1
|
Lino-Alvarado A, Maia OAC, Oliveira MA, Takakura AC, Tavares-Lima W, Moriya HT, Moreira TS. Central and peripheral mechanisms underlying respiratory deficits in a mouse model of accelerated senescence. Pflugers Arch 2024; 476:1665-1676. [PMID: 39150501 DOI: 10.1007/s00424-024-03006-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Aging invariably decreases sensory and motor stimuli and affects several neuronal systems and their connectivity to key brain regions, including those involved in breathing. Nevertheless, further investigation is needed to fully comprehend the link between senescence and respiratory function. Here, we investigate whether a mouse model of accelerated senescence could develop central and peripheral respiratory abnormalities. Adult male Senescence Accelerated Mouse Prone 8 (SAMP8) and the control SAMR1 mice (10 months old) were used. Ventilatory parameters were assessed by whole-body plethysmography, and measurements of respiratory input impedance were performed. SAMP8 mice exhibited a reduction in the density of neurokinin-1 receptor immunoreactivity in the entire ventral respiratory column. Physiological experiments showed that SAMP8 mice exhibited a decreased tachypneic response to hypoxia (FiO2 = 0.08; 10 min) or hypercapnia (FiCO2 = 0.07; 10 min). Additionally, the ventilatory response to hypercapnia increased further due to higher tidal volume. Measurements of respiratory mechanics in SAMP8 mice showed decreased static compliance (Cstat), inspiratory capacity (IC), resistance (Rn), and elastance (H) at different ages (3, 6, and 10 months old). SAMP8 mice also have a decrease in contractile response to methacholine compared to SAMR1. In conclusion, our findings indicate that SAMP8 mice display a loss of the NK1-expressing neurons in the respiratory brainstem centers, along with impairments in both central and peripheral respiratory mechanisms. These observations suggest a potential impact on breathing in a senescence animal model.
Collapse
Affiliation(s)
| | - Octavio A C Maia
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Maria Aparecida Oliveira
- Deptartment of Pharmacology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Ana C Takakura
- Deptartment of Pharmacology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Wothan Tavares-Lima
- Deptartment of Pharmacology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Henrique T Moriya
- Biomedical Engineering Laboratory, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
2
|
Oliveira LM, Huff A, Wei A, Miranda NC, Wu G, Xu X, Ramirez JM. Afferent and Efferent Connections of the Postinspiratory Complex (PiCo) Revealed by AAV and Monosynaptic Rabies Viral Tracing. J Comp Neurol 2024; 532:e25683. [PMID: 39494735 DOI: 10.1002/cne.25683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 08/01/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024]
Abstract
The control of the respiratory rhythm and airway motor activity is essential for life. Accumulating evidence indicates that the postinspiratory complex (PiCo) is crucial for generating behaviors that occur during the postinspiratory phase, including expiratory laryngeal activity and swallowing. Located in the ventromedial medulla, PiCo is defined by neurons co-expressing two neurotransmitter markers (ChAT and Vglut2/Slc17a6). Here, we mapped the input-output connections of these neurons using viral tracers and intersectional viral-genetic tools. PiCo neurons were specifically targeted by focal injection of a doubly conditional Cre- and FlpO-dependent AAV8 viral marker (AAV8-Con/Fon-TVA-mCherry) into the left PiCo of adult ChatCre/wt: Vglut2FlpO/wt mice, for anterograde axonal tracing. These experiments revealed projections to various brain regions, including the Cu, nucleus of the solitary tract (NTS), Amb, X, XII, Sp5, RMg, intermediate reticular nucleus (IRt), lateral reticular nucleus (LRt), pre-Bötzinger complex (preBötC), contralateral PiCo, laterodorsal tegmental nucleus (LDTg), pedunculopontine tegmental nucleus (PPTg), periaqueductal gray matter (PAG), Kölliker-Fuse (KF), PB, and external cortex of the inferior colliculus (ECIC). A rabies virus (RV) retrograde transsynaptic approach was taken with EnvA-pseudotyped G-deleted (RV-SAD-G-GFP) to similarly target PiCo neurons in ChatCre/wt: Vglut2FlpO/wt mice, following prior injections of helper AAVs (a mixture of AAV-Ef1a-Con/Fon oG and viral vector AAV8-Con/Fon-TVA-mCherry). This combined approach revealed prominent synaptic inputs to PiCo neurons from NTS, IRt, and A1/C1. Although PiCo neurons project axons to the contralateral PiCo area, this approach did not detect direct contralateral connections. We suggest that PiCo serves as a critical integration site, projecting and receiving neuronal connections implicated in breathing, arousal, swallowing, and autonomic regulation.
Collapse
Affiliation(s)
- Luiz M Oliveira
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Alyssa Huff
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Aguan Wei
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Nicole C Miranda
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Ginny Wu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California, USA
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California, USA
- Center for Neural Circuit Mapping, School of Medicine, University of California, Irvine, California, USA
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Moreira TS, Mulkey DK, Takakura AC. Update on vascular control of central chemoreceptors. Exp Physiol 2024; 109:1837-1843. [PMID: 38153366 PMCID: PMC11522829 DOI: 10.1113/ep091329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
At least four mechanisms have been proposed to elucidate how neurons in the retrotrapezoid (RTN) region sense changes in CO2/H+ to regulate breathing (i.e., function as respiratory chemosensors). These mechanisms include: (1) intrinsic neuronal sensitivity to H+ mediated by TASK-2 and GPR4; (2) paracrine activation of RTN neurons by CO2-responsive astrocytes (via a purinergic mechanism); (3) enhanced excitatory synaptic input or disinhibition; and (4) CO2-induced vascular contraction. Although blood flow can influence tissue CO2/H+ levels, there is limited understanding of how control of vascular tone in central CO2 chemosensitive regions might contribute to respiratory output. In this review, we focus on recent evidence that CO2/H+-induced purinergic-dependent vasoconstriction in the ventral parafacial region near RTN neurons supports respiratory chemoreception. This mechanism appears to be unique to the ventral parafacial region and opposite to other brain regions, including medullary chemosensor regions, where CO2/H+ elicits vasodilatation. We speculate that this mechanism helps to maintain CO2/H+ levels in the vicinity of RTN neurons, thereby maintaining the drive to breathe. Important next steps include determining whether disruption of CO2/H+ vascular reactivity contributes to or can be targeted to improve breathing problems in disease states, such as Parkinson's disease.
