1
|
Ojaghi M, Pamenter ME. Hypoxia impairs blood glucose homeostasis in naked mole-rat adult subordinates but not queens. J Exp Biol 2024; 227:jeb247537. [PMID: 38680085 PMCID: PMC11166464 DOI: 10.1242/jeb.247537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024]
Abstract
Naked mole-rats (NMRs) are among the most hypoxia-tolerant mammals and metabolize only carbohydrates in hypoxia. Glucose is the primary building block of dietary carbohydrates, but how blood glucose is regulated during hypoxia has not been explored in NMRs. We hypothesized that NMRs mobilize glucose stores to support anaerobic energy metabolism in hypoxia. To test this, we treated newborn, juvenile and adult (subordinate and queen) NMRs in normoxia (21% O2) or hypoxia (7, 5 or 3% O2), while measuring metabolic rate, body temperature and blood [glucose]. We also challenged animals with glucose, insulin or insulin-like growth factor-1 (IGF-1) injections and measured the rate of glucose clearance in normoxia and hypoxia. We found that: (1) blood [glucose] increases in moderate hypoxia in queens and pups, but only in severe hypoxia in adult subordinates and juveniles; (2) glucose tolerance is similar between developmental stages in normoxia, but glucose clearance times are 2- to 3-fold longer in juveniles and subordinates than in queens or pups in hypoxia; and (3) reoxygenation accelerates glucose clearance in hypoxic subordinate adults. Mechanistically, (4) insulin and IGF-1 reduce blood [glucose] in subordinates in both normoxia but only IGF-1 impacts blood [glucose] in hypoxic queens. Our results indicate that insulin signaling is impaired by hypoxia in NMRs, but that queens utilize IGF-1 to overcome this limitation and effectively regulate blood glucose in hypoxia. This suggests that sexual maturation impacts blood glucose handling in hypoxic NMR queens, which may allow queens to spend longer periods of time in hypoxic nest chambers.
Collapse
Affiliation(s)
- Mohammad Ojaghi
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 9A7
| | - Matthew E. Pamenter
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 9A7
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada, K1H 8M5
| |
Collapse
|
2
|
Sirsat TS, Sirsat SKG, Price ER, Pineda M, Dzialowski EM. Manipulating plasma thyroid hormone levels alters development of endothermy and ventilation in nestling red-winged blackbirds. Front Physiol 2022; 13:1027257. [PMID: 36523554 PMCID: PMC9745037 DOI: 10.3389/fphys.2022.1027257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/14/2022] [Indexed: 03/14/2024] Open
Abstract
Thyroid hormones are key regulators of development and metabolism in vertebrates. During the nestling period, young of altricial species transition from an ectothermic phenotype to an endothermic phenotype. Red-winged blackbirds are an altricial species that exhibit an increase in plasma 3,3', 5-triiodo-L-thyronine (T3) levels during the first 5 days post-hatch (dph), begin to develop endothermic metabolic responses by 7 dph, and fledge within 10 days of hatching. We propose that thyroid hormones play an important role in regulating development of endothermy during the nestling period in altricial birds. To better understand the effects of thyroid hormones on endothermic metabolic development in an altricial species, we treated nestling red-winged blackbirds on 2, 3, and 5 dph with either methimazole (MMI) to induce hypothyroidism or supplemental T3 to induce hyperthyroidism. We then measured on 5, 7, and 9 dph morphology and whole animal O2 consumption (V ˙ o 2 ) and ventilation in the thermal neutral zone and during gradual cooling. Treatment of nestlings with MMI resulted in lower plasma T3 levels on 5 dph that recovered by 7 dph, while supplementing with T3 did not affect plasma T3 levels on 5, 7 and 9 dph. Treatment with MMI resulted in smaller nestlings with smaller hearts and structural characters such as wing chord and femur length, but larger lungs and kidneys. Treatment with T3 produced smaller nestlings with smaller body masses and shorter femur and tarsus lengths. The development ofV ˙ o 2 and ventilation endothermic responses to gradual cooling in MMI treated nestlings were delayed when compared with control nestlings. In 9 dph nestlings, hypothyroidism resulted in alterations in the responses of ventilation frequency and tidal volume to cooling when compared with the control nestlings. Supplemental T3 had no effect on the development ofV ˙ o 2 and ventilation in the thermal neutral zone or in response to cooling. Our data suggest plasma thyroid hormone levels play an active role in the systemic development of endothermic capacity and the development of ventilatory control. In the nestling avian, multiple systems develop in concert to produce an endothermic phenotype, but reduced thyroid hormone delays maturation of endothermic capacity.
Collapse
Affiliation(s)
- Tushar S. Sirsat
- Department of Physician Assistant Studies, Clarkson University, Potsdam, NY, United States
- Developmental Integrative Biology, Department of Biological Sciences, University of North Texas, Denton, TX, United States
| | - Sarah K. G. Sirsat
- Developmental Integrative Biology, Department of Biological Sciences, University of North Texas, Denton, TX, United States
- Department of Biology, SUNY Potsdam, Potsdam, NY, United States
| | - Edwan R. Price
- Developmental Integrative Biology, Department of Biological Sciences, University of North Texas, Denton, TX, United States
- Green Godwit Consulting, Cleveland, OH, United States
| | - Megan Pineda
- Developmental Integrative Biology, Department of Biological Sciences, University of North Texas, Denton, TX, United States
- FUJIFILM Diosynth Biotechnologies Texas, College Station, TX, United States
| | - Edward M. Dzialowski
- Developmental Integrative Biology, Department of Biological Sciences, University of North Texas, Denton, TX, United States
| |
Collapse
|