1
|
Prodel E, Souza R, Divino B, Rocha HNM, Rocha NG, Nobrega ACL. Hyperaemia during dynamic handgrip exercise is preserved in healthy young subjects after recovery from COVID-19. Exp Physiol 2024; 109:841-846. [PMID: 38460126 PMCID: PMC11140172 DOI: 10.1113/ep091656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/28/2024] [Indexed: 03/11/2024]
Abstract
We sought to investigate possible impaired hyperaemia during dynamic handgrip exercise (HGE) in young healthy individuals who had recovered from COVID-19. We tested the vascular function in individuals recovered from COVID-19 using a nitric oxide donor (i.e., sodium nitroprusside; SNP), which could revert a possible impaired endothelial function during HGE. Further, we tested whether individuals who recovered from COVID-19 would present exaggerated brachial vascular resistance under an adrenergic agonist (i.e., phenylephrine; PHE) stimuli during HGE. Participants were distributed into two groups: healthy controls (Control; men: n = 6, 30 ± 3 years, 26 ± 1 kg/m2; and women: n = 5, 25 ± 1 years, 25 ± 1 kg/m2) and subjects recovered from COVID-19 (post-COVID; men: n = 6, 29 ± 3 years, 25 ± 1 kg/m2; and women: n = 10, 32 ± 4 years, 22 ± 1 kg/m2). Participants in the post-COVID group tested positive (RT-PCR) 12-14 weeks before the protocol. Heart rate (HR), brachial blood pressure (BP), brachial blood flow (BBF) and vascular conductance (BVC) at rest were not different between groups. The HGE increased HR (Control: Δ9 ± 0.4 bpm; and post-COVID: Δ11 ± 0.4 bpm) and BP (Control: Δ6 ± 1 mmHg; and post-COVID: Δ12 ± 0.6 mmHg) in both groups. Likewise, BBF (Control: Δ632 ± 38 ml/min; and post-COVID: Δ620 ± 27 ml/min) and BVC (Control: Δ6.6 ± 0.4 ml/min/mmHg; and post-COVID: Δ6.1 ± 0.3 ml/min/mmHg) increased during HGE. SNP did not change HGE-induced hyperaemia but did decrease BP, which induced a reflex-related increase in HR. PHE infusion also did not change the HGE-induced hyperaemia but raised BP and reduced HR. In conclusion, exercise-induced hyperaemia is preserved in healthy young subjects 12-14 weeks after recovery from COVID-19 infection.
Collapse
Affiliation(s)
- Eliza Prodel
- Laboratory of Exercise Science, Department of Physiology and PharmacologyFluminense Federal UniversityNiteróiBrazil
| | - Roberto Souza
- Laboratory of Exercise Science, Department of Physiology and PharmacologyFluminense Federal UniversityNiteróiBrazil
| | - Beatriz Divino
- Laboratory of Exercise Science, Department of Physiology and PharmacologyFluminense Federal UniversityNiteróiBrazil
| | - Helena N. M. Rocha
- Laboratory of Exercise Science, Department of Physiology and PharmacologyFluminense Federal UniversityNiteróiBrazil
- Laboratory of Integrative Cardiometabology, Department of Physiology and PharmacologyFluminense Federal UniversityNiteróiBrazil
| | - Natalia G. Rocha
- Laboratory of Exercise Science, Department of Physiology and PharmacologyFluminense Federal UniversityNiteróiBrazil
- Laboratory of Integrative Cardiometabology, Department of Physiology and PharmacologyFluminense Federal UniversityNiteróiBrazil
| | - Antonio C. L. Nobrega
- Laboratory of Exercise Science, Department of Physiology and PharmacologyFluminense Federal UniversityNiteróiBrazil
| |
Collapse
|
2
|
Wedig IJ, Durocher JJ, McDaniel J, Elmer SJ. Blood flow restriction as a potential therapy to restore physical function following COVID-19 infection. Front Physiol 2023; 14:1235172. [PMID: 37546539 PMCID: PMC10400776 DOI: 10.3389/fphys.2023.1235172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023] Open
Abstract
Accumulating evidence indicates that some COVID-19 survivors display reduced muscle mass, muscle strength, and aerobic capacity, which contribute to impairments in physical function that can persist for months after the acute phase of illness. Accordingly, strategies to restore muscle mass, muscle strength, and aerobic capacity following infection are critical to mitigate the long-term consequences of COVID-19. Blood flow restriction (BFR), which involves the application of mechanical compression to the limbs, presents a promising therapy that could be utilized throughout different phases of COVID-19 illness. Specifically, we hypothesize that: 1) use of passive BFR modalities can mitigate losses of muscle mass and muscle strength that occur during acute infection and 2) exercise with BFR can serve as an effective alternative to high-intensity exercise without BFR for regaining muscle mass, muscle strength, and aerobic capacity during convalescence. The various applications of BFR may also serve as a targeted therapy to address the underlying pathophysiology of COVID-19 and provide benefits to the musculoskeletal system as well as other organ systems affected by the disease. Consequently, we present a theoretical framework with which BFR could be implemented throughout the progression from acute illness to outpatient rehabilitation with the goal of improving short- and long-term outcomes in COVID-19 survivors. We envision that this paper will encourage discussion and consideration among researchers and clinicians of the potential therapeutic benefits of BFR to treat not only COVID-19 but similar pathologies and cases of acute critical illness.
Collapse
Affiliation(s)
- Isaac J. Wedig
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States
- Health Research Institute, Michigan Technological University, Houghton, MI, United States
| | - John J. Durocher
- Department of Biological Sciences and Integrative Physiology and Health Sciences Center, Purdue University Northwest, Hammond, IN, United States
| | - John McDaniel
- Department of Exercise Physiology, Kent State University, Kent, OH, United States
| | - Steven J. Elmer
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States
- Health Research Institute, Michigan Technological University, Houghton, MI, United States
| |
Collapse
|
3
|
Rezler ZV, Ko E, Jin E, Ishtiaq M, Papaioannou C, Kim H, Hwang K, Lin YH(S, Colautti J, Davison KM, Thakkar V. The Impact of COVID-19 on the Cardiovascular Health of Emerging Adults Aged 18-25: Findings From a Scoping Review. CJC PEDIATRIC AND CONGENITAL HEART DISEASE 2023; 2:33-50. [PMID: 37970101 PMCID: PMC9711905 DOI: 10.1016/j.cjcpc.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/28/2022] [Indexed: 11/17/2023]
Abstract
There is limited knowledge regarding the cardiovascular impact of coronavirus disease 2019 (COVID-19) on emerging adults aged 18-25, a group that disproportionately contracts COVID-19. To guide future cardiovascular disease (CVD) research, policy, and practice, a scoping review was conducted to: (i) examine the impact of the COVID-19 pandemic on the cardiovascular health of emerging adults; and (ii) identify strategies to screen for and manage COVID-19-related cardiovascular complications in this age group. A comprehensive search strategy was applied to several academic databases and grey literature sources. An updated search yielded 6738 articles, 147 of which were extracted and synthesized. Reports identified COVID-19-associated cardiac abnormalities, vascular alterations, and multisystem inflammatory syndrome in emerging adults; based on data from student-athlete samples, prevalence estimates of myocarditis and cardiac abnormalities were 0.5%-3% and 0%-7%, respectively. Obesity, hypertension, CVD, congenital heart disease, and marginalization are potential risk factors for severe COVID-19, related cardiovascular complications, and mortality in this age group. As a screening modality for COVID-19-associated cardiac involvement, it is recommended that cardiac magnetic resonance imaging be indicated by a positive cardiac history and/or abnormal "triad" testing (cardiac troponin, electrocardiogram, and transthoracic echocardiogram) to improve diagnostic utility. To foster long-term cardiovascular health among emerging adults, cardiorespiratory fitness, health literacy and education, and telehealth accessibility should be priorities of health policy and clinical practice. Ultimately, surveillance data from the broader emerging adult population will be crucial to assess the long-term cardiovascular impact of both COVID-19 infection and vaccination, guide screening and management protocols, and inform CVD prevention efforts.
Collapse
Affiliation(s)
- Zachary V. Rezler
- Bachelor of Health Sciences (Honours) Program, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- Undergraduate Medical Education Program, Faculty of Health Sciences, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Emma Ko
- Undergraduate Medical Education Program, Faculty of Health Sciences, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Elaine Jin
- Undergraduate Medical Education Program, Faculty of Health Sciences, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Misha Ishtiaq
- Bachelor of Health Sciences (Honours) Program, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- Undergraduate Medical Education Program, Faculty of Health Sciences, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Christina Papaioannou
- Undergraduate Medical Education Program, Faculty of Health Sciences, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Helena Kim
- Undergraduate Medical Education Program, Faculty of Health Sciences, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Kyobin Hwang
- Bachelor of Health Sciences (Honours) Program, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Yu-Hsin (Sophy) Lin
- Health Science Program, Faculty of Science and Horticulture, Kwantlen Polytechnic University, Surrey, British Columbia, Canada
| | - Jake Colautti
- Bachelor of Health Sciences (Honours) Program, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- Undergraduate Medical Education Program, Faculty of Health Sciences, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Karen M. Davison
- Health Science Program, Faculty of Science and Horticulture, Kwantlen Polytechnic University, Surrey, British Columbia, Canada
| | - Vidhi Thakkar
- Bachelor of Health Sciences (Honours) Program, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- Health Science Program, Faculty of Science and Horticulture, Kwantlen Polytechnic University, Surrey, British Columbia, Canada
| |
Collapse
|
4
|
Osada SS, Szeghy RE, Stute NL, Province VM, Augenreich MA, Putnam A, Stickford JL, Stickford ASL, Grosicki GJ, Ratchford SM. Monthly transthoracic echocardiography in young adults for 6 months following SARS-CoV-2 infection. Physiol Rep 2023; 11:e15560. [PMID: 36597212 PMCID: PMC9810842 DOI: 10.14814/phy2.15560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can elicit acute and long-term effects on the myocardium among survivors, yet effects among otherwise healthy young adults remains unclear. Young adults with mild symptoms of SARS-CoV-2 (8M/8F, age: 21 ± 1 years, BMI: 23.5 ± 3.1 kg·m-2 ) underwent monthly transthoracic echocardiography (TTE) and testing of circulating cardiac troponin-I for months 1-6 (M1-M6) following a positive polymerase chain reaction test to better understand the acute effects and post-acute sequelae of SARS-CoV-2 on cardiac structure and function. Left heart structure and ejection fraction were unaltered from M1-M6 (p > 0.05). While most parameters of septal and lateral wall velocities, mitral and tricuspid valve, and pulmonary vein (PV) were unaltered from M1-M6 (p > 0.05), lateral wall s' wave velocity increased (M1: 0.113 ± 0.019 m·s-1 , M6: 0.135 ± 0.022 m·s-1 , p = 0.013); PV S wave velocity increased (M1: 0.596 ± 0.099 m·s-1 , M6: 0.824 ± 0.118 m·s-1 , p < 0.001); the difference between PV A wave and mitral valve (MV) A wave durations decreased (M1: 39.139 ± 43.715 ms, M6: 18.037 ± 7.227 ms, p = 0.002); the ratio of PV A duration to MV A duration increased (M1: 0.844 ± 0.205, M6: 1.013 ± 0.132, p = 0.013); and cardiac troponin-I levels decreased (M1: 0.38 ± 0.20 ng·ml-1 , M3: 0.28 ± 0.34 ng·ml-1 , M6: 0.29 ± 0.16 ng·ml-1 ; p = 0.002) over time. While young adults with mild symptoms of SARS-CoV-2 lacked changes to cardiac structure, the subclinical improvements to cardiac function and reduced inflammatory marker of cardiac troponin-I over 6 months following SARS-CoV-2 infection provide physiologic guidance to post-acute sequelae and recovery from SARS-CoV-2 and its variants using conventional TTE.
Collapse
Affiliation(s)
- Sophie S. Osada
- Department of Health & Exercise ScienceAppalachian State UniversityBooneNorth CarolinaUSA
| | - Rachel E. Szeghy
- Department of Health & Exercise ScienceAppalachian State UniversityBooneNorth CarolinaUSA
| | - Nina L. Stute
- Department of Health & Exercise ScienceAppalachian State UniversityBooneNorth CarolinaUSA
| | - Valesha M. Province
- Department of Health & Exercise ScienceAppalachian State UniversityBooneNorth CarolinaUSA
| | - Marc A. Augenreich
- Department of Health & Exercise ScienceAppalachian State UniversityBooneNorth CarolinaUSA
| | - Andrew Putnam
- Department of Cardiovascular MedicineNorthwest Health – PorterValparaisoIndianaUSA
| | - Jonathon L. Stickford
- Department of Health & Exercise ScienceAppalachian State UniversityBooneNorth CarolinaUSA
| | | | - Gregory J. Grosicki
- Biodynamics and Human Performance CenterGeorgia Southern University (Armstrong)SavannahGeorgiaUSA
| | - Stephen M. Ratchford
- Department of Health & Exercise ScienceAppalachian State UniversityBooneNorth CarolinaUSA
| |
Collapse
|
5
|
Province VM, Szeghy RE, Stute NL, Augenreich MA, Behrens CE, Stickford JL, Stickford ASL, Ratchford S. Tracking peripheral vascular function for six months in young adults following SARS-CoV-2 infection. Physiol Rep 2022; 10:e15552. [PMID: 36541342 PMCID: PMC9768737 DOI: 10.14814/phy2.15552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023] Open
Abstract
SARS-CoV-2 infection is known to instigate a range of physiologic perturbations, including vascular dysfunction. However, little work has concluded how long these effects may last, especially among young adults with mild symptoms. To determine potential recovery from acute vascular dysfunction in young adults (8 M/8F, 21 ± 1 yr, 23.5 ± 3.1 kg⋅m-2 ), we longitudinally tracked brachial artery flow-mediated dilation (FMD) and reactive hyperemia (RH) in the arm and hyperemic response to passive limb movement (PLM) in the leg, with Doppler ultrasound, as well as circulating biomarkers of inflammation (interleukin-6, C-reactive protein), oxidative stress (thiobarbituric acid reactive substances, protein carbonyl), antioxidant capacity (superoxide dismutase), and nitric oxide bioavailability (nitrite) monthly for a 6-month period post-SARS-CoV-2 infection. FMD, as a marker of macrovascular function, improved from month 1 (3.06 ± 1.39%) to month 6 (6.60 ± 2.07%; p < 0.001). FMD/Shear improved from month one (0.10 ± 0.06 AU) to month six (0.18 ± 0.70 AU; p = 0.002). RH in the arm and PLM in the leg, as markers of microvascular function, did not change during the 6 months (p > 0.05). Circulating markers of inflammation, oxidative stress, antioxidant capacity, and nitric oxide bioavailability did not change during the 6 months (p > 0.05). Together, these results suggest some improvements in macrovascular, but not microvascular function, over 6 months following SARS-CoV-2 infection. The data also suggest persistent ramifications for cardiovascular health among those recovering from mild illness and among young, otherwise healthy adults with SARS-CoV-2.
Collapse
Affiliation(s)
- Valesha M. Province
- Department of Health & Exercise ScienceAppalachian State UniversityBooneNorth CarolinaUSA
| | - Rachel E. Szeghy
- Department of Health & Exercise ScienceAppalachian State UniversityBooneNorth CarolinaUSA
| | - Nina L. Stute
- Department of Health & Exercise ScienceAppalachian State UniversityBooneNorth CarolinaUSA
| | - Marc A. Augenreich
- Department of Health & Exercise ScienceAppalachian State UniversityBooneNorth CarolinaUSA
| | - Christian E. Behrens
- Department of Health & Exercise ScienceAppalachian State UniversityBooneNorth CarolinaUSA
| | - Jonathon L. Stickford
- Department of Health & Exercise ScienceAppalachian State UniversityBooneNorth CarolinaUSA
| | | | - Stephen M. Ratchford
- Department of Health & Exercise ScienceAppalachian State UniversityBooneNorth CarolinaUSA
| |
Collapse
|
6
|
Scala I, Rizzo PA, Bellavia S, Brunetti V, Colò F, Broccolini A, Della Marca G, Calabresi P, Luigetti M, Frisullo G. Autonomic Dysfunction during Acute SARS-CoV-2 Infection: A Systematic Review. J Clin Med 2022; 11:jcm11133883. [PMID: 35807167 PMCID: PMC9267913 DOI: 10.3390/jcm11133883] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Although autonomic dysfunction (AD) after the recovery from Coronavirus disease 2019 (COVID-19) has been thoroughly described, few data are available regarding the involvement of the autonomic nervous system (ANS) during the acute phase of SARS-CoV-2 infection. The primary aim of this review was to summarize current knowledge regarding the AD occurring during acute COVID-19. Secondarily, we aimed to clarify the prognostic value of ANS involvement and the role of autonomic parameters in predicting SARS-CoV-2 infection. According to the PRISMA guidelines, we performed a systematic review across Scopus and PubMed databases, resulting in 1585 records. The records check and the analysis of included reports’ references allowed us to include 22 articles. The studies were widely heterogeneous for study population, dysautonomia assessment, and COVID-19 severity. Heart rate variability was the tool most frequently chosen to analyze autonomic parameters, followed by automated pupillometry. Most studies found ANS involvement during acute COVID-19, and AD was often related to a worse outcome. Further studies are needed to clarify the role of autonomic parameters in predicting SARS-CoV-2 infection. The evidence emerging from this review suggests that a complex autonomic nervous system imbalance is a prominent feature of acute COVID-19, often leading to a poor prognosis.
