1
|
Islas-Preciado D, Estrada-Camarena E, Galea LAM. Menstrually-related mood disorders and postpartum depression: Convergent aspects in aetiology. Front Neuroendocrinol 2025; 76:101171. [PMID: 39638001 DOI: 10.1016/j.yfrne.2024.101171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Females diagnosed with Menstrually-related mood disorders (MRMDs) have more risk to develop postpartum depression (PPD). There are overlapping symptoms between MRMDs and PPD such as anxiety, depressed mood, irritability, that can contribute to a lower quality of life. MRMDs and PPD share components in their etiology such as dramatic hormonal oscillations, and alterations in Hypothalamus-Pituitary-Adrenal (HPA) axis activity that may impair GABAergic neurotransmission. As well, stressful events that impact HPA regulation may play an important role in the etiology of MRMDs and PPD. Here we review common hormone fluctuations across the menstrual cycle and pregnancy/postpartum to identify shared pathways that could contribute to greater sensitivity in people with MRMDs and PPD. This review summarizes hormone sensitivity, HPA axis activity and neurosteroids effects on GABAergic transmission and the potential role of chronic stress in developing MRMDs and PPD. In addition, other potential etiopathological factors, such as serotonin and the immune system, are discussed. Investigating the etiopathology of MRMDs and PDD will help to better understand the complexity of factors involved in these disorders that affect females across the reproductive years.
Collapse
Affiliation(s)
- D Islas-Preciado
- Laboratorio de Neuropsicofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñíz", Ciudad de México, México; Centre for Brain Health, University of British Columbia, Vancouver, Canada; Laboratorio de Neuromodulación, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñíz", Ciudad de México, México.
| | - E Estrada-Camarena
- Laboratorio de Neuropsicofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñíz", Ciudad de México, México
| | - L A M Galea
- Centre for Brain Health, University of British Columbia, Vancouver, Canada; Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, ON, Canada.
| |
Collapse
|
2
|
Kalandakanond-Thongsong S, Daendee S, Thongsong B, Srikiatkhachorn A. Daidzein, but not genistein, has anxiolytic-liked effect on intact male Wistar rats. Behav Brain Res 2024; 474:115172. [PMID: 39094955 DOI: 10.1016/j.bbr.2024.115172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
The phytoestrogens daidzein and genistein are ubiquitous in human food. This study aimed to elucidate their anxiety-liked effects, their effects on the reproductive organs, and the molecular mechanism behind any anxiety-liked effects in intact adult male Wistar rats. These phytoestrogens are of interest due to their posited health benefits, particularly for female, but with some effect on males as well. This study comprised two experiments: (1) Male Wistar rats received either a vehicle, daidzein, or genistein (0.25, 0.50, or 1.00 mg/kg) by subcutaneously injection for four weeks. They were then tested for anxiety-liked behaviors. Then, the brain monoamines in anxiolytic rats were determined; (2) The modulation of gamma aminobutyric acid receptors by phytoestrogens was further analyzed by administration of diazepam to phytoestrogen-treated rats before behavioral tests. In the first experiment, the biological parameters measured, including body weight, daily food intake and reproductive organ weights were unaffected by either genistein or daidzein. However, anxiolytic-like effect was observed in the low-dose daidzein (0.25 mg/kg) group. Higher doses of daidzein or genistein of all doses had no effect. Further, the low-dose daidzein did not alter brain monoamine levels. In the second experiment, the anxiolytic-like behavior of daidzein-treated rats receiving diazepam did not differ from that of the rats treated with just diazepam or just daidzein. In conclusion, 4-week exposure to daidzein or genistein had no negative effects on the reproductive organs, body weight, food intake, anxiogenic-like behavior, or monoaminergic and diazepam-modulated GABAergic neurotransmissions of intact male rats. However, beneficial anxiolytic-like effects were apparent after low-dose treatment with daidzein.
