- Faculty of EducationHokkaido University of EducationAsahikawaJapan
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology, Graduate School of Human Development and EnvironmentKobe UniversityKobeJapan
| | - Hao‐Yu Li
- College of Physical EducationHubei Normal UniversityHuangshiChina
| | - Richie P. Goulding
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioral and Human Movement Sciences, Vrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdamthe Netherlands
| |
Collapse
|
4
|
Goulding RP, Burnley M, Wüst RCI. How Priming Exercise Affects Oxygen Uptake Kinetics: From Underpinning Mechanisms to Endurance Performance. Sports Med 2023; 53:959-976. [PMID: 37010782 PMCID: PMC10115720 DOI: 10.1007/s40279-023-01832-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 04/04/2023]
Abstract
The observation that prior heavy or severe-intensity exercise speeds overall oxygen uptake ([Formula: see text]O2) kinetics, termed the "priming effect", has garnered significant research attention and its underpinning mechanisms have been hotly debated. In the first part of this review, the evidence for and against (1) lactic acidosis, (2) increased muscle temperature, (3) O2 delivery, (4) altered motor unit recruitment patterns and (5) enhanced intracellular O2 utilisation in underpinning the priming effect is discussed. Lactic acidosis and increased muscle temperature are most likely not key determinants of the priming effect. Whilst priming increases muscle O2 delivery, many studies have demonstrated that an increased muscle O2 delivery is not a prerequisite for the priming effect. Motor unit recruitment patterns are altered by prior exercise, and these alterations are consistent with some of the observed changes in [Formula: see text]O2 kinetics in humans. Enhancements in intracellular O2 utilisation likely play a central role in mediating the priming effect, probably related to elevated mitochondrial calcium levels and parallel activation of mitochondrial enzymes at the onset of the second bout. In the latter portion of the review, the implications of priming on the parameters of the power-duration relationship are discussed. The effect of priming on subsequent endurance performance depends critically upon which phases of the [Formula: see text]O2 response are altered. A reduced [Formula: see text]O2 slow component or increased fundamental phase amplitude tend to increase the work performable above critical power (i.e. W´), whereas a reduction in the fundamental phase time constant following priming results in an increased critical power.
Collapse
Affiliation(s)
- Richie P Goulding
- Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| | - Mark Burnley
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Rob C I Wüst
- Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Interaction of Factors Determining Critical Power. Sports Med 2023; 53:595-613. [PMID: 36622556 PMCID: PMC9935749 DOI: 10.1007/s40279-022-01805-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 01/10/2023]
Abstract
The physiological determinants of high-intensity exercise tolerance are important for both elite human performance and morbidity, mortality and disease in clinical settings. The asymptote of the hyperbolic relation between external power and time to task failure, critical power, represents the threshold intensity above which systemic and intramuscular metabolic homeostasis can no longer be maintained. After ~ 60 years of research into the phenomenon of critical power, a clear understanding of its physiological determinants has emerged. The purpose of the present review is to critically examine this contemporary evidence in order to explain the physiological underpinnings of critical power. Evidence demonstrating that alterations in convective and diffusive oxygen delivery can impact upon critical power is first addressed. Subsequently, evidence is considered that shows that rates of muscle oxygen utilisation, inferred via the kinetics of pulmonary oxygen consumption, can influence critical power. The data reveal a clear picture that alterations in the rates of flux along every step of the oxygen transport and utilisation pathways influence critical power. It is also clear that critical power is influenced by motor unit recruitment patterns. On this basis, it is proposed that convective and diffusive oxygen delivery act in concert with muscle oxygen utilisation rates to determine the intracellular metabolic milieu and state of fatigue within the myocytes. This interacts with exercising muscle mass and motor unit recruitment patterns to ultimately determine critical power.
Collapse
|
6
|
Black MI, Skiba PF, Wylie LJ, Lewis J, Jones AM, Vanhatalo A. Accounting for Dynamic Changes in the Power-Duration Relationship Improves the Accuracy of W' Balance Modeling. Med Sci Sports Exerc 2023; 55:235-244. [PMID: 36094337 DOI: 10.1249/mss.0000000000003039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE This study aimed 1) to examine the accuracy with which W' reconstitution (W' REC ) is estimated by the W' balance (W' BAL ) models after a 3-min all-out cycling test (3MT), 2) to determine the effects of a 3MT on the power-duration relationship, and 3) to assess whether accounting for changes in the power-duration relationship during exercise improved estimates of W' REC . METHODS The power-duration relationship and the actual and estimated W' REC were determined for 12 data sets extracted from our laboratory database where participants had completed two 3MT separated by 1-min recovery (i.e., control [C-3MT] and fatigued [F-3MT]). RESULTS Actual W' REC (6.3 ± 1.4 kJ) was significantly overestimated by the W' BAL·ODE (9.8 ± 1.3 kJ; P < 0.001) and the W' BAL·MORTON (16.9 ± 2.6 kJ; P < 0.001) models but was not significantly different to the estimate provided by the W' BAL·INT (7.5 ± 1.5 kJ; P > 0.05) model. End power (EP) was 7% lower in the F-3MT (263 ± 40 W) compared with the C-3MT (282 ± 44 W; P < 0.001), and work done above EP (WEP) was 61% lower in the F-3MT (6.3 ± 1.4 kJ) compared with the C-3MT (16.9 ± 3.2 kJ). The size of the error in the estimated W' REC was correlated with the reduction in WEP for the W' BAL·INT and W' BAL·ODE models (both r > -0.74, P < 0.01) but not the W' BAL·MORTON model ( r = -0.18, P > 0.05). Accounting for the changes in the power-duration relationship improved the accuracy of the W' BAL·ODE and W' BAL·MORTON , but they remained significantly different to actual W' REC . CONCLUSIONS These findings demonstrate that the power-duration relationship is altered after a 3MT, and accounting for these changes improves the accuracy of the W' BAL·ODE and the W' BAL·MORTON , but not W' BAL·INT models. These results have important implications for the design and use of mathematical models describing the energetics of exercise performance.