Collapse
Affiliation(s)
- Irene Scala
- School of Medicine and Surgery, Catholic University of Sacred Heart, Largo Francesco Vito, 1, 00168 Rome, Italy; (I.S.); (P.A.R.); (S.B.); (F.C.); (A.B.); (G.D.M.); (P.C.)
| | - Pier Andrea Rizzo
- School of Medicine and Surgery, Catholic University of Sacred Heart, Largo Francesco Vito, 1, 00168 Rome, Italy; (I.S.); (P.A.R.); (S.B.); (F.C.); (A.B.); (G.D.M.); (P.C.)
| | - Simone Bellavia
- School of Medicine and Surgery, Catholic University of Sacred Heart, Largo Francesco Vito, 1, 00168 Rome, Italy; (I.S.); (P.A.R.); (S.B.); (F.C.); (A.B.); (G.D.M.); (P.C.)
| | - Valerio Brunetti
- Dipartimento di Scienze dell’Invecchiamento, Neurologiche, Ortopediche e Della Testa-Collo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (V.B.); (G.F.)
| | - Francesca Colò
- School of Medicine and Surgery, Catholic University of Sacred Heart, Largo Francesco Vito, 1, 00168 Rome, Italy; (I.S.); (P.A.R.); (S.B.); (F.C.); (A.B.); (G.D.M.); (P.C.)
| | - Aldobrando Broccolini
- School of Medicine and Surgery, Catholic University of Sacred Heart, Largo Francesco Vito, 1, 00168 Rome, Italy; (I.S.); (P.A.R.); (S.B.); (F.C.); (A.B.); (G.D.M.); (P.C.)
- Dipartimento di Scienze dell’Invecchiamento, Neurologiche, Ortopediche e Della Testa-Collo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (V.B.); (G.F.)
| | - Giacomo Della Marca
- School of Medicine and Surgery, Catholic University of Sacred Heart, Largo Francesco Vito, 1, 00168 Rome, Italy; (I.S.); (P.A.R.); (S.B.); (F.C.); (A.B.); (G.D.M.); (P.C.)
- Dipartimento di Scienze dell’Invecchiamento, Neurologiche, Ortopediche e Della Testa-Collo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (V.B.); (G.F.)
| | - Paolo Calabresi
- School of Medicine and Surgery, Catholic University of Sacred Heart, Largo Francesco Vito, 1, 00168 Rome, Italy; (I.S.); (P.A.R.); (S.B.); (F.C.); (A.B.); (G.D.M.); (P.C.)
- Dipartimento di Scienze dell’Invecchiamento, Neurologiche, Ortopediche e Della Testa-Collo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (V.B.); (G.F.)
| | - Marco Luigetti
- School of Medicine and Surgery, Catholic University of Sacred Heart, Largo Francesco Vito, 1, 00168 Rome, Italy; (I.S.); (P.A.R.); (S.B.); (F.C.); (A.B.); (G.D.M.); (P.C.)
- Dipartimento di Scienze dell’Invecchiamento, Neurologiche, Ortopediche e Della Testa-Collo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (V.B.); (G.F.)