Collapse
Affiliation(s)
| | - Suwaporn Daendee
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani, Thailand.
| | - Boonrit Thongsong
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Anan Srikiatkhachorn
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand.
| |
Collapse
|
3
|
Cáceres ARR, Cardone DA, Sanhueza MDLÁ, Bosch IM, Cuello-Carrión FD, Rodriguez GB, Scotti L, Parborell F, Halperin J, Laconi MR. Local effect of allopregnanolone in rat ovarian steroidogenesis, follicular and corpora lutea development. Sci Rep 2024; 14:6402. [PMID: 38493224 PMCID: PMC10944484 DOI: 10.1038/s41598-024-57102-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/14/2024] [Indexed: 03/18/2024] Open
Abstract
Allopregnanolone (ALLO) is a known neurosteroid and a progesterone metabolite synthesized in the ovary, CNS, PNS, adrenals and placenta. Its role in the neuroendocrine control of ovarian physiology has been studied, but its in situ ovarian effects are still largely unknown. The aims of this work were to characterize the effects of intrabursal ALLO administration on different ovarian parameters, and the probable mechanism of action. ALLO administration increased serum progesterone concentration and ovarian 3β-HSD2 while decreasing 20α-HSD mRNA expression. ALLO increased the number of atretic follicles and the number of positive TUNEL granulosa and theca cells, while decreasing positive PCNA immunostaining. On the other hand, there was an increase in corpora lutea diameter and PCNA immunostaining, whereas the count of TUNEL-positive luteal cells decreased. Ovarian angiogenesis and the immunohistochemical expression of GABAA receptor increased after ALLO treatment. To evaluate if the ovarian GABAA receptor was involved in these effects, we conducted a functional experiment with a specific antagonist, bicuculline. The administration of bicuculline restored the number of atretic follicles and the diameter of corpora lutea to normal values. These results show the actions of ALLO on the ovarian physiology of the female rat during the follicular phase, some of them through the GABAA receptor. Intrabursal ALLO administration alters several processes of the ovarian morpho-physiology of the female rat, related to fertility and oocyte quality.
Collapse
Affiliation(s)
- Antonella Rosario Ramona Cáceres
- Laboratorio de Fisiopatología Ovárica, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU - CONICET Mendoza), Av. Ruiz Leal s/n Parque General San Martín, CP 5500, Mendoza, Argentina
- Facultad de Ingeniería y Facultad de Ciencias Médicas, Universidad de Mendoza, Mendoza, Argentina
| | - Daniela Alejandra Cardone
- Laboratorio de Fisiopatología Ovárica, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU - CONICET Mendoza), Av. Ruiz Leal s/n Parque General San Martín, CP 5500, Mendoza, Argentina
| | - María de Los Ángeles Sanhueza
- Laboratorio de Fisiopatología Ovárica, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU - CONICET Mendoza), Av. Ruiz Leal s/n Parque General San Martín, CP 5500, Mendoza, Argentina
| | | | - Fernando Darío Cuello-Carrión
- Laboratorio de Oncología, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU - CONICET Mendoza), Mendoza, Argentina
| | | | - Leopoldina Scotti
- Ovarian Pathophysiology Studies Laboratory, Institute of Experimental Biology and Medicine (IByME) - CONICET, Buenos Aires, Argentina
| | - Fernanda Parborell
- Ovarian Pathophysiology Studies Laboratory, Institute of Experimental Biology and Medicine (IByME) - CONICET, Buenos Aires, Argentina
| | - Julia Halperin
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
| | - Myriam Raquel Laconi
- Laboratorio de Fisiopatología Ovárica, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU - CONICET Mendoza), Av. Ruiz Leal s/n Parque General San Martín, CP 5500, Mendoza, Argentina.
- Facultad de Ingeniería y Facultad de Ciencias Médicas, Universidad de Mendoza, Mendoza, Argentina.
| |
Collapse
|
4
|
Gao Q, Sun W, Wang YR, Li ZF, Zhao F, Geng XW, Xu KY, Chen D, Liu K, Xing Y, Liu W, Wei S. Role of allopregnanolone-mediated γ-aminobutyric acid A receptor sensitivity in the pathogenesis of premenstrual dysphoric disorder: Toward precise targets for translational medicine and drug development. Front Psychiatry 2023; 14:1140796. [PMID: 36937732 PMCID: PMC10017536 DOI: 10.3389/fpsyt.2023.1140796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
Premenstrual dysphoric disorder (PMDD) can be conceptualized as a disorder of suboptimal sensitivity to neuroactive steroid hormones. Its core symptoms (emotional instability, irritability, depression, and anxiety) are related to the increase of stress sensitivity due to the fluctuation of hormone level in luteal phase of the menstrual cycle. In this review, we describe the emotional regulatory effect of allopregnanolone (ALLO), and summarize the relationship between ALLO and γ-aminobutyric acid A (GABAA) receptor subunits based on rodent experiments and clinical observations. A rapid decrease in ALLO reduces the sensitivity of GABAA receptor, and reduces the chloride influx, hindered the inhibitory effect of GABAergic neurons on pyramidal neurons, and then increased the excitability of pyramidal neurons, resulting in PMDD-like behavior. Finally, we discuss in depth the treatment of PMDD with targeted GABAA receptors, hoping to find a precise target for drug development and subsequent clinical application. In conclusion, PMDD pathophysiology is rooted in GABAA receptor sensitivity changes caused by rapid changes in ALLO levels. Targeting GABAA receptors may alleviate the occurrence of PMDD.