Collapse
Affiliation(s)
- Matthew I Black
- School of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UNITED KINGDOM
| | | | - Lee J Wylie
- School of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UNITED KINGDOM
| | - James Lewis
- School of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UNITED KINGDOM
| | - Andrew M Jones
- School of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UNITED KINGDOM
| | - Anni Vanhatalo
- School of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UNITED KINGDOM
| |
Collapse
|
7
|
Rocha J, Gildea N, O’Shea D, Green S, Egaña M. Priming exercise accelerates oxygen uptake kinetics during high-intensity cycle exercise in middle-aged individuals with type 2 diabetes. Front Physiol 2022; 13:1006993. [PMID: 36505082 PMCID: PMC9727537 DOI: 10.3389/fphys.2022.1006993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Abstract
Background: The primary phase time constant of pulmonary oxygen uptake kinetics (V · O 2 τ p) during submaximal efforts is longer in middle-aged people with type 2 diabetes (T2D), partly due to limitations in oxygen supply to active muscles. This study examined if a high-intensity "priming" exercise (PE) would speedV · O 2 τ p during a subsequent high-intensity cycling exercise in T2D due to enhanced oxygen delivery. Methods: Eleven (4 women) middle-aged individuals with type 2 diabetes and 11 (4 women) non-diabetic controls completed four separate cycling bouts each starting at an 'unloaded' baseline of 10 W and transitioning to a high-intensity constant-load. Two of the four cycling bouts were preceded by priming exercise. The dynamics of pulmonaryV · O 2 and muscle deoxygenation (i.e. deoxygenated haemoglobin and myoglobin concentration [HHb + Mb]), were calculated from breath-by-breath and near-infrared spectroscopy data at the vastus lateralis, respectively. Results: At baselineV · O 2 τ p, was slower (p < 0.001) in the type 2 diabetes group (48 ± 6 s) compared to the control group (34 ± 2 s) but priming exercise significantly reducedV · O 2 τ p (p < 0.001) in type 2 diabetes (32 ± 6 s) so that post priming exercise it was not different compared with controls (34 ± 3 s). Priming exercise reduced the amplitude of theV · O 2 slow component (As) in both groups (type 2 diabetes: 0.26 ± 0.11 to 0.16 ± 0.07 L/min; control: 0.33 ± 0.13 to 0.25 ± 0.14 L/min, p < 0.001), while [HHb + Mb] kinetics remained unchanged. Conclusion: These results suggest that in middle-aged men and women with T2D, PE speedsV · O 2 τ p likely by a better matching of O2 delivery to utilisation and reduces theV · O 2 As during a subsequent high-intensity exercise.
Collapse
Affiliation(s)
- Joel Rocha
- Division of Sport and Exercise Sciences, Abertay University, Dundee, United Kingdom
| | - Norita Gildea
- Department of Physiology, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Donal O’Shea
- Endocrinology, St Columcille’s and St Vincent’s Hospitals, Dublin, Ireland
| | - Simon Green
- School of Science and Health, Western Sydney University, Sydney, AU-NSW, Australia
| | - Mikel Egaña
- Department of Physiology, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| |
Collapse
|
8
|
Spaas J, Goulding RP, Keytsman C, Fonteyn L, van Horssen J, Jaspers RT, Eijnde BO, Wüst RCI. Altered muscle oxidative phenotype impairs exercise tolerance but does not improve after exercise training in multiple sclerosis. J Cachexia Sarcopenia Muscle 2022; 13:2537-2550. [PMID: 35929063 PMCID: PMC9530506 DOI: 10.1002/jcsm.13050] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 06/05/2022] [Accepted: 06/13/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Patients with multiple sclerosis (MS) experience reduced exercise tolerance that substantially reduces quality of life. The mechanisms underpinning exercise intolerance in MS are not fully clear. This study aimed to determine the contributions of the cardiopulmonary system and peripheral muscle in MS-induced exercise intolerance before and after exercise training. METHODS Twenty-three patients with MS (13 women) and 20 age-matched and sex-matched healthy controls (13 women) performed a cardiopulmonary exercise test. Muscle fibre type composition, size, succinate dehydrogenase (SDH) activity, capillarity, and gene expression and proteins related to mitochondrial density were determined in vastus lateralis muscle biopsies. Nine MS patients (five women) were re-examined following a 12 week exercise training programme consisting of high-intensity cycling interval and resistance training. RESULTS Patients with MS had lower maximal oxygen uptake compared with healthy controls (V̇O2peak , 25.0 ± 8.5 vs. 35.7 ± 6.4 mL/kg/min, P < 0.001). The lower gas exchange threshold (MS: 14.5 ± 5.5 vs. controls: 19.7 ± 2.9 mL/kg/min, P = 0.01) and slope of V̇O2 versus work rate (MS: 9.5 ± 1.7 vs. controls: 10.8 ± 1.1 mL/min/W, P = 0.01) suggested an intramuscular contribution to exercise intolerance in patients with MS. Muscle SDH activity was 22% lower in MS (P = 0.004), and strongly correlated with several indices of whole-body exercise capacity in MS patients (e.g. V̇O2peak , Spearman's ρ = 0.81, P = 0.002), but not healthy controls (ρ = 0.24, P = 0.38). In addition, protein levels of mitochondrial OXPHOS complexes I (-40%, P = 0.047) and II (-45%, P = 0.026) were lower in MS patients versus controls. Muscle capillary/fibre ratio correlated with V̇O2peak in healthy controls (ρ = 0.86, P < 0.001) but not in MS (ρ = 0.35, P = 0.22), and did not differ between groups (1.41 ± 0.30 vs. 1.47 ± 0.38, P = 0.65). Expression of genes involved in mitochondrial function, such as PPARA, PPARG, and TFAM, was markedly reduced in muscle tissue samples of MS patients (all P < 0.05). No differences in muscle fibre type composition or size were observed between groups (all P > 0.05). V̇O2peak increased by 23% following exercise training in MS (P < 0.001); however, no changes in muscle capillarity, SDH activity, gene or protein expression were observed (all P > 0.05). CONCLUSIONS Skeletal muscle oxidative phenotype (mitochondrial complex I and II content, SDH activity) is lower in patients with MS, contributing to reduced exercise tolerance. However, skeletal muscle mitochondria appeared resistant to the beneficial effects of exercise training, suggesting that other physiological systems, at least in part, drive the improvements in exercise capacity following exercise training in MS.