Collapse
Affiliation(s)
- Thiago S. Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias BiomedicasUniversidade de Sao PauloSao PauloBrazil
| | - Daniel K. Mulkey
- Department of Physiology and NeurobiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Ana C. Takakura
- Department of Pharmacology, Instituto de Ciencias BiomedicasUniversidade de Sao PauloSão PauloBrazil
| |
Collapse
|
4
|
Maletz SN, Reid BT, Baekey DM, Whitaker-Fornek JR, Bateman JT, Arakawa K, Bissonnette JM, Levitt ES. Effect of positive allosteric modulation and orthosteric agonism of dopamine D2-like receptors on respiration in mouse models of Rett syndrome. Respir Physiol Neurobiol 2024; 328:104314. [PMID: 39117159 DOI: 10.1016/j.resp.2024.104314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/26/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Rett syndrome (RTT) is an autism spectrum disorder caused by loss-of-function mutations in the methyl-CPG-binding protein 2 (Mecp2) gene. Frequent apneas and irregular breathing are prevalent in RTT, and also occur in rodent models of the disorder, including Mecp2Bird and Mecp2R168X mice. Sarizotan, a serotonin 5-HT1a and dopamine D2-like receptor agonist, reduces the incidence of apneas and irregular breathing in mouse models of RTT (Abdala et al., 2014). Targeting the 5HT1a receptor alone also improves respiration in RTT mice (Levitt et al., 2013). However, the contribution of D2-like receptors in correcting these respiratory disturbances remains untested. PAOPA, a dopamine D2-like receptor positive allosteric modulator, and quinpirole, a dopamine D2-like receptor orthosteric agonist, were used in conjunction with whole-body plethysmography to evaluate whether activation of D2-like receptors is sufficient to improve breathing disturbances in female heterozygous Mecp2Bird/+ and Mecp2R168X/+ mice. PAOPA did not significantly change apnea incidence or irregularity score in RTT mice. PAOPA also had no effect on the ventilatory response to hypercapnia (7 % CO2). In contrast, quinpirole reduced apnea incidence and irregularity scores and improved the hypercapnic ventilatory response in Mecp2R168X/+ and Mecp2Bird/+ mice, while also reducing respiratory rate. These results suggest that D2-like receptors could contribute to the positive effects of sarizotan in the correction of respiratory abnormalities in Rett syndrome. However, positive allosteric modulation of D2-like receptors alone was not sufficient to evoke these effects.
Collapse
Affiliation(s)
- Sebastian N Maletz
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, United States
| | - Brandon T Reid
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, United States
| | - David M Baekey
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, United States
| | - Jessica R Whitaker-Fornek
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, United States; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Jordan T Bateman
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, United States
| | - Keiko Arakawa
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - John M Bissonnette
- Oregon Health and Sciences University, Portland, OR 97239, United States
| | - Erica S Levitt
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, United States; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| |
Collapse
|
5
|
Matteoli G, Alvente S, Bastianini S, Berteotti C, Ciani E, Cinelli E, Lo Martire V, Medici G, Mello T, Miglioranza E, Silvani A, Mutolo D, Zoccoli G. Characterisation of sleep apneas and respiratory circuitry in mice lacking CDKL5. J Sleep Res 2024:e14295. [PMID: 39049436 DOI: 10.1111/jsr.14295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
CDKL5 deficiency disorder is a rare genetic disease caused by mutations in the CDKL5 gene. Central apneas during wakefulness have been reported in patients with CDKL5 deficiency disorder. Studies on CDKL5-knockout mice, a CDKL5 deficiency disorder model, reported sleep apneas, but it is still unclear whether these events are central (central sleep apnea) or obstructive (obstructive sleep apnea) and may be related to alterations of brain circuits that modulate breathing rhythm. This study aimed to discriminate central sleep apnea and obstructive sleep apnea in CDKL5-knockout mice, and explore changes in the somatostatin neurons expressing high levels of neurokinin-1 receptors within the preBötzinger complex. Ten adult male wild-type and 12 CDKL5-knockout mice underwent electrode implantation for sleep stage discrimination and diaphragmatic activity recording, and were studied using whole-body plethysmography for 7 hr during the light (resting) period. Sleep apneas were categorised as central sleep apnea or obstructive sleep apnea based on the recorded signals. The number of somatostatin neurons in the preBötzinger complex and their neurokinin-1 receptors expression were assessed through immunohistochemistry in a sub-group of animals. CDKL5-knockout mice exhibited a higher apnea occurrence rate and a greater prevalence of obstructive sleep apnea during rapid eye movement sleep, compared with wild-type, whereas no significant difference was observed for central sleep apnea. Moreover, CDKL5-knockout mice showed a reduced number of somatostatin neurons in the preBötzinger complex, and these neurons expressed a lower level of neurokinin-1 receptors compared with wild-type controls. These findings underscore the pivotal role of CDKL5 in regulating normal breathing, suggesting its potential involvement in shaping preBötzinger complex neural circuitry and controlling respiratory muscles during sleep.
Collapse
Affiliation(s)
- Gabriele Matteoli
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Sara Alvente
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Stefano Bastianini
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Chiara Berteotti
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Elenia Cinelli
- Department of Experimental and Clinical Medicine, Section of Physiology, University of Florence, Florence, Italy
| | - Viviana Lo Martire
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Giorgio Medici
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Tommaso Mello
- Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Elena Miglioranza
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Alessandro Silvani
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Donatella Mutolo
- Department of Experimental and Clinical Medicine, Section of Physiology, University of Florence, Florence, Italy
| | - Giovanna Zoccoli
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
6
|
Kawamura LRDSM, Sarmet M, de Campos PS, Takehara S, Kumei Y, Zeredo JLL. Apnea behavior in early- and late-stage mouse models of Parkinson's disease: Cineradiographic analysis of spontaneous breathing, acute stress, and swallowing. Respir Physiol Neurobiol 2024; 323:104239. [PMID: 38395210 DOI: 10.1016/j.resp.2024.104239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
This study aimed to evaluate the timing and frequency of spontaneous apneas during breathing and swallowing by using cineradiography on mouse models of early/initial or late/advanced Parkinson's disease (PD). C57BL/6 J mice received either 6-OHDA or vehicle injections into their right striatum, followed by respiratory movement recordings during spontaneous breathing and swallowing, and a stress challenge, two weeks later. Experimental group animals showed a significantly lower respiratory rate (158.66 ± 32.88 breaths/minute in late PD, 173.16 ± 25.19 in early PD versus 185.27 ± 25.36 in controls; p<0.001) and a significantly higher frequency of apneas (median 1 apnea/minute in both groups versus 0 in controls; p<0.001). Other changes included reduced food intake and the absence of swallow apneas in experimental mice. 6-OHDA-induced nigrostriatal degeneration in mice disrupted respiratory control, swallowing, stress responsiveness, and feeding behaviors, potentially hindering airway protection and elevating the risk of aspiration.