Collapse
Affiliation(s)
- Qian Gao
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Sun
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yue-Rui Wang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zi-Fa Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Feng Zhao
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xi-Wen Geng
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kai-Yong Xu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dan Chen
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kun Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Xing
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Liu
- Department of Encephalopathy, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Wei Liu,
| | - Sheng Wei
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Sheng Wei,
| |
Collapse
|
5
|
Can animal models resemble a premenstrual dysphoric condition? Front Neuroendocrinol 2022; 66:101007. [PMID: 35623450 DOI: 10.1016/j.yfrne.2022.101007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/22/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022]
Abstract
Around 80% of women worldwide suffer mild Premenstrual Disorders (PMD) during their reproductive life. Up to a quarter are affected by moderate to severe symptoms, and between 3% and 8% experience a severe form. It is classified as premenstrual syndrome (PMS) with predominantly physical symptoms and premenstrual dysphoric disorder (PMDD) with psychiatric symptoms. The present review analyzes the factors associated with PMD and the Hypothalamus-Pituitary-Ovarian or Hypothalamus-Pituitary-adrenal axis and discusses the main animal models used to study PMDD. Evidence shows that the ovarian hormones participate in PMDD symptoms, and several points of regulation of their synthesis, metabolism, and target sites could be altered. PMDD is complex and implies several factors that require consideration when this condition is modeled in animals. Of particular interest are those points related to areas that may represent opportunities to develop new approximations to understand the mechanisms involved in PMDD and possible treatments.
Collapse
|
6
|
Janach GMS, Böhm M, Döhne N, Kim HR, Rosário M, Strauss U. Interferon-γ enhances neocortical synaptic inhibition by promoting membrane association and phosphorylation of GABA A receptors in a protein kinase C-dependent manner. Brain Behav Immun 2022; 101:153-164. [PMID: 34998939 DOI: 10.1016/j.bbi.2022.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/11/2021] [Accepted: 01/03/2022] [Indexed: 12/16/2022] Open
Abstract
Interferon-γ (IFN-γ), an important mediator of the antiviral immune response, can also act as a neuromodulator. CNS IFN-γ levels rise acutely in response to infection and therapeutically applied IFN-γ provokes CNS related side effects. Moreover, IFN-γ plays a key role in neurophysiological processes and a variety of chronic neurological and neuropsychiatric conditions. To close the gap between basic research, behavioral implications and clinical applicability, knowledge of the mechanism behind IFN-γ related changes in brain function is crucial. Here, we studied the underlying mechanism of acutely augmented neocortical inhibition by IFN-γ (1.000 IU ml-1) in layer 5 pyramidal neurons of male Wistar rats. We demonstrate postsynaptic mediation of IFN-γ augmented inhibition by pressure application of GABA and analysis of paired pulse ratios. IFN-γ increases membrane presence of GABAAR γ2, as quantified by cell surface biotinylation and functional synaptic GABAAR number, as determined by peak-scaled non-stationary noise analysis. The increase in functional receptor number was comparable to the increase in underlying miniature inhibitory postsynaptic current (mIPSC) amplitudes. Blockage of putative intracellular mediators, namely phosphoinositide 3-kinase and protein kinase C (PKC) by Wortmannin and Calphostin C, respectively, revealed PKC-dependency of the pro-inhibitory IFN-γ effect. This was corroborated by increased serine phosphorylation of P-serine PKC motifs on GABAAR γ2 upon IFN-γ application. GABAAR single channel conductance, intracellular chloride levels and GABAAR driving force are unlikely to contribute to the effect, as shown by single channel recordings and chloride imaging. The effect of IFN-γ on mIPSC amplitudes was similar in female and male rats, suggesting a gender-independent mechanism of action. Collectively, these results indicate a novel mechanism for the regulation of inhibition by IFN-γ, which could impact on neocortical function and therewith behavior.