Collapse
Affiliation(s)
- Jan Spaas
- University MS Center (UMSC) Hasselt - Pelt, Hasselt, Belgium.,SMRC Sports Medical Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.,Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Richie P Goulding
- Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Charly Keytsman
- University MS Center (UMSC) Hasselt - Pelt, Hasselt, Belgium.,SMRC Sports Medical Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Lena Fonteyn
- University MS Center (UMSC) Hasselt - Pelt, Hasselt, Belgium.,SMRC Sports Medical Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Jack van Horssen
- University MS Center (UMSC) Hasselt - Pelt, Hasselt, Belgium.,Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Richard T Jaspers
- Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Bert O Eijnde
- University MS Center (UMSC) Hasselt - Pelt, Hasselt, Belgium.,SMRC Sports Medical Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Rob C I Wüst
- Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Goulding RP, Marwood S, Lei TH, Okushima D, Poole DC, Barstow TJ, Kondo N, Koga S. Dissociation between exercise intensity thresholds: mechanistic insights from supine exercise. Am J Physiol Regul Integr Comp Physiol 2021; 321:R712-R722. [PMID: 34431402 DOI: 10.1152/ajpregu.00096.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study tested the hypothesis that the respiratory compensation point (RCP) and breakpoint in deoxygenated [heme] [deoxy[heme]BP, assessed via near-infrared spectroscopy (NIRS)] during ramp incremental exercise would occur at the same metabolic rate in the upright (U) and supine (S) body positions. Eleven healthy men completed ramp incremental exercise tests in U and S. Gas exchange was measured breath-by-breath and time-resolved-NIRS was used to measure deoxy[heme] in the vastus lateralis (VL) and rectus femoris (RF). RCP (S: 2.56 ± 0.39, U: 2.86 ± 0.40 L·min-1, P = 0.02) differed from deoxy[heme]BP in the VL in U (3.10 ± 0.44 L·min-1, P = 0.002), but was not different in S in the VL (2.70 ± 0.50 L·min-1, P = 0.15). RCP was not different from the deoxy[heme]BP in the RF for either position (S: 2.34 ± 0.48 L·min-1, U: 2.76 ± 0.53 L·min-1, P > 0.05). However, the deoxy[heme]BP differed between muscles in both positions (P < 0.05), and changes in deoxy[heme]BP did not relate to ΔRCP between positions (VL: r = 0.55, P = 0.080, RF: r = 0.26, P = 0.44). The deoxy[heme]BP was consistently preceded by a breakpoint in total[heme], and was, in turn, itself preceded by a breakpoint in muscle surface electromyography (EMG). RCP and the deoxy[heme]BP can be dissociated across muscles and different body positions and, therefore, do not represent the same underlying physiological phenomenon. The deoxy[heme]BP may, however, be mechanistically related to breakpoints in total[heme] and muscle activity.
Collapse
Affiliation(s)
- Richie P Goulding
- Laboratory for Myology, Vrije Universiteit, Amsterdam, The Netherlands.,Applied Physiology Laboratory, Kobe Design University, Kobe, Japan.,Japan Society for Promotion of Sciences, Tokyo, Japan
| | - Simon Marwood
- School of Health Sciences, Liverpool Hope University, Liverpool, United Kingdom
| | - Tze-Huan Lei
- College of Physical Education, Hubei Normal University, Huangshi, People's Republic of China
| | - Dai Okushima
- Osaka International University, Moriguchi, Japan
| | - David C Poole
- Departments of Anatomy and Physiology, and Kinesiology, Kansas State University, Manhattan, Kansas
| | - Thomas J Barstow
- Departments of Anatomy and Physiology, and Kinesiology, Kansas State University, Manhattan, Kansas
| | - Narihiko Kondo
- Applied Physiology Laboratory, Kobe University, Kobe, Japan
| | - Shunsaku Koga
- Applied Physiology Laboratory, Kobe Design University, Kobe, Japan
| |
Collapse
|
10
|
Goulding RP, Rossiter HB, Marwood S, Ferguson C. Bioenergetic Mechanisms Linking V˙O2 Kinetics and Exercise Tolerance. Exerc Sport Sci Rev 2021; 49:274-283. [PMID: 34547760 PMCID: PMC8528340 DOI: 10.1249/jes.0000000000000267] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We hypothesize that the V˙O2 time constant (τV˙O2) determines exercise tolerance by defining the power output associated with a "critical threshold" of intramuscular metabolite accumulation (e.g., inorganic phosphate), above which muscle fatigue and work inefficiency are apparent. Thereafter, the V˙O2 "slow component" and its consequences (increased pulmonary, circulatory, and neuromuscular demands) determine performance limits.
Collapse
Affiliation(s)
- Richie P. Goulding
- Applied Physiology Laboratory, Kobe Design University, Kobe, Japan
- Laboratory for Myology, Vrije Universiteit, Amsterdam, The Netherlands
| | - Harry B. Rossiter
- Rehabilitation Clinical Trials Center, Division of Respiratory & Critical Care Physiology & Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance CA, 90254, USA
| | - Simon Marwood
- School of Health Sciences, Liverpool Hope University, Liverpool, L16 9JD, UK
| | - Carrie Ferguson
- School of Biomedical Sciences, Faculty of Biological Sciences & Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, LS 2 9JT, UK
| |
Collapse
|
11
|
The ramp and all-out exercise test to determine critical power: validity and robustness to manipulations in body position. Eur J Appl Physiol 2021; 121:2721-2730. [PMID: 34143306 PMCID: PMC8416884 DOI: 10.1007/s00421-021-04739-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 06/08/2021] [Indexed: 11/20/2022]
Abstract
Purpose The purpose of the present study was to determine whether a contiguous ramp and all-out exercise test could accurately determine critical power (CP) in a single laboratory visit during both upright and supine cycle exercise. Methods Healthy males completed maximal ramp-incremental exercise on a cycle ergometer in the upright (n = 15) and supine positions (n = 8), with task failure immediately followed by a 3-min all-out phase for determination of end-test power (EP). On separate days, participants undertook four constant-power tests in either the upright or supine positions with the limit of tolerance ranging from ~ 2 to 15 min for determination of CP. Results During upright exercise, EP was highly correlated with (R2 = 0.93, P < 0.001) and not different from CP (CP = 221 ± 40 W vs. EP = 226 ± 46 W, P = 0.085, 95% limits of agreement − 30, 19 W). During supine exercise, EP was also highly correlated with (R2 = 0.94, P < 0.001) and not different from CP (CP = 140 ± 42 W vs. EP = 136 ± 40 W, P = 0.293, 95% limits of agreement − 16, 24 W). Conclusion The present data suggest that EP derived from a contiguous ramp all-out exercise test is not different from the gold-standard method of CP determination during both upright and supine cycle exercise when assessed at the group level. However, the wide limits of agreement observed within the present study suggest that EP and CP should not be used interchangeably.
Collapse
|
12
|
Influence of muscular contraction on vascular conductance during exercise above versus below critical power. Respir Physiol Neurobiol 2021; 293:103718. [PMID: 34126260 DOI: 10.1016/j.resp.2021.103718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 11/20/2022]
Abstract
We tested the hypothesis that limb vascular conductance (LVC) would increase during the immediate recovery phase of dynamic exercise above, but not below, critical power (CP) indicating a threshold for muscular contraction-induced impedance of limb blood flow (LBF). CP (115 ± 26 W) was determined in 7 men and 7 women who subsequently performed ∼5 min of near-supine cycling exercise both below and above CP. LVC demonstrated a greater increase during immediate recovery and remained significantly higher following exercise above, compared to below, CP (all p < 0.001). Power output was associated with the immediate increases in LVC following exercise above, but not below, CP (p < 0.001; r = 0.85). Additionally, variance in percent LBF impedance was significantly lower above (CV: 10.7 %), compared to below (CV: 53.2 %), CP (p < 0.01). CP appears to represent a threshold above which the characteristics of LBF impedance by muscular contraction become intensity-dependent. These data suggest a critical level of LBF impedance relative to contraction intensity exists and, once attained, may promote the progressive metabolic and neuromuscular responses known to occur above CP.