Collapse
Affiliation(s)
| | - Max Sarmet
- Graduate Program in Health Sciences and Technologies, University of Brasilia, Brasilia, Brazil
| | | | - Sachiko Takehara
- Division of Preventive Dentistry, Department of Oral Health Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yasuhiro Kumei
- Department of Pathological Biochemistry, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jorge Luis Lopes Zeredo
- Graduate Program in Health Sciences, University of Brasilia, Brasilia, Brazil; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
7
|
Walker JJ, Meunier E, Garcia S, Messaoudi B, Mouly AM, Veyrac A, Buonviso N, Courtiol E. State-dependent alteration of respiration in a rat model of Parkinson's disease. Exp Neurol 2024; 375:114740. [PMID: 38395215 DOI: 10.1016/j.expneurol.2024.114740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Parkinson's disease (PD) is the second most frequent neurodegenerative disorder. Besides major deficits in motor coordination, patients may also display sensory and cognitive impairments, which are often overlooked despite being inherently part of the PD symptomatology. Amongst those symptoms, respiration, a key mechanism involved in the regulation of multiple physiological and neuronal processes, appears to be altered. Importantly, breathing patterns are highly correlated with the animal's behavioral states. This raises the question of the potential impact of behavioral state on respiration deficits in PD. To answer this question, we first characterized the respiratory parameters in a neurotoxin-induced rat model of PD (6-OHDA) across three different vigilance states: sleep, quiet waking and exploration. We noted a significantly higher respiratory frequency in 6-OHDA rats during quiet waking compared to Sham rats. A higher respiratory amplitude was also observed in 6-OHDA rats during both quiet waking and exploration. No effect of the treatment was noted during sleep. Given the relation between respiration and olfaction and the presence of olfactory deficits in PD patients, we then investigated the odor-evoked sniffing response in PD rats, using an odor habituation/cross-habituation paradigm. No substantial differences were observed in olfactory abilities between the two groups, as assessed through sniffing frequency. These results corroborate the hypothesis that respiratory impairments in 6-OHDA rats are vigilance-dependent. Our results also shed light on the importance of considering the behavioral state as an impacting factor when analyzing respiration.
Collapse
Affiliation(s)
- Jean Jacques Walker
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France.
| | - Estelle Meunier
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France
| | - Samuel Garcia
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France.
| | - Belkacem Messaoudi
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France.
| | - Anne-Marie Mouly
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France.
| | - Alexandra Veyrac
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France.
| | - Nathalie Buonviso
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France.
| | - Emmanuelle Courtiol
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France.
| |
Collapse
|
8
|
Cabral LM, Oliveira LM, Miranda NC, Kawamoto EM, K P Costa S, Moreira TS, Takakura AC. TNFR1-mediated neuroinflammation is necessary for respiratory deficits observed in 6-hydroxydopamine mouse model of Parkinsońs Disease. Brain Res 2024; 1822:148586. [PMID: 37757967 DOI: 10.1016/j.brainres.2023.148586] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/17/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
Parkinson's Disease (PD) is characterized by classic motor symptoms related to movement, but PD patients can experience symptoms associated with impaired autonomic function, such as respiratory disturbances. Functional respiratory deficits are known to be associated with brainstem neurodegeneration in the mice model of PD induced by 6-hydroxydopamine (6-OHDA). Understanding the causes of neuronal death is essential for identifying specific targets to prevent degeneration. Many mechanisms can explain why neurons die in PD, and neuroinflammation is one of them. To test the influence of inflammation, mediated by microglia and astrocytes cells, in the respiratory disturbances associated with brainstem neurons death, we submitted wild-type (WT) and TNF receptor 1 (TNFR1) knockout male mice to the 6-OHDA model of PD. Also, male C57BL/6 animals were induced using the same PD model and treated with minocycline (45 mg/kg), a tetracycline antibiotic with anti-inflammatory properties. We show that degeneration of brainstem areas such as the retrotrapezoid nucleus (RTN) and the pre-Botzinger Complex (preBotC) were prevented in both protocols. Notably, respiratory disturbances were no longer observed in the animals where inflammation was suppressed. Thus, the data demonstrate that inflammation is responsible for the breathing impairment in the 6-OHDA-induced PD mouse model.
Collapse
Affiliation(s)
- Laís M Cabral
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP 05508-000, Brazil
| | - Luiz M Oliveira
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP 05508-000, Brazil
| | - Nicole C Miranda
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP 05508-000, Brazil
| | - Elisa M Kawamoto
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP 05508-000, Brazil
| | - Soraia K P Costa
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP 05508-000, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP 05508-000, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP 05508-000, Brazil.
| |
Collapse
|
9
|
Oliveira LM, Severs L, Moreira TS, Ramirez JM, Takakura AC. Ampakine CX614 increases respiratory rate in a mouse model of Parkinson's disease. Brain Res 2023; 1815:148448. [PMID: 37301422 DOI: 10.1016/j.brainres.2023.148448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/11/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of dopaminergic neurons in the substantia nigra compacta (SNpc). In a mouse model of PD induced by the injection of 6-hydroxydopamine (6-OHDA) into the caudate putamen (CPu) dyspnea events are very common. Neuroanatomical and functional studies show that the number of glutamatergic neurons in the pre-Bötzinger Complex (preBötC) are reduced. We hypothesize that the neuronal loss, and consequently loss of glutamatergic connections in the respiratory network previously investigated, are responsible for the breathing impairment in PD. Here, we tested whether ampakines (CX614), a subgroup of AMPA receptor positive allosteric modulators, could stimulate the respiratory activity in PD-induced animals. CX614 (50 µM) injected intraperitoneally or directly into the preBötC region reduced the irregularity pattern and increased the respiratory rate by 37% or 82%, respectively, in PD-induced animals. CX614 also increased the respiratory frequency in healthy animals. These data suggest that ampakine CX614 could become a tool to restore breathing in PD.
Collapse
Affiliation(s)
- Luiz M Oliveira
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP 05508, Brazil; Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Avenue, JMB10, Seattle, WA 98101, USA
| | - Liza Severs
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Avenue, JMB10, Seattle, WA 98101, USA
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508, Brazil
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Avenue, JMB10, Seattle, WA 98101, USA; Department of Neurological Surgery, University of Washington, 1900 9th Avenue, JMB10, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington, 1900 9th Avenue, JMB10, Seattle, WA 98101, USA
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP 05508, Brazil.
| |
Collapse
|
10
|
McMahon L, Blake C, Lennon O. A systematic review and meta-analysis of respiratory dysfunction in Parkinson's disease. Eur J Neurol 2023; 30:1481-1504. [PMID: 36779856 DOI: 10.1111/ene.15743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/14/2023]
Abstract
INTRODUCTION Respiratory dysfunction in Parkinson's disease (PD) is common and associated with increased hospital admission and mortality rates. Central and peripheral mechanisms have been proposed in PD. To date no systematic review identifies the extent and type of respiratory impairments in PD compared with healthy controls. METHODS PubMed, EMBASE, CINAHL, Web of Science, Pedro, MEDLINE, Cochrane Library and OpenGrey were searched from inception to December 2021 to identify case-control studies reporting respiratory measures in PD and matched controls. RESULTS Thirty-nine studies met inclusion criteria, the majority with low risk of bias across Risk of Bias Assessment tool for Non-randomized Studies (RoBANS) domains. Data permitted pooled analysis for 26 distinct respiratory measures. High-to-moderate certainty evidence of impairment in PD was identified for vital capacity (standardised mean difference [SMD] 0.75; 95% CI 0.45-1.05; p < 0.00001; I2 = 10%), total chest wall volume (SMD 0.38; 95% CI 0.09-0.68; p = 0.01; I2 = 0%), maximum inspiratory pressure (SMD 0.91; 95% CI 0.64-1.19; p < 0.00001; I2 = 43%) and sniff nasal inspiratory pressure (SMD 0.58; 95% CI 0.30-0.87; p < 0.00001; I2 = 0%). Sensitivity analysis provided high-moderate certainty evidence of impairment for forced vital capacity and forced expiratory volume in 1 s during medication ON phases and increased respiratory rate during OFF phases. Lower certainty evidence identified impairments in PD for maximum expiratory pressure, tidal volume, maximum voluntary ventilation and peak cough flow. CONCLUSIONS Strong evidence supports a restrictive pattern with inspiratory muscle weakness in PD compared with healthy controls. Limited data for central impairment were identified with inconclusive findings.
Collapse
Affiliation(s)
- Laura McMahon
- UCD School of Public Health, Physiotherapy and Population Science, Health Sciences Centre, University College Dublin, Dublin, Ireland
| | - Catherine Blake
- UCD School of Public Health, Physiotherapy and Population Science, Health Sciences Centre, University College Dublin, Dublin, Ireland
| | - Olive Lennon
- UCD School of Public Health, Physiotherapy and Population Science, Health Sciences Centre, University College Dublin, Dublin, Ireland
| |
Collapse
|
11
|
The Pedunculopontine Tegmental Nucleus is not Important for Breathing Impairments Observed in a Parkinson's Disease Model. Neuroscience 2023; 512:32-46. [PMID: 36690033 DOI: 10.1016/j.neuroscience.2022.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 01/21/2023]
Abstract
Parkinson's disease (PD) is a motor disorder resulting from degeneration of dopaminergic neurons of substantia nigra pars compacta (SNpc), with classical and non-classical symptoms such as respiratory instability. An important region for breathing control, the Pedunculopontine Tegmental Nucleus (PPTg), is composed of cholinergic, glutamatergic, and GABAergic neurons. We hypothesize that degenerated PPTg neurons in a PD model contribute to the blunted respiratory activity. Adult mice (40 males and 29 females) that express the fluorescent green protein in cholinergic, glutamatergic or GABAergic cells were used (Chat-cre Ai6, Vglut2-cre Ai6 and Vgat-cre Ai6) and received bilateral intrastriatal injections of vehicle or 6-hydroxydopamine (6-OHDA). Ten days later, the animals were exposed to hypercapnia or hypoxia to activate PPTg neurons. Vglut2-cre Ai6 animals also received retrograde tracer injections (cholera toxin b) into the retrotrapezoid nucleus (RTN) or preBötzinger Complex (preBötC) and anterograde tracer injections (AAV-mCherry) into the SNpc. In 6-OHDA-injected mice, there is a 77% reduction in the number of dopaminergic neurons in SNpc without changing the number of neurons in the PPTg. Hypercapnia activated fewer Vglut2 neurons in PD, and hypoxia did not activate PPTg neurons. PPTg neurons do not input RTN or preBötC regions but receive projections from SNpc. Although our results did not show a reduction in the number of glutamatergic neurons in PPTg, we observed a reduction in the number of neurons activated by hypercapnia in the PD animal model, suggesting that PPTg may participate in the hypercapnia ventilatory response.
Collapse
|
12
|
Abdelmissih S. A Bitter Experience That Enlightens the Future: COVID-19 Neurological Affection and Perspectives on the Orexigenic System. Cureus 2022; 14:e30788. [DOI: 10.7759/cureus.30788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
|
13
|
Effects of an Aquatic Physical Exercise Program on Ventilatory Parameters in People with Parkinson’s Disease. PARKINSON'S DISEASE 2022; 2022:2073068. [PMID: 36091655 PMCID: PMC9452001 DOI: 10.1155/2022/2073068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022]
Abstract
Problems in the respiratory system are the main cause of death in Parkinson’s disease (PD). Ventilatory limitations can also be part of a vicious cycle involving physical-functional limitations (e.g., walking difficulties) and the patients’ perception of fatigue. The objective of this study was to analyze the effects of an aquatic physical exercise intervention program on ventilatory parameters, perception of fatigue, and gait capacity in participants with PD. This quasi-experimental study had a single group with repeated measures in four assessments, proposing an aquatic physical exercise intervention program. The inclusion criteria encompassed being in levels 1 to 4 on the Hoehn and Yahr scale and having a medical certificate for the activities. Assessments took place at 3-month intervals between them—the first period was the control, the second following the intervention, and the third period was the follow-up. The intervention had 25 biweekly sessions over 3 months. A total of 13 people (71.3 ± 5.61 years old) participated in the intervention, without significant differences in the control period. Between the intervention assessments, they had statistically significant differences in MIP, MEP, FVC, Tiffeneau index, MVV, and fatigue. The study demonstrated that the aquatic physical exercise intervention was effective for ventilatory outcomes and fatigue in people with PD.
Collapse
|
14
|
L. F. Nascimento A, O. S. Medeiros P, F. A. T. Pedrão L, Queiroz VC, Oliveira LM, Novaes LS, Caetano AL, Munhoz CD, Takakura AC, Falquetto B. Oxidative stress inhibition via apocynin prevents contributes to medullary respiratory neurodegeneration and respiratory pattern dysfunction in 6-OHDA animal model of Parkinson's disease. Neuroscience 2022; 502:91-106. [DOI: 10.1016/j.neuroscience.2022.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/15/2022]
|
15
|
Oliveira LM, Fernandes-Junior SA, Cabral LMC, Miranda NCS, Czeisler CM, Otero JJ, Moreira TS, Takakura AC. Regulation of blood vessels by ATP in the ventral medullary surface in a rat model of Parkinson's disease. Brain Res Bull 2022; 187:138-154. [PMID: 35777704 DOI: 10.1016/j.brainresbull.2022.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/26/2022] [Accepted: 06/25/2022] [Indexed: 11/17/2022]
Abstract
Parkinson's disease (PD) patients often experience impairment of autonomic and respiratory functions. These include conditions such as orthostatic hypotension and sleep apnea, which are highly correlated with dysfunctional central chemoreception. Blood flow is a fundamental determinant of tissue CO2/H+, yet the extent to which blood flow regulation within chemoreceptor regions contributes to respiratory behavior during neurological disease remains unknown. Here, we tested the hypothesis that 6-hydroxydopamine injection to inducing a known model of PD results in dysfunctional vascular homeostasis, biochemical dysregulation, and glial morphology of the ventral medullary surface (VMS). We show that hypercapnia (FiCO2 = 10%) induced elevated VMS pial vessel constriction in PD animals through a P2-receptor dependent mechanism. Similarly, we found a greater CO2-induced vascular constriction after ARL67156 (an ectonucleotidase inhibitor) in control and PD-induced animals. In addition, we also report that weighted gene correlational network analysis of the proteomic data showed a protein expression module differentially represented between both groups. This module showed that gene ontology enrichment for components of the ATP machinery were reduced in our PD-model compared to control animals. Altogether, our data indicate that dysfunction in purinergic signaling, potentially through altered ATP bioavailability in the VMS region, may compromise the RTN neuroglial vascular unit in a PD animal model.
Collapse
Affiliation(s)
- Luiz M Oliveira
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil
| | - Silvio A Fernandes-Junior
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil; The Ohio State University College of Medicine, Department of Pathology, USA
| | - Laís M C Cabral
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil
| | - Nicole C S Miranda
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil
| | | | - José J Otero
- The Ohio State University College of Medicine, Department of Pathology, USA
| | - Thiago S Moreira
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil
| | - Ana C Takakura
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
16
|
Kaczyńska K, Orłowska ME, Andrzejewski K. Respiratory Abnormalities in Parkinson's Disease: What Do We Know from Studies in Humans and Animal Models? Int J Mol Sci 2022; 23:ijms23073499. [PMID: 35408858 PMCID: PMC8998219 DOI: 10.3390/ijms23073499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common progressive neurodegenerative disease characterized by movement disorders due to the progressive loss of dopaminergic neurons in the ventrolateral region of the substantia nigra pars compacta (SNpc). Apart from the cardinal motor symptoms such as rigidity and bradykinesia, non-motor symptoms including those associated with respiratory dysfunction are of increasing interest. Not only can they impair the patients’ quality of life but they also can cause aspiration pneumonia, which is the leading cause of death among PD patients. This narrative review attempts to summarize the existing literature on respiratory impairments reported in human studies, as well as what is newly known from studies in animal models of the disease. Discussed are not only respiratory muscle dysfunction, apnea, and dyspnea, but also altered central respiratory control, responses to hypercapnia and hypoxia, and how they are affected by the pharmacological treatment of PD.
Collapse
|
17
|
Aquino YC, Cabral LM, Miranda NC, Naccarato MC, Falquetto B, Moreira TS, Takakura AC. Respiratory disorders of Parkinson's disease. J Neurophysiol 2022; 127:1-15. [PMID: 34817281 DOI: 10.1152/jn.00363.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra, mainly affecting people over 60 yr of age. Patients develop both classic symptoms (tremors, muscle rigidity, bradykinesia, and postural instability) and nonclassical symptoms (orthostatic hypotension, neuropsychiatric deficiency, sleep disturbances, and respiratory disorders). Thus, patients with PD can have a significantly impaired quality of life, especially when they do not have multimodality therapeutic follow-up. The respiratory alterations associated with this syndrome are the main cause of mortality in PD. They can be classified as peripheral when caused by disorders of the upper airways or muscles involved in breathing and as central when triggered by functional deficits of important neurons located in the brainstem involved in respiratory control. Currently, there is little research describing these disorders, and therefore, there is no well-established knowledge about the subject, making the treatment of patients with respiratory symptoms difficult. In this review, the history of the pathology and data about the respiratory changes in PD obtained thus far will be addressed.
Collapse
Affiliation(s)
- Yasmin C Aquino
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Laís M Cabral
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Nicole C Miranda
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Monique C Naccarato
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Bárbara Falquetto
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Oliveira LM, Baertsch NA, Moreira TS, Ramirez JM, Takakura AC. Unraveling the Mechanisms Underlying Irregularities in Inspiratory Rhythm Generation in a Mouse Model of Parkinson's Disease. J Neurosci 2021; 41:4732-4747. [PMID: 33863785 PMCID: PMC8260248 DOI: 10.1523/jneurosci.2114-20.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder anatomically characterized by a progressive loss of dopaminergic neurons in the substantia nigra compacta (SNpc). Much less known, yet clinically very important, are the detrimental effects on breathing associated with this disease. Consistent with the human pathophysiology, the 6-hydroxydopamine hydrochloride (6-OHDA) rodent model of PD shows reduced respiratory frequency (fR) and NK1r-immunoreactivity in the pre-Bötzinger complex (preBötC) and PHOX2B+ neurons in the retrotrapezoid nucleus (RTN). To unravel mechanisms that underlie bradypnea in PD, we employed a transgenic approach to label or stimulate specific neuron populations in various respiratory-related brainstem regions. PD mice were characterized by a pronounced decreased number of putatively rhythmically active excitatory neurons in the preBötC and adjacent ventral respiratory column (VRC). Specifically, the number of Dbx1 and Vglut2 neurons was reduced by 47.6% and 17.3%, respectively. By contrast, inhibitory Vgat+ neurons in the VRC, as well as neurons in other respiratory-related brainstem regions, showed relatively minimal or no signs of neuronal loss. Consistent with these anatomic observations, optogenetic experiments identified deficits in respiratory function that were specific to manipulations of excitatory (Dbx1/Vglut2) neurons in the preBötC. We conclude that the decreased number of this critical population of respiratory neurons is an important contributor to the development of irregularities in inspiratory rhythm generation in this mouse model of PD.SIGNIFICANCE STATEMENT We found a decreased number of a specific population of medullary neurons which contributes to breathing abnormalities in a mouse model of Parkinson's disease (PD).
Collapse
Affiliation(s)
- Luiz M Oliveira
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo 05508, Brazil
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98101
| | - Nathan A Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98101
- Department of Pediatrics, University of Washington, Seattle, Washington 98101
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo 05508, Brazil
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98101
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98101
- Department of Pediatrics, University of Washington, Seattle, Washington 98101
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo 05508, Brazil
| |
Collapse
|
19
|
Levy J, Droz-Bartholet F, Achour M, Facchinetti P, Parratte B, Giuliano F. Parafacial neurons in the human brainstem express specific markers for neurons of the retrotrapezoid nucleus. J Comp Neurol 2021; 529:3313-3320. [PMID: 34008871 DOI: 10.1002/cne.25191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/08/2021] [Accepted: 05/13/2021] [Indexed: 11/06/2022]
Abstract
The retrotrapezoid nucleus (RTN) is a hub for respiratory chemoregulation in the mammal brainstem that integrates chemosensory information from peripheral sites and central relays. Chemosensitive neurons of the RTN express specific genetic and molecular determinants, which have been used to identify RTN precise location within the brainstem of rodents and nonhuman primates. Based on a comparative approach, we hypothesized that among mammals, neurons exhibiting the same specific molecular and genetic signature would have the same function. The co-expression of preprogalanin (PPGAL) and SLC17A6 (VGluT2) mRNAs with duplex in situ hybridization has been studied in formalin fixed paraffin-embedded postmortem human brainstems. Two specimens were processed and analyzed in line with RTN descriptions in adult rats and macaques. Double-labeled PPGAL+/SLC17A6+ neurons were only identified in the parafacial region of the brainstem. These neurons were found surrounding the nucleus of the facial nerve, located ventrally to the nucleus VII on caudal sections, and slightly more dorsally on rostral sections. The expression of neuromedin B (NMB) mRNA as a single marker of chemosensitive RTN neurons has not been confirmed in humans. The location of the RTN in human adults is provided. This should help to develop investigation tools combining anatomic high-resolution imaging and respiratory functional investigations to explore the pathogenic role of the RTN in congenital or acquired neurodegenerative diseases.
Collapse
Affiliation(s)
- Jonathan Levy
- UMR 1179 (Inserm-UVSQ) Neuromuscular Handicap - UFR des sciences de la Santé Simone Veil, Université de Versailles St. Quentin, Montigny-le-Bretonneux, Paris Saclay campus, France.,Service de Médecine Physique et de Réadaptation - APHP, Hôpital Raymond Poincaré, Garches, France.,Fondation Garches - Hôpital Raymond Poincaré, Garches, France
| | - François Droz-Bartholet
- Laboratoire d'Anatomie - Faculté de Médecine de Besançon, Université de Franche-Comté, Besançon, France.,Service de Médecine Physique et de Réadaptation - CHRU Jean Minjoz, Besançon, France
| | - Melyna Achour
- UMR 1179 (Inserm-UVSQ) Neuromuscular Handicap - UFR des sciences de la Santé Simone Veil, Université de Versailles St. Quentin, Montigny-le-Bretonneux, Paris Saclay campus, France
| | - Patricia Facchinetti
- UMR 1179 (Inserm-UVSQ) Neuromuscular Handicap - UFR des sciences de la Santé Simone Veil, Université de Versailles St. Quentin, Montigny-le-Bretonneux, Paris Saclay campus, France
| | - Bernard Parratte
- Laboratoire d'Anatomie - Faculté de Médecine de Besançon, Université de Franche-Comté, Besançon, France.,Service de Médecine Physique et de Réadaptation - CHRU Jean Minjoz, Besançon, France
| | - François Giuliano
- UMR 1179 (Inserm-UVSQ) Neuromuscular Handicap - UFR des sciences de la Santé Simone Veil, Université de Versailles St. Quentin, Montigny-le-Bretonneux, Paris Saclay campus, France.,Service de Médecine Physique et de Réadaptation - APHP, Hôpital Raymond Poincaré, Garches, France
| |
Collapse
|
20
|
Oliveira MA, Lino-Alvarado AE, Moriya HT, Vitorasso RL. Drug class effects on respiratory mechanics in animal models: access and applications. Exp Biol Med (Maywood) 2021; 246:1094-1103. [PMID: 33601911 DOI: 10.1177/1535370221993095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Assessment of respiratory mechanics extends from basic research and animal modeling to clinical applications in humans. However, to employ the applications in human models, it is desirable and sometimes mandatory to study non-human animals first. To acquire further precise and controlled signals and parameters, the animals studied must be further distant from their spontaneous ventilation. The majority of respiratory mechanics studies use positive pressure ventilation to model the respiratory system. In this scenario, a few drug categories become relevant: anesthetics, muscle blockers, bronchoconstrictors, and bronchodilators. Hence, the main objective of this study is to briefly review and discuss each drug category, and the impact of a drug on the assessment of respiratory mechanics. Before and during the positive pressure ventilation, the experimental animal must be appropriately sedated and anesthetized. The sedation will lower the pain and distress of the studied animal and the plane of anesthesia will prevent the pain. With those drugs, a more controlled procedure is carried out; further, because many anesthetics depress the respiratory system activity, a minimum interference of the animal's respiration efforts are achieved. The latter phenomenon is related to muscle blockers, which aim to minimize respiratory artifacts that may interfere with forced oscillation techniques. Generally, the respiratory mechanics are studied under appropriate anesthesia and muscle blockage. The application of bronchoconstrictors is prevalent in respiratory mechanics studies. To verify the differences among studied groups, it is often necessary to challenge the respiratory system, for example, by pharmacologically inducing bronchoconstriction. However, the selected bronchoconstrictor, doses, and administration can affect the evaluation of respiratory mechanics. Although not prevalent, studies have applied bronchodilators to return (airway resistance) to the basal state after bronchoconstriction. The drug categories can influence the mathematical modeling of the respiratory system, systemic conditions, and respiratory mechanics outcomes.