Collapse
Affiliation(s)
- Gabriel M S Janach
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Maximilian Böhm
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Noah Döhne
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Ha-Rang Kim
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany; CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, University of Bordeaux, Bordeaux, France
| | - Marta Rosário
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Ulf Strauss
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
7
|
|
8
|
Pinna G. Allopregnanolone, the Neuromodulator Turned Therapeutic Agent: Thank You, Next? Front Endocrinol (Lausanne) 2020; 11:236. [PMID: 32477260 PMCID: PMC7240001 DOI: 10.3389/fendo.2020.00236] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/31/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Graziano Pinna
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
9
|
Tashiro A, Bereiter DA. The effects of estrogen on temporomandibular joint pain as influenced by trigeminal caudalis neurons. J Oral Sci 2020; 62:150-155. [PMID: 32132330 DOI: 10.2334/josnusd.19-0405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The signs and symptoms of persistent temporomandibular joint (TMJ)/muscle disorder (TMJD) pain suggest the existence of a central neural dysfunction or a problem of pain amplification. The etiology of chronic TMJD is not known; however, female sex hormones have been identified as significant risk factors. Converging lines of evidence indicate that the junctional region between the trigeminal subnucleus caudalis (Vc) and the upper cervical spinal cord, termed the Vc/C1-2 region, is the primary site for the synaptic integration of sensory input from TMJ nociceptors. In this paper, the mechanisms behind the estrogen effects on the processing of nociceptive inputs by neurons in the Vc/C1-2 region reported by human and animal studies are reviewed. The Vc/C1-2 region has direct connections to endogenous pain and autonomic control pathways, which are modified by estrogen status and are suggested to be critical for somatomotor and autonomic reflex responses of TMJ-related sensory signals.
Collapse
Affiliation(s)
| | - David A Bereiter
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry
| |
Collapse
|
10
|
Estrada-Camarena E, Sollozo-Dupont I, Islas-Preciado D, González-Trujano ME, Carro-Juárez M, López-Rubalcava C. Anxiolytic- and anxiogenic-like effects of Montanoa tomentosa (Asteraceae): Dependence on the endocrine condition. JOURNAL OF ETHNOPHARMACOLOGY 2019; 241:112006. [PMID: 31153863 DOI: 10.1016/j.jep.2019.112006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Montanoa tomentosa Cerv. (MT) is a native plant from Mexico used in traditional medicine as a remedy for reproductive impairments and relaxing effects. In previous studies, it has been shown that the endocrine state could modify the antianxiety-like actions of anxiolytic compounds. Although women are the primary user of MT, no studies have evaluated the potential impact of the endocrine milieu on its anti-anxiety actions. AIMS OF THE STUDY Ascertain the antianxiety effects of M. tomentosa in rats with different hormonal conditions, and to analyze the participation of the GABAA receptor in ovariectomized rats treated with MT. MATERIALS AND METHODS The animal model of anxiety used was the elevated plus-maze (EPM). Rats' endocrine conditions were: a) Low hormone levels (rats in diestrus I and II phases); b) High hormone levels (proestrus/estrus phases); c) No hormones (ovariectomized rats); and d) Rats under progesterone withdrawal (PW). To evaluate the participation of the GABAA receptor in the anxiolytic-like action of MT the antagonist picrotoxin was used. RESULTS Results showed that MT induced dose-dependent anxiolytic-like actions in rats with low hormone level conditions. Also, MT reduced anxiety-like behavior in female rats under PW, in contrast to diazepam which was ineffective. MT's anxiolytic-like effect was blocked by picrotoxin, suggesting the participation of the GABAA receptor complex. However, increased anxiety-like behavior was observed in rats with a high hormone level condition and low doses of MT. CONCLUSIONS Beneficial anxiolytic-like actions of MT are observed under low hormone conditions, particularly in the PW challenge (a condition that can be related to a premenstrual period). Furthermore, the participation of the GABAA receptor is evidenced. However, hormonal variations could induce the opposite effects, hence women should be cautious.