Collapse
|
13
|
Sadler DG, Draijer R, Stewart CE, Jones H, Marwood S, Thijssen DHJ. Cocoa-flavanols enhance moderate-intensity pulmonary [Formula: see text] kinetics but not exercise tolerance in sedentary middle-aged adults. Eur J Appl Physiol 2021; 121:2285-2294. [PMID: 33970327 PMCID: PMC8260510 DOI: 10.1007/s00421-021-04682-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/04/2021] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Cocoa flavanols (CF) may exert health benefits through their potent vasodilatory effects, which are perpetuated by elevations in nitric oxide (NO) bioavailability. These vasodilatory effects may contribute to improved delivery of blood and oxygen (O2) to exercising muscle. PURPOSE Therefore, the objective of this study was to examine how CF supplementation impacts pulmonary O2 uptake ([Formula: see text]) kinetics and exercise tolerance in sedentary middle-aged adults. METHODS We employed a double-blind cross-over, placebo-controlled design whereby 17 participants (11 male, 6 female; mean ± SD, 45 ± 6 years) randomly received either 7 days of daily CF (400 mg) or placebo (PL) supplementation. On day 7, participants completed a series of 'step' moderate- and severe-intensity exercise tests for the determination of [Formula: see text] kinetics. RESULTS During moderate-intensity exercise, the time constant of the phase II [Formula: see text] kinetics ([Formula: see text]) was decreased by 15% in CF as compared to PL (mean ± SD; PL 40 ± 12 s vs. CF 34 ± 9 s, P = 0.019), with no differences in the amplitude of [Formula: see text] (A[Formula: see text]; PL 0.77 ± 0.32 l min-1 vs. CF 0.79 ± 0.34 l min-1, P = 0.263). However, during severe-intensity exercise, [Formula: see text], the amplitude of the slow component ([Formula: see text]) and exercise tolerance (PL 435 ± 58 s vs. CF 424 ± 47 s, P = 0.480) were unchanged between conditions. CONCLUSION Our data show that acute CF supplementation enhanced [Formula: see text] kinetics during moderate-, but not severe-intensity exercise in middle-aged participants. These novel effects of CFs, in this demographic, may contribute to improved tolerance of moderate-activity physical activities, which appear commonly present in daily life. TRIAL REGISTRATION Registered under ClinicalTrials.gov Identifier no. NCT04370353, 30/04/20 retrospectively registered.
Collapse
Affiliation(s)
- Daniel G Sadler
- School of Sport and Exercise Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Richard Draijer
- Unilever Research & Development, Olivier van Noortlaan 120, 3133 AT, Vlaardingen, The Netherlands
| | - Claire E Stewart
- School of Sport and Exercise Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Helen Jones
- School of Sport and Exercise Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Simon Marwood
- School of Health Sciences, Liverpool Hope University, Liverpool, UK
| | - Dick H J Thijssen
- School of Sport and Exercise Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK.
| |
Collapse
|
14
|
Smyth B, Muniz-Pumares D. Calculation of Critical Speed from Raw Training Data in Recreational Marathon Runners. Med Sci Sports Exerc 2021; 52:2637-2645. [PMID: 32472926 PMCID: PMC7664951 DOI: 10.1249/mss.0000000000002412] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Critical speed (CS) represents the highest intensity at which a physiological steady state may be reached. The aim of this study was to evaluate whether estimations of CS obtained from raw training data can predict performance and pacing in marathons. METHODS We investigated running activities logged into an online fitness platform by >25,000 recreational athletes before big-city marathons. Each activity contained time, distance, and elevation every 100 m. We computed grade-adjusted pacing and the fastest pace recorded for a set of target distances (400, 800, 1000, 1500, 3000, and 5000 m). CS was determined as the slope of the distance-time relationship using all combinations of, at least, three target distances. RESULTS The relationship between distance and time was linear, irrespective of the target distances used (pooled mean ± SD: R = 0.9999 ± 0.0001). The estimated values of CS from all models were not different (3.74 ± 0.08 m·s), and all models correlated with marathon performance (R = 0.672 ± 0.036, error = 8.01% ± 0.51%). CS from the model including 400, 800, and 5000 m best predicted performance (R = 0.695, error = 7.67%) and was used in further analysis. Runners completed the marathon at 84.8% ± 13.6% CS, with faster runners competing at speeds closer to CS (93.0% CS for 150 min marathon times vs 78.9% CS for 360 min marathon times). Runners who completed the first half of the marathon at >94% of their CS, and particularly faster than CS, were more likely to slowdown by more than 25% in the second half of race. CONCLUSION This study suggests that estimations of CS from raw training data can successfully predict marathon performance and provide useful pacing information.
Collapse
Affiliation(s)
- Barry Smyth
- Insight Centre for Data Analytics, School of Computer Science, University College Dublin, Dublin, IRELAND
| | - Daniel Muniz-Pumares
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UNITED KINGDOM
| |
Collapse
|
15
|
Impact of supine versus upright exercise on muscle deoxygenation heterogeneity during ramp incremental cycling is site specific. Eur J Appl Physiol 2021; 121:1283-1296. [PMID: 33575912 PMCID: PMC8064998 DOI: 10.1007/s00421-021-04607-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/17/2021] [Indexed: 10/24/2022]
Abstract
PURPOSE We tested the hypothesis that incremental ramp cycling exercise performed in the supine position (S) would be associated with an increased reliance on muscle deoxygenation (deoxy[heme]) in the deep and superficial vastus lateralis (VLd and VLs, respectively) and the superficial rectus femoris (RFs) when compared to the upright position (U). METHODS 11 healthy men completed ramp incremental exercise tests in S and U. Pulmonary [Formula: see text]O2 was measured breath-by-breath; deoxy[heme] was determined via time-resolved near-infrared spectroscopy in the VLd, VLs and RFs. RESULTS Supine exercise increased the overall change in deoxy[heme] from baseline to maximal exercise in the VLs (S: 38 ± 23 vs. U: 26 ± 15 μM, P < 0.001) and RFs (S: 36 ± 21 vs. U: 25 ± 15 μM, P < 0.001), but not in the VLd (S: 32 ± 23 vs. U: 29 ± 26 μM, P > 0.05). CONCLUSIONS The present study supports that the impaired balance between O2 delivery and O2 utilization observed during supine exercise is a regional phenomenon within superficial muscles. Thus, deep muscle defended its O2 delivery/utilization balance against the supine-induced reductions in perfusion pressure. The differential responses of these muscle regions may be explained by a regional heterogeneity of vascular and metabolic control properties, perhaps related to fiber type composition.
Collapse
|
16
|
Goulding RP, Roche DM, Marwood S. Effect of Hyperoxia on Critical Power and V˙O2 Kinetics during Upright Cycling. Med Sci Sports Exerc 2020; 52:1041-1049. [PMID: 31815830 DOI: 10.1249/mss.0000000000002234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION/PURPOSE Critical power (CP) is a fundamental parameter defining high-intensity exercise tolerance; however, its physiological determinants are incompletely understood. The present study determined the impact of hyperoxia on CP, the time constant of phase II pulmonary oxygen uptake kinetics (τV˙O2), and muscle oxygenation (assessed by near-infrared spectroscopy) in nine healthy men performing upright cycle ergometry. METHODS Critical power was determined in normoxia and hyperoxia (fraction of inspired O2 = 0.5) via four severe-intensity constant load exercise tests to exhaustion on a cycle ergometer, repeated once in each condition. During each test, τV˙O2 and the time constant of muscle deoxyhemoglobin kinetics (τ[HHb]), alongside absolute concentrations of muscle oxyhemoglobin ([HbO2]), were determined. RESULTS Critical power was greater (hyperoxia, 216 ± 30 W vs normoxia, 197 ± 29 W; P < 0.001), whereas W' was reduced (hyperoxia, 15.4 ± 5.2 kJ; normoxia, 17.5 ± 4.3 W; P = 0.037) in hyperoxia compared with normoxia. τV˙O2 (hyperoxia, 35 ± 12 s vs normoxia, 33 ± 10 s; P = 0.33) and τ[HHb] (hyperoxia, 11 ± 5 s vs normoxia, 14 ± 5 s; P = 0.65) were unchanged between conditions, whereas [HbO2] during exercise was greater in hyperoxia compared with normoxia (hyperoxia, 73 ± 20 vs normoxia, 66 ± 15 μM; P < 0.001). CONCLUSIONS This study provides novel insights into the physiological determinants of CP and by extension, exercise tolerance. Microvascular oxygenation and CP were improved during exercise in hyperoxia compared with normoxia. Importantly, the improved microvascular oxygenation afforded by hyperoxia did not alter τV˙O2, suggesting that microvascular O2 availability is an independent determinant of the upper limit for steady-state exercise, that is, CP.
Collapse
Affiliation(s)
- Richie P Goulding
- School of Health Sciences, Liverpool Hope University, Liverpool, UNITED KINGDOM
| | | | | |
Collapse
|
17
|
Gildea N, Rocha J, O'Shea D, Green S, Egaña M. Priming exercise accelerates pulmonary oxygen uptake kinetics during "work-to-work" cycle exercise in middle-aged individuals with type 2 diabetes. Eur J Appl Physiol 2020; 121:409-423. [PMID: 33084929 DOI: 10.1007/s00421-020-04518-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/25/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE The time constant of phase II pulmonary oxygen uptake kinetics ([Formula: see text]) is increased when high-intensity exercise is initiated from an elevated baseline (work-to-work). A high-intensity priming exercise (PE), which enhances muscle oxygen supply, does not reduce this prolonged [Formula: see text] in healthy active individuals, likely because [Formula: see text] is limited by metabolic inertia (rather than oxygen delivery) in these individuals. Since [Formula: see text] is more influenced by oxygen delivery in type 2 diabetes (T2D), this study tested the hypothesis that PE would reduce [Formula: see text] in T2D during work-to-work cycle exercise. METHODS Nine middle-aged individuals with T2D and nine controls (ND) performed four bouts of constant-load, high-intensity work-to-work transitions, each commencing from a baseline of moderate-intensity. Two bouts were completed without PE and two were preceded by PE. The rate of muscle deoxygenation ([HHb + Mb]) and surface integrated electromyography (iEMG) were measured at the right and left vastus lateralis, respectively. RESULTS Subsequent to PE, [Formula: see text] was reduced (P = 0.001) in T2D (from 59 ± 17 to 37 ± 20 s) but not (P = 0.24) in ND (44 ± 10 to 38 ± 7 s). The amplitude of the [Formula: see text] slow component ([Formula: see text]2 As) was reduced (P = 0.001) in both groups (T2D: 0.16 ± 0.09 to 0.11 ± 0.04 l/min; ND: 0.21 ± 0.13 to 0.13 ± 0.09 l/min). This was accompanied by a reduction in ΔiEMG from the onset of [Formula: see text] slow component to end-exercise in both groups (P < 0.001), while [HHb + Mb] kinetics remained unchanged. CONCLUSIONS PE accelerates [Formula: see text] in T2D, likely by negating the O2 delivery limitation extant in the unprimed condition, and reduces the [Formula: see text]As possibly due to changes in muscle fibre activation.
Collapse
Affiliation(s)
- Norita Gildea
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Joel Rocha
- Division of Sport and Exercise Sciences, Abertay University, Dundee, UK
| | - Donal O'Shea
- Department of Endocrinology, St. Columcille's Hospital, Dublin, Ireland.,Department of Endocrinology and Diabetes Mellitus, St. Vincent's University Hospital, Dublin, Ireland
| | - Simon Green
- Schools of Health Sciences and Medicine, Western Sydney University, Sydney, Australia
| | - Mikel Egaña
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
18
|
Ansdell P, Škarabot J, Atkinson E, Corden S, Tygart A, Hicks KM, Thomas K, Hunter SK, Howatson G, Goodall S. Sex differences in fatigability following exercise normalised to the power-duration relationship. J Physiol 2020; 598:5717-5737. [PMID: 32964441 DOI: 10.1113/jp280031] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/07/2020] [Indexed: 01/24/2023] Open
Abstract
KEY POINTS Knee-extensors demonstrate greater fatigue resistance in females compared to males during single-limb and whole-body exercise. For single-limb exercise, the intensity-duration relationship is different between sexes, with females sustaining a greater relative intensity of exercise. This study established the power-duration relationship during cycling, then assessed fatigability during critical power-matched exercise within the heavy and severe intensity domains. When critical power and the curvature constant were expressed relative to maximal ramp test power, no sex difference was observed. No sex difference in time to task failure was observed in either trial. During heavy and severe intensity cycling, females experienced lesser muscle de-oxygenation. Following both trials, females experienced lesser reductions in knee-extensor contractile function, and following heavy intensity exercise, females experienced less reduction in voluntary activation. These data demonstrate that whilst the relative power-duration relationship is not different between males and females, the mechanisms of fatigability during critical power-matched exercise are mediated by sex. ABSTRACT Due to morphological differences, females demonstrate greater fatigue resistance of locomotor muscle during single-limb and whole-body exercise modalities. Whilst females sustain a greater relative intensity of single-limb, isometric exercise than males, limited investigation has been performed during whole-body exercise. Accordingly, this study established the power-duration relationship during cycling in 18 trained participants (eight females). Subsequently, constant-load exercise was performed at critical power (CP)-matched intensities within the heavy and severe domains, with the mechanisms of fatigability assessed via non-invasive neurostimulation, near-infrared spectroscopy and pulmonary gas exchange during and following exercise. Relative CP (72 ± 5 vs. 74 ± 2% Pmax , P = 0.210) and curvature constant (51 ± 11 vs. 52 ± 10 J Pmax -1 , P = 0.733) of the power-duration relationship were similar between males and females. Subsequent heavy (P = 0.758) and severe intensity (P = 0.645) exercise time to task failures were not different between sexes. However, females experienced lesser reductions in contractile function at task failure (P ≤ 0.020), and greater vastus lateralis oxygenation (P ≤ 0.039) during both trials. Reductions in voluntary activation occurred following both trials (P < 0.001), but were less in females following the heavy trial (P = 0.036). Furthermore, during the heavy intensity trial only, corticospinal excitability was reduced at the cortical (P = 0.020) and spinal (P = 0.036) levels, but these reductions were not sex-dependent. Other than a lower respiratory exchange ratio in the heavy trial for females (P = 0.039), no gas exchange variables differed between sexes (P ≥ 0.052). Collectively, these data demonstrate that whilst the relative power-duration relationship is not different between males and females, the mechanisms of fatigability during CP-matched exercise above and below CP are mediated by sex.
Collapse
Affiliation(s)
- Paul Ansdell
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Jakob Škarabot
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK.,School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Elliott Atkinson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Sarah Corden
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Amber Tygart
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Kirsty M Hicks
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Kevin Thomas
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Sandra K Hunter
- Department of Physical Therapy, Marquette University, Milwaukee, WI, USA
| | - Glyn Howatson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK.,Water Research Group, School of Environmental Sciences and Development, North-West University, Potchefstroom, South Africa
| | - Stuart Goodall
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| |
Collapse
|
19
|
Goulding RP, Okushima D, Marwood S, Poole DC, Barstow TJ, Lei TH, Kondo N, Koga S. Impact of supine exercise on muscle deoxygenation kinetics heterogeneity: mechanistic insights into slow pulmonary oxygen uptake dynamics. J Appl Physiol (1985) 2020; 129:535-546. [PMID: 32702271 DOI: 10.1152/japplphysiol.00213.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Oxygen uptake (V̇o2) kinetics are slowed in the supine (S) position purportedly due to impaired muscle O2 delivery ([Formula: see text]); however, these conclusions are predicated on single-site measurements in superficial muscle using continuous-wave near-infrared spectroscopy (NIRS). This study aimed to determine the impact of body position [i.e., upright (U) versus S] on deep and superficial muscle deoxygenation (deoxy[heme]) using time-resolved (TR-) NIRS, and how these relate to slowed pulmonary V̇o2 kinetics. Seventeen healthy men completed constant power tests during 1) S heavy-intensity exercise and 2) U exercise at the same absolute work rate, with a subset of 10 completing additional tests at the same relative work rate as S. Pulmonary V̇o2 was measured breath-by-breath and, deoxy- and total[heme] were resolved via TR-NIRS in the superficial and deep vastus lateralis and superficial rectus femoris. The fundamental phase V̇o2 time constant was increased during S compared with U (S: 36 ± 10 vs. U: 27 ± 8 s; P < 0.001). The deoxy[heme] amplitude (S: 25-28 vs. U: 13-18 µM; P < 0.05) and total[heme] amplitude (S: 17-20 vs. U: 9-16 µM; P < 0.05) were greater in S compared with U and were consistent for the same absolute (above data) and relative work rates (n = 10, all P < 0.05). The greater deoxy- and total[heme] amplitudes in S vs. U supports that reduced perfusive [Formula: see text] in S, even within deep muscle, necessitated a greater reliance on fractional O2 extraction and diffusive [Formula: see text]. The slower V̇o2 kinetics in S versus U demonstrates that, ultimately, these adjustments were insufficient to prevent impairments in whole body oxidative metabolism.NEW & NOTEWORTHY We show that supine exercise causes a greater degree of muscle deoxygenation in both deep and superficial muscle and increases the spatial heterogeneity of muscle deoxygenation. Therefore, this study suggests that any O2 delivery gradient toward deep versus superficial muscle is insufficient to mitigate impairments in oxidative function in response to reduced whole muscle O2 delivery. More heterogeneous muscle deoxygenation is associated with slower V̇o2 kinetics.