Collapse
Affiliation(s)
- Maria A Oliveira
- Department of Pharmacology, Institute of Biomedical Science, University of Sao Paulo (USP) Sao Paulo, SP 05508-000, Brazil
| | - Alembert E Lino-Alvarado
- Biomedical Engineering Laboratory - University of Sao Paulo (USP) Sao Paulo, SP 05508-010, Brazil
| | - Henrique T Moriya
- Biomedical Engineering Laboratory - University of Sao Paulo (USP) Sao Paulo, SP 05508-010, Brazil
| | - Renato L Vitorasso
- Biomedical Engineering Laboratory - University of Sao Paulo (USP) Sao Paulo, SP 05508-010, Brazil
| |
Collapse
|
21
|
Hosford PS, Ninkina N, Buchman VL, Smith JC, Marina N, SheikhBahaei S. Synuclein Deficiency Results in Age-Related Respiratory and Cardiovascular Dysfunctions in Mice. Brain Sci 2020; 10:brainsci10090583. [PMID: 32846874 PMCID: PMC7563345 DOI: 10.3390/brainsci10090583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 01/16/2023] Open
Abstract
Synuclein (α, β, and γ) proteins are highly expressed in presynaptic terminals, and significant data exist supporting their role in regulating neurotransmitter release. Targeting the gene encoding α-synuclein is the basis of many animal models of Parkinson's disease (PD). However, the physiological role of this family of proteins in not well understood and could be especially relevant as interfering with accumulation of α-synuclein level has therapeutic potential in limiting PD progression. The long-term effects of their removal are unknown and given the complex pathophysiology of PD, could exacerbate other clinical features of the disease, for example dysautonomia. In the present study, we sought to characterize the autonomic phenotypes of mice lacking all synucleins (α, β, and γ; αβγ-/-) in order to better understand the role of synuclein-family proteins in autonomic function. We probed respiratory and cardiovascular reflexes in conscious and anesthetized, young (4 months) and aged (18-20 months) αβγ-/- male mice. Aged mice displayed impaired respiratory responses to both hypoxia and hypercapnia when breathing activities were recorded in conscious animals using whole-body plethysmography. These animals were also found to be hypertensive from conscious blood pressure recordings, to have reduced pressor baroreflex gain under anesthesia, and showed reduced termination of both pressor and depressor reflexes. The present data demonstrate the importance of synuclein in the normal function of respiratory and cardiovascular reflexes during aging.
Collapse
Affiliation(s)
- Patrick S. Hosford
- Department of Neuroscience Physiology and Pharmacology, Center for Cardiovascular and Metabolic Neuroscience, University College London (UCL), London WC1E 6BT, UK; (P.S.H.); (N.M.)
| | - Natalia Ninkina
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; (N.N.); (V.L.B.)
- Institute of Physiologically Active Compounds, Russian Academy of Sciences (IPAC RAS), 1 Severniy proezd, 142432 Chernogolovka, Moscow Region, Russia
| | - Vladimir L. Buchman
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; (N.N.); (V.L.B.)
- Institute of Physiologically Active Compounds, Russian Academy of Sciences (IPAC RAS), 1 Severniy proezd, 142432 Chernogolovka, Moscow Region, Russia
| | - Jeffrey C. Smith
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD 20892, USA;
| | - Nephtali Marina
- Department of Neuroscience Physiology and Pharmacology, Center for Cardiovascular and Metabolic Neuroscience, University College London (UCL), London WC1E 6BT, UK; (P.S.H.); (N.M.)
| | - Shahriar SheikhBahaei
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD 20892, USA;
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD 20892, USA
- Correspondence: ; Tel.: +1-301-496-4960; Fax: +1-301-496-1339
| |
Collapse
|
22
|
Maia OAC, Malheiros-Lima MR, Oliveira MA, Castro CL, Moriya HT, Tavares-de-Lima W, Takakura AC, Moreira TS. Pilocarpine-induced status epilepticus reduces chemosensory control of breathing. Brain Res Bull 2020; 161:98-105. [PMID: 32433938 DOI: 10.1016/j.brainresbull.2020.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/27/2020] [Accepted: 05/02/2020] [Indexed: 12/14/2022]
Abstract
One of the possible causes of death in epilepsy is breathing disorders, especially apneas, which lead to an increase in CO2 levels (hypercapnia) and/or a decrease in O2 levels in arterial blood (hypoxemia). The respiratory neurons located in the ventral brainstem respiratory column are the main groups responsible for controlling breathing. Recent data from our group demonstrated respiratory changes in two experimental models of epilepsy, i.e. audiogenic epilepsy, and amygdala rapid kindling. Here, we aimed to evaluate respiratory changes in the classic model of temporal lobe epilepsy induced by intra-hippocampal injection of pilocarpine. Adult Wistar rats with stainless-steel cannulas implanted in the hippocampus region were used. The animals were submitted to pilocarpine injection (2.4 mg/μL, N = 12-15) or saline (N = 9) into the hippocampus. The respiratory parameters analyzed by whole-body plethysmography were respiratory rate (fR), tidal volume (VT) and ventilation (VE). Respiratory mechanics such as Newtonian airway resistance (Rn), viscance of the pulmonary parenchyma (G) and the elastance of the pulmonary parenchyma (H) were also investigated. No changes in baseline breathing were detected 15 or 30 days after pilocarpine-induced status epilepticus (SE). However, 30 days after pilocarpine-induced SE, a significant reduction in VE was observed during hypercapnic (7% CO2) stimulation, without affecting the hypoxia (8% O2) ventilatory response. We also did not observe changes in respiratory mechanics. The present results suggest that the impairment of the hypercapnia ventilatory response in pilocarpine-induced SE could be related to a presumable degeneration of brainstem respiratory neurons but not to peripheral mechanisms.
Collapse
Affiliation(s)
- Octávio A C Maia
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, 1524 Prof Lineu Prestes Av 05508-000, Sao Paulo, SP, Brazil
| | - Milene R Malheiros-Lima
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, 1524 Prof Lineu Prestes Av 05508-000, Sao Paulo, SP, Brazil
| | - Maria A Oliveira
- Department of Pharmacology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Claudio L Castro
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, 1524 Prof Lineu Prestes Av 05508-000, Sao Paulo, SP, Brazil
| | - Henrique T Moriya
- Department of Engineering of Control and Telecommunication, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Wothan Tavares-de-Lima
- Department of Pharmacology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, 1524 Prof Lineu Prestes Av 05508-000, Sao Paulo, SP, Brazil.
| |
Collapse
|
23
|
Pokusa M, Hajduchova D, Budaj T, Kralova Trancikova A. Respiratory Function and Dysfunction in Parkinson-Type Neurodegeneration. Physiol Res 2020; 69:S69-S79. [DOI: 10.33549/physiolres.934405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Parkinson's disease (PD) is most commonly manifested by the presence of motor symptoms. However, non-motor symptoms occur several years before the onset of motor symptoms themselves. Hallmarks of dysfunction of the respiratory system are still outside the main focus of interest, whether by clinicians or scientists, despite their indisputable contribution to the morbidity and mortality of patients suffering from PD. In addition, many of the respiratory symptoms are already present in the early stages of the disease and efforts to utilize these parameters in the early diagnosis of PD are now intensifying. Mechanisms that lead to the development and progression of respiratory symptoms are only partially understood. This review focuses mainly on the comparison of respiratory problems observed in clinical studies with available findings obtained from experimental animal models. It also explains pathological changes observed in non-neuronal tissues in subjects with PD.