- Correspondence: ; Tel.: +39-06-30154435
| | - Giovanni Frisullo
- Dipartimento di Scienze dell’Invecchiamento, Neurologiche, Ortopediche e Della Testa-Collo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (V.B.); (G.F.)
| |
Collapse
|
7
|
Skow RJ, Nandadeva D, Grotle AK, Stephens BY, Wright AN, Fadel PJ. Impact of breakthrough COVID-19 cases during the omicron wave on vascular health and cardiac autonomic function in young adults. Am J Physiol Heart Circ Physiol 2022; 323:H59-H64. [PMID: 35594069 PMCID: PMC9169822 DOI: 10.1152/ajpheart.00189.2022] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We and others have previously shown that COVID-19 results in vascular and autonomic impairments in young adults. However, the newest variant of COVID-19 (Omicron) appears to have less severe complications. Therefore, we investigated whether recent breakthrough infection with COVID-19 during the Omicron wave impacts cardiovascular health in young adults. We hypothesized that measures of vascular health and indices of cardiac autonomic function would be impaired in those who had the Omicron variant of COVID-19 when compared with controls who never had COVID-19. We studied 23 vaccinated adults who had COVID-19 after December 25, 2021 (Omicron; age, 23 ± 3 yr; 14 females) within 6 wk of diagnosis compared with 13 vaccinated adults who never had COVID-19 (age, 26 ± 4 yr; 7 females). Macro- and microvascular function were assessed using flow-mediated dilation (FMD) and reactive hyperemia, respectively. Arterial stiffness was determined as carotid-femoral pulse wave velocity (cfPWV) and augmentation index (AIx). Heart rate (HR) variability and cardiac baroreflex sensitivity (BRS) were assessed as indices of cardiac autonomic function. FMD was not different between control (5.9 ± 2.8%) and Omicron (6.1 ± 2.3%; P = 0.544). Similarly, reactive hyperemia (P = 0.884) and arterial stiffness were not different between groups (e.g., cfPWV; control, 5.9 ± 0.6 m/s and Omicron, 5.7 ± 0.8 m/s; P = 0.367). Finally, measures of HR variability and cardiac BRS were not different between groups (all, P > 0.05). Collectively, these data suggest preserved vascular health and cardiac autonomic function in young, otherwise healthy adults who had breakthrough cases of COVID-19 during the Omicron wave.NEW & NOTEWORTHY We show for the first time that breakthrough cases of COVID-19 during the Omicron wave does not impact vascular health and cardiac autonomic function in young adults. These are promising results considering earlier research showing impaired vascular and autonomic function following previous variants of COVID-19. Collectively, these data demonstrate that the recent Omicron variant is not detrimental to cardiovascular health in young, otherwise healthy, vaccinated adults.
Collapse
Affiliation(s)
- Rachel J Skow
- Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas
| | - Damsara Nandadeva
- Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas
| | - Ann-Katrin Grotle
- Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas
| | - Brandi Y Stephens
- Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas
| | - Alexis N Wright
- Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas
| | - Paul J Fadel
- Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas
| |
Collapse
|
8
|
Tipton M. Covid-19 special issue editorial. Exp Physiol 2022; 107:651-652. [PMID: 35739054 PMCID: PMC9349430 DOI: 10.1113/ep090616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Mike Tipton
- School of Sport, Health & Exercise, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
9
|
Szeghy RE, Stute NL, Province VM, Augenreich MA, Stickford JL, Stickford ASL, Ratchford SM. Six-month longitudinal tracking of arterial stiffness and blood pressure in young adults following SARS-CoV-2 infection. J Appl Physiol (1985) 2022; 132:1297-1309. [PMID: 35439042 PMCID: PMC9126215 DOI: 10.1152/japplphysiol.00793.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can increase arterial stiffness 3–4 wk following infection, even among young, healthy adults. However, the long-term impacts of SARS-CoV-2 infection on cardiovascular health and the duration of recovery remain unknown. The purpose of this study was to elucidate potential long-lasting effects of SARS-CoV-2 infection on markers of arterial stiffness among young adults during the 6 mo following infection. Assessments were performed at months 1, 2, 3, 4, and ∼6 following SARS-CoV-2 infection. Doppler ultrasound was used to measure carotid-femoral pulse wave velocity (cfPWV) and carotid stiffness, and arterial tonometry was used to measure central blood pressures and aortic augmentation index at a heart rate of 75 beats·min−1 (AIx@HR75). Vascular (VCAM-1) and intracellular (ICAM-1) adhesion molecules were analyzed as circulating markers of arterial stiffness. From months 1–6, a significant reduction in cfPWV was observed (month 1: 5.70 ± 0.73 m·s−1; month 6: 4.88 ± 0.65 m·s−1; P < 0.05) without any change in carotid stiffness measures. Reductions in systolic blood pressure (month 1: 123 ± 8 mmHg; month 6: 112 ± 11 mmHg) and mean arterial pressure (MAP; month 1: 97 ± 6 mmHg; month 6: 86 ± 7 mmHg) were observed (P < 0.05), although AIx@HR75 did not change over time. The month 1–6 change in cfPWV and MAP were correlated (r = 0.894; P < 0.001). A reduction in VCAM-1 was observed at month 3 compared with month 1 (month 1: 5,575 ± 2,242 pg·mL−1; month 3: 4,636 ± 1,621 pg·mL−1; P < 0.05) without a change in ICAM-1. A reduction in cfPWV was related with MAP, and some indicators of arterial stiffness remain elevated for several months following SARS-CoV-2 infection, possibly contributing to prolonged recovery and increased cardiovascular health risks. NEW & NOTEWORTHY We sought to investigate potential long-lasting effects of SARS-CoV-2 infection on markers of arterial stiffness among young adults for 6 mo following infection. Carotid femoral pulse wave velocity was significantly reduced while carotid stiffness measures remained unaltered over the 6-mo period. These findings suggest several months of recovery from infection may be necessary for young adults to improve various markers of arterial stiffness, possibly contributing to cardiovascular health and recovery among those infected with SARS-CoV-2.
Collapse
Affiliation(s)
- Rachel E Szeghy
- Department of Health & Exercise Science, Appalachian State University, Boone, North Carolina
| | - Nina L Stute
- Department of Health & Exercise Science, Appalachian State University, Boone, North Carolina
| | - Valesha M Province
- Department of Health & Exercise Science, Appalachian State University, Boone, North Carolina
| | - Marc A Augenreich
- Department of Health & Exercise Science, Appalachian State University, Boone, North Carolina
| | - Jonathon L Stickford
- Department of Health & Exercise Science, Appalachian State University, Boone, North Carolina
| | - Abigail S L Stickford
- Department of Health & Exercise Science, Appalachian State University, Boone, North Carolina
| | - Stephen M Ratchford
- Department of Health & Exercise Science, Appalachian State University, Boone, North Carolina
| |
Collapse
|
10
|
Serviente C, Decker ST, Layec G. From heart to muscle: pathophysiological mechanisms underlying long-term physical sequelae from SARS-CoV-2 infection. J Appl Physiol (1985) 2022; 132:581-592. [PMID: 35019775 PMCID: PMC8873035 DOI: 10.1152/japplphysiol.00734.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/29/2021] [Accepted: 01/10/2022] [Indexed: 12/26/2022] Open
Abstract
The long-term sequelae of the coronavirus disease 2019 (COVID-19) are multifaceted and, besides the lungs, impact other organs and tissues, even in cases of mild infection. Along with commonly reported symptoms such as fatigue and dyspnea, a significant proportion of those with prior COVID-19 infection also exhibit signs of cardiac damage, muscle weakness, and ultimately, poor exercise tolerance. This review provides an overview of evidence indicating cardiac impairments and persistent endothelial dysfunction in the peripheral vasculature of those previously infected with COVID-19, irrespective of the severity of the acute phase of illness. In addition, V̇o2peak appears to be lower in convalescent patients, which may stem, in part, from alterations in O2 transport such as impaired diffusional O2 conductance. Together, the persistent multi-organ dysfunction induced by COVID-19 may set previously healthy individuals on a trajectory towards frailty and disease. Given the large proportion of individuals recovering from COVID-19, it is critically important to better understand the physical sequelae of COVID-19, the underlying biological mechanisms contributing to these outcomes, and the long-term effects on future disease risk. This review highlights relevant literature on the pathophysiology post-COVID-19 infection, gaps in the literature, and emphasizes the need for the development of evidence-based rehabilitation guidelines.
Collapse
Affiliation(s)
- Corinna Serviente
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts
- Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Stephen T Decker
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Gwenael Layec
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts
- Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, Massachusetts
| |
Collapse
|
11
|
de Sire A, Andrenelli E, Negrini F, Iannicelli V, Lazzarini SG, Patrini M, Ceravolo MG. Rehabilitation and COVID-19: update of the rapid living systematic review by Cochrane Rehabilitation Field as of August 31st, 2021. Eur J Phys Rehabil Med 2021; 57:1045-1048. [PMID: 34928107 DOI: 10.23736/s1973-9087.21.07384-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alessandro de Sire
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Elisa Andrenelli
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | | | | | | | | | - Maria G Ceravolo
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|