Collapse
Affiliation(s)
- Richie P Goulding
- Applied Physiology Laboratory, Kobe Design University, Kobe, Japan.,International Research Fellow of Japan Society for Promotion of Sciences, Tokyo, Japan
| | - Dai Okushima
- Osaka International University, Moriguchi, Japan
| | - Simon Marwood
- School of Health Sciences, Liverpool Hope University, Liverpool, Merseyside, United Kingdom
| | - David C Poole
- Departments of Anatomy and Physiology, and Kinesiology, Kansas State University, Manhattan, Kansas
| | - Thomas J Barstow
- Departments of Anatomy and Physiology, and Kinesiology, Kansas State University, Manhattan, Kansas
| | - Tze-Huan Lei
- International Research Fellow of Japan Society for Promotion of Sciences, Tokyo, Japan.,Applied Physiology Laboratory, Kobe University, Kobe, Japan
| | - Narihiko Kondo
- Applied Physiology Laboratory, Kobe University, Kobe, Japan
| | - Shunsaku Koga
- Applied Physiology Laboratory, Kobe Design University, Kobe, Japan
| |
Collapse
|
20
|
Goulding RP, Marwood S, Okushima D, Poole DC, Barstow TJ, Lei TH, Kondo N, Koga S. Effect of priming exercise and body position on pulmonary oxygen uptake and muscle deoxygenation kinetics during cycle exercise. J Appl Physiol (1985) 2020; 129:810-822. [PMID: 32758041 DOI: 10.1152/japplphysiol.00478.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We hypothesized that the performance of prior heavy exercise would speed pulmonary oxygen uptake (V̇o2) kinetics (i.e., as described by the time constant, [Formula: see text]) and reduce the amplitude of muscle deoxygenation (deoxy[heme]) kinetics in the supine (S) but not upright (U) body position. Seventeen healthy men completed heavy-intensity constant-work rate exercise tests in S and U consisting of two bouts of 6-min cycling separated by 6-min cycling at 20 W. Pulmonary V̇o2 was measured breath by breath; total and deoxy[heme] were determined via time-resolved near-infrared spectroscopy (NIRS) at three muscle sites. Priming exercise reduced [Formula: see text] in S (bout 1: 36 ± 10 vs. bout 2: 28 ± 10 s, P < 0.05) but not U (bout 1: 27 ± 8 s vs. bout 2: 25 ± 7 s, P > 0.05). Deoxy[heme] amplitude was increased after priming in S (bout 1: 25-28 μM vs. bout 2: 30-35 μM, P < 0.05) and U (bout 1: 13-18 μM vs. bout 2: 17-25 μM, P > 0.05), whereas baseline total[heme] was enhanced in S (bout 1: 110-179 μM vs. bout 2: 121-193 μM, P < 0.05) and U (bout 1: 123-186 μM vs. bout 2: 137-197 μM, P < 0.05). Priming exercise increased total[heme] in both S and U, likely indicating enhanced diffusive O2 delivery. However, the observation that after priming the amplitude of the deoxy[heme] response was increased in S suggests that the reduction in [Formula: see text] subsequent to priming was related to a combination of both enhanced intracellular O2 utilization and increased O2 delivery.NEW & NOTEWORTHY Here we show that oxygen uptake (V̇o2) kinetics are slower in the supine compared with upright body position, an effect that is associated with an increased amplitude of skeletal muscle deoxygenation in the supine position. After priming in the supine position, the amplitude of muscle deoxygenation remained markedly elevated above that observed during upright exercise. Hence, the priming effect cannot be solely attributed to enhanced O2 delivery, and enhancements to intracellular O2 utilization must also be contributory.
Collapse
Affiliation(s)
- Richie P Goulding
- Applied Physiology Laboratory, Kobe Design University, Kobe, Japan.,Japan Society for Promotion of Science, Tokyo, Japan
| | - Simon Marwood
- School of Health Sciences, Liverpool Hope University, Liverpool, United Kingdom
| | - Dai Okushima
- Osaka International University, Moriguchi, Japan
| | - David C Poole
- Department of Anatomy and Physiology and Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Thomas J Barstow
- Department of Anatomy and Physiology and Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Tze-Huan Lei
- Japan Society for Promotion of Science, Tokyo, Japan.,Applied Physiology Laboratory, Kobe University, Kobe, Japan
| | - Narihiko Kondo
- Applied Physiology Laboratory, Kobe University, Kobe, Japan
| | - Shunsaku Koga
- Applied Physiology Laboratory, Kobe Design University, Kobe, Japan
| |
Collapse
|
21
|
Goulding RP, Roche DM, Scott SN, Koga S, Weston PJ, Marwood S. Limitations to exercise tolerance in type 1 diabetes: the role of pulmonary oxygen uptake kinetics and priming exercise. J Appl Physiol (1985) 2020; 128:1299-1309. [PMID: 32213117 DOI: 10.1152/japplphysiol.00892.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We compared the time constant (τV̇O2) of the fundamental phase of pulmonary oxygen uptake (V̇o2) kinetics between young adult men with type 1 diabetes and healthy control subjects. We also assessed the impact of priming exercise on τV̇O2, critical power, and muscle deoxygenation in a subset of participants with type 1 diabetes. Seventeen men with type 1 diabetes and 17 healthy male control subjects performed moderate-intensity exercise to determine τV̇O2. A subset of seven participants with type 1 diabetes performed an additional eight visits, in which critical power, τV̇O2, and muscle deoxyhemoglobin + myoglobin ([HHb+Mb], via near-infrared spectroscopy) kinetics (described by a time constant, τ[HHb+Mb]) were determined with (PRI) and without (CON) a prior 6-min bout of heavy exercise. τV̇O2 was greater in participants with type 1 diabetes compared with control subjects (type 1 diabetes 50 ± 13 vs. control 32 ± 12 s; P < 0.001). Critical power was greater in PRI compared with CON (PRI 161 ± 25 vs. CON 149 ± 22 W; P < 0.001), whereas τV̇O2 (PRI 36 ± 15 vs. CON 50 ± 21 s; P = 0.006) and τ[HHb+Mb] (PRI 10 ± 5 vs. CON 17 ± 11 s; P = 0.037) were reduced in PRI compared with CON. Type 1 diabetes patients showed slower pulmonary V̇o2 kinetics compared with control subjects; priming exercise speeded V̇o2 and [HHb + Mb] kinetics and increased critical power in a subgroup with type 1 diabetes. These data therefore represent the first characterization of the power-duration relationship in type 1 diabetes and the first experimental evidence that τV̇O2 is an independent determinant of critical power in this population.NEW & NOTEWORTHY Patients with type 1 diabetes demonstrated slower oxygen uptake (V̇o2) kinetics compared with healthy control subjects. Furthermore, a prior bout of high-intensity exercise speeded V̇o2 kinetics and increased critical power in people with type 1 diabetes. Prior exercise speeded muscle deoxygenation kinetics, indicating that V̇o2 kinetics in type 1 diabetes are limited primarily by oxygen extraction and/or intracellular factors. These findings highlight the potential for interventions that decrease metabolic inertia for enhancing exercise tolerance in this condition.
Collapse
Affiliation(s)
- Richie P Goulding
- School of Health Sciences, Liverpool Hope University, Liverpool, United Kingdom.,Japan Society for Promotion of Science, Tokyo, Japan.,Applied Physiology Laboratory, Kobe Design University, Kobe, Japan
| | - Denise M Roche
- School of Health Sciences, Liverpool Hope University, Liverpool, United Kingdom
| | - Sam N Scott
- University Department of Diabetes, Endocrinology, Nutritional Medicine, and Metabolism, University Hospital and University of Bern, Bern, Switzerland.,Team Novo Nordisk Professional Cycling Team, Atlanta, Georgia
| | - Shunsaku Koga
- Applied Physiology Laboratory, Kobe Design University, Kobe, Japan
| | - Philip J Weston
- Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, United Kingdom
| | - Simon Marwood
- School of Health Sciences, Liverpool Hope University, Liverpool, United Kingdom
| |
Collapse
|
22
|
Goulding RP, Roche DM, Marwood S. Reply to Francescato et al.: on correct computation of confidence intervals for kinetic parameters. Physiol Rep 2019; 7:e14181. [PMID: 31318151 PMCID: PMC6637700 DOI: 10.14814/phy2.14181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 06/15/2019] [Indexed: 11/24/2022] Open
Affiliation(s)
- Richie P. Goulding
- School of Health Sciences Liverpool Hope University Liverpool United Kingdom
| | - Denise M. Roche
- School of Health Sciences Liverpool Hope University Liverpool United Kingdom
| | - Simon Marwood
- School of Health Sciences Liverpool Hope University Liverpool United Kingdom
| |
Collapse
|
23
|
Goulding RP, Roche DM, Marwood S. Hyperoxia speeds pulmonary oxygen uptake kinetics and increases critical power during supine cycling. Exp Physiol 2019; 104:1061-1073. [DOI: 10.1113/ep087599] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/01/2019] [Indexed: 11/08/2022]
Affiliation(s)
| | - Denise M. Roche
- School of Health SciencesLiverpool Hope University Liverpool UK
| | - Simon Marwood
- School of Health SciencesLiverpool Hope University Liverpool UK
| |
Collapse
|
24
|
Muniz-Pumares D, Karsten B, Triska C, Glaister M. Methodological Approaches and Related Challenges Associated With the Determination of Critical Power and Curvature Constant. J Strength Cond Res 2019; 33:584-596. [DOI: 10.1519/jsc.0000000000002977] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
25
|
Clark CCT, Draper SB. A detailed comparison of oxygen uptake kinetics at a range of exercise intensities. MOTRIZ: REVISTA DE EDUCACAO FISICA 2019. [DOI: 10.1590/s1980-6574201900010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
26
|
Goulding RP, Roche DM, Marwood S. "Work-to-Work" exercise slows pulmonary oxygen uptake kinetics, decreases critical power, and increases W' during supine cycling. Physiol Rep 2018; 6:e13916. [PMID: 30426722 PMCID: PMC6234148 DOI: 10.14814/phy2.13916] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/15/2018] [Indexed: 01/21/2023] Open
Abstract
We have previously demonstrated that the phase II time constant of pulmonary oxygen uptake kinetics ( τ v ˙ o 2 ) is an independent determinant of critical power (CP) when O2 availability is not limiting, that is, during upright cycle exercise in young, healthy individuals. Whether this causative relationship remains when O2 availability is impaired remains unknown. During supine exercise, which causes an O2 availability limitation during the exercise transition, we therefore determined the impact of a raised baseline work rate on τ v ˙ o 2 and CP. CP, τ v ˙ o 2 , and muscle oxygenation status (the latter via near-infrared spectroscopy) were determined via four severe-intensity constant-power exercise tests completed in two conditions: (1) with exercise initiated from an unloaded cycling baseline (U→S), and (2) with exercise initiated from a moderate-intensity baseline work rate of 90% of the gas exchange threshold (M→S). In M→S, critical power was lower (U→S = 146 ± 39 W vs. M→S = 132 ± 33 W, P = 0.023) and τ v ˙ o 2 was greater (U→S = 45 ± 16 sec, vs. M→S = 69 ± 129 sec, P = 0.001) when compared to U→S. There was no difference in tissue oxyhemoglobin concentration ([HbO2 + MbO2 ]) at baseline or during exercise. The concomitant increase in τ v ˙ o 2 and reduction in CP during M→S compared to U→S shows for the first time that τ v ˙ o 2 is an independent determinant of CP in conditions where O2 availability is limiting.
Collapse
Affiliation(s)
- Richie P. Goulding
- School of Health SciencesLiverpool Hope UniversityLiverpoolUnited Kingdom
| | - Denise M. Roche
- School of Health SciencesLiverpool Hope UniversityLiverpoolUnited Kingdom
| | - Simon Marwood
- School of Health SciencesLiverpool Hope UniversityLiverpoolUnited Kingdom
| |
Collapse
|
27
|
Goulding RP, Roche DM, Marwood S. Elevated baseline work rate slows pulmonary oxygen uptake kinetics and decreases critical power during upright cycle exercise. Physiol Rep 2018; 6:e13802. [PMID: 30039557 PMCID: PMC6056736 DOI: 10.14814/phy2.13802] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 06/26/2018] [Indexed: 01/08/2023] Open
Abstract
Critical power is a fundamental parameter defining high-intensity exercise tolerance, and is related to the phase II time constant of pulmonary oxygen uptake kinetics (τV˙O2). Whether this relationship is causative is presently unclear. This study determined the impact of raised baseline work rate, which increases τV˙O2, on critical power during upright cycle exercise. Critical power was determined via four constant-power exercise tests to exhaustion in two conditions: (1) with exercise initiated from an unloaded cycling baseline (U→S), and (2) with exercise initiated from a baseline work rate of 90% of the gas exchange threshold (M→S). During these exercise transitions, τV˙O2 and the time constant of muscle deoxyhemoglobin kinetics (τ[HHb + Mb] ) (the latter via near-infrared spectroscopy) were determined. In M→S, critical power was lower (M→S = 203 ± 44 W vs. U→S = 213 ± 45 W, P = 0.011) and τV˙O2 was greater (M→S = 51 ± 14 sec vs. U→S = 34 ± 16 sec, P = 0.002) when compared with U→S. Additionally, τ[HHb + Mb] was greater in M→S compared with U→S (M→S = 28 ± 7 sec vs. U→S = 14 ± 7 sec, P = 0.007). The increase in τV˙O2 and concomitant reduction in critical power in M→S compared with U→S suggests a causal relationship between these two parameters. However, that τ[HHb + Mb] was greater in M→S exculpates reduced oxygen availability as being a confounding factor. These data therefore provide the first experimental evidence that τV˙O2 is an independent determinant of critical power. Keywords critical power, exercise tolerance, oxygen uptake kinetics, power-duration relationship, muscle deoxyhemoglobin kinetics, work-to-work exercise.
Collapse
Affiliation(s)
- Richie P. Goulding
- School of Health SciencesLiverpool Hope UniversityLiverpoolUnited Kingdom
| | - Denise M. Roche
- School of Health SciencesLiverpool Hope UniversityLiverpoolUnited Kingdom
| | - Simon Marwood
- School of Health SciencesLiverpool Hope UniversityLiverpoolUnited Kingdom
| |
Collapse
|
28
|
Effects of normobaric hypoxia on upper body critical power and anaerobic working capacity. Respir Physiol Neurobiol 2018; 249:1-6. [DOI: 10.1016/j.resp.2017.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/18/2017] [Accepted: 12/04/2017] [Indexed: 11/19/2022]
|