Collapse
Affiliation(s)
| | | | | | - A. Kralova Trancikova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Martin, Slovak Republic.
| |
Collapse
|
24
|
Baertsch NA, Ramirez JM. Insights into the dynamic control of breathing revealed through cell-type-specific responses to substance P. eLife 2019; 8:51350. [PMID: 31804180 PMCID: PMC6957314 DOI: 10.7554/elife.51350] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/04/2019] [Indexed: 12/23/2022] Open
Abstract
The rhythm generating network for breathing must continuously adjust to changing metabolic and behavioral demands. Here, we examined network-based mechanisms in the mouse preBötzinger complex using substance P, a potent excitatory modulator of breathing frequency and stability, as a tool to dissect network properties that underlie dynamic breathing. We find that substance P does not alter the balance of excitation and inhibition during breaths or the duration of the resulting refractory period. Instead, mechanisms of recurrent excitation between breaths are enhanced such that the rate that excitation percolates through the network is increased. We propose a conceptual framework in which three distinct phases of inspiration, the burst phase, refractory phase, and percolation phase, can be differentially modulated to control breathing dynamics and stability. Unraveling mechanisms that support this dynamic control may improve our understanding of nervous system disorders that destabilize breathing, many of which involve changes in brainstem neuromodulatory systems.
Collapse
Affiliation(s)
- Nathan A Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States.,Department of Neurological Surgery, University of Washington School of Medicine, Seattle, United States
| |
Collapse
|
25
|
Riederer P, Berg D, Casadei N, Cheng F, Classen J, Dresel C, Jost W, Krüger R, Müller T, Reichmann H, Rieß O, Storch A, Strobel S, van Eimeren T, Völker HU, Winkler J, Winklhofer KF, Wüllner U, Zunke F, Monoranu CM. α-Synuclein in Parkinson's disease: causal or bystander? J Neural Transm (Vienna) 2019; 126:815-840. [PMID: 31240402 DOI: 10.1007/s00702-019-02025-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) comprises a spectrum of disorders with differing subtypes, the vast majority of which share Lewy bodies (LB) as a characteristic pathological hallmark. The process(es) underlying LB generation and its causal trigger molecules are not yet fully understood. α-Synuclein (α-syn) is a major component of LB and SNCA gene missense mutations or duplications/triplications are causal for rare hereditary forms of PD. As typical sporadic PD is associated with LB pathology, a factor of major importance is the study of the α-syn protein and its pathology. α-Syn pathology is, however, also evident in multiple system atrophy (MSA) and Lewy body disease (LBD), making it non-specific for PD. In addition, there is an overlap of these α-synucleinopathies with other protein-misfolding diseases. It has been proven that α-syn, phosphorylated tau protein (pτ), amyloid beta (Aβ) and other proteins show synergistic effects in the underlying pathogenic mechanisms. Multiple cell death mechanisms can induce pathological protein-cascades, but this can also be a reverse process. This holds true for the early phases of the disease process and especially for the progression of PD. In conclusion, while rare SNCA gene mutations are causal for a minority of familial PD patients, in sporadic PD (where common SNCA polymorphisms are the most consistent genetic risk factor across populations worldwide, accounting for 95% of PD patients) α-syn pathology is an important feature. Conversely, with regard to the etiopathogenesis of α-synucleinopathies PD, MSA and LBD, α-syn is rather a bystander contributing to multiple neurodegenerative processes, which overlap in their composition and individual strength. Therapeutic developments aiming to impact on α-syn pathology should take this fact into consideration.
Collapse
Affiliation(s)
- Peter Riederer
- Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany. .,Department of Psychiatry, University of South Denmark, Odense, Denmark.
| | - Daniela Berg
- Department of Neurology, UKHS, Christian-Albrechts-Universität, Campus Kiel, Kiel, Germany
| | - Nicolas Casadei
- NGS Competence Center Tübingen, Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Fubo Cheng
- NGS Competence Center Tübingen, Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Joseph Classen
- Department of Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Christian Dresel
- Department of Neurology, Center for Movement Disorders, Neuroimaging Center Mainz, Clinical Neurophysiology, Forschungszentrum Translationale Neurowissenschaften (FTN), Rhein-Main-Neuronetz, Mainz, Germany
| | | | - Rejko Krüger
- Clinical and Experimental Neuroscience, LCSB (Luxembourg Centre for Systems, Biomedicine), University of Luxembourg, Esch-sur-Alzette and Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg.,National Center for Excellence in Research, Parkinson's disease (NCER-PD), Parkinson Research Clinic, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Thomas Müller
- Department of Neurology, Alexianer St. Joseph Berlin-Weißensee, Berlin, Germany
| | - Heinz Reichmann
- Department of Neurology, University of Dresden, Dresden, Germany
| | - Olaf Rieß
- Institute of Medical Genetics and Applied Genomics, Tübingen, Germany
| | - Alexander Storch
- Department of Neurology, University of Rostock, Rostock, Germany.,German Centre for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany
| | - Sabrina Strobel
- Department of Neuropathology, Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Thilo van Eimeren
- Department of Neurology, University Hospital of Cologne, Cologne, Germany
| | | | - Jürgen Winkler
- Department Kopfkliniken, Molekulare Neurologie, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Konstanze F Winklhofer
- Institute of Biochemistry and Pathobiochemistry, Ruhr-Universität Bochum, Bochum, Germany
| | - Ullrich Wüllner
- Department of Neurology, University of Bonn, German Center for Neurodegenerative Diseases (DZNE Bonn), Bonn, Germany
| | - Friederike Zunke
- Department of Biochemistry, Medical Faculty, University of Kiel, Kiel, Germany
| | - Camelia-Maria Monoranu
- Department of Neuropathology, Institute of Pathology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
26
|
Lucking EF, O'Halloran KD. Peripheral and central respiratory system pathology in a mouse model of Parkinson's disease: A prodromal signature of clinical relevance? Exp Physiol 2019; 104:617-618. [PMID: 30825356 DOI: 10.1113/ep087653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Eric F Lucking
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| |
Collapse
|