Collapse
Affiliation(s)
- Erika Estrada-Camarena
- Laboratorio de Neuropsicofarmacología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñíz", Calzada México Xochimilco 101, Col San Lorenzo Huipulco, Delegación Tlalpan, Ciudad de México, Mexico.
| | - Isabel Sollozo-Dupont
- Departamento de Farmacobiología, CINVESTAV-Sede Sur. Calzada de los Tenorios 235, Col Granjas Coapa, Delegación Tlalpan, Ciudad de México, Mexico.
| | - Dannia Islas-Preciado
- Laboratorio de Neuropsicofarmacología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñíz", Calzada México Xochimilco 101, Col San Lorenzo Huipulco, Delegación Tlalpan, Ciudad de México, Mexico.
| | - María Eva González-Trujano
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñíz", Calzada México, Xochimilco 101, Col San Lorenzo Huipulco, Delegación Tlalpan, Ciudad de México, Mexico.
| | | | - Carolina López-Rubalcava
- Departamento de Farmacobiología, CINVESTAV-Sede Sur. Calzada de los Tenorios 235, Col Granjas Coapa, Delegación Tlalpan, Ciudad de México, Mexico.
| |
Collapse
|
11
|
Chiroma SM, Baharuldin MTH, Mat Taib CN, Amom Z, Jagadeesan S, Ilham Adenan M, Mahdi O, Moklas MAM. Protective Effects of Centella asiatica on Cognitive Deficits Induced by D-gal/AlCl₃ via Inhibition of Oxidative Stress and Attenuation of Acetylcholinesterase Level. TOXICS 2019; 7:toxics7020019. [PMID: 30935005 PMCID: PMC6630231 DOI: 10.3390/toxics7020019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 12/18/2022]
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder with cholinergic dysfunctions and impaired redox homeostasis. The plant Centella asiatica (CA) is renowned for its nutritional benefits and herbal formulas for promoting health, enhancing cognition, and its neuroprotective effects. The present study aims to investigate the protective role of CA on D-gal/AlCl3-induced cognitive deficits in rats. The rats were divided into six groups and administered with donepezil 1 mg/kg/day, CA (200, 400, and 800 mg/kg/day) and D-gal 60 mg/kg/day + AlCl3 200 mg/kg/day for 10 weeks. The ethology of the rats was evaluated by the Morris water maze test. The levels of acetylcholinesterase (AChE), phosphorylated tau (P-tau), malondialdehyde (MDA) and activities of superoxide dismutase (SOD), in the hippocampus and cerebral cortex were estimated by enzyme-linked immunosorbent assay (ELISA). Additionally, the ultrastructure of the prefrontal cortex of the rats’ was observed using transmission electron microscopy (TEM). Rats administered with D-gal/AlCl3 exhibited cognitive deficits, decreased activities of SOD, and marked increase in AChE and MDA levels. Further, prominent alterations in the ultrastructure of the prefrontal cortex were observed. Conversely, co-administration of CA with D-gal/AlCl3 improved cognitive impairment, decreased AChE levels, attenuated the oxidative stress in hippocampus and cerebral cortex, and prevented ultrastructural alteration of neurons in the prefrontal cortex. Irrespective of the dose of CA administered, the protective effects were comparable to donepezil. In conclusion, this study suggests that CA attenuated the cognitive deficits in rats by restoring cholinergic function, attenuating oxidative stress, and preventing the morphological aberrations.
Collapse
Affiliation(s)
- Samaila Musa Chiroma
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
- Department of Human Anatomy, Faculty of Basic Medical Sciences, University of Maiduguri, 600230 Maiduguri, Borno State, Nigeria.
| | | | - Che Norma Mat Taib
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Zulkhairi Amom
- Faculty of Health Sciences, Universiti Teknologi Mara (UiTM) Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor, Malaysia.
| | - Saravanan Jagadeesan
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
- Department of Human Anatomy, Universiti Tunku Abdul Rahman (UTAR), Bandar Sungai Long, 43000 Kajang, Selangor, Malaysia.
| | - Mohd Ilham Adenan
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi Mara (UiTM) Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor, Malaysia.
| | - Onesimus Mahdi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
- Department of Human Anatomy, College of Medical Sciences, Gombe State University, 760211 Gombe, Gombe State, Nigeria.
| | - Mohamad Aris Mohd Moklas
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
12
|
Effects of Estrogen Therapy on the Serotonergic System in an Animal Model of Perimenopause Induced by 4-Vinylcyclohexen Diepoxide (VCD). eNeuro 2018; 5:eN-NWR-0247-17. [PMID: 29362726 PMCID: PMC5777542 DOI: 10.1523/eneuro.0247-17.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/07/2017] [Accepted: 12/16/2017] [Indexed: 01/05/2023] Open
Abstract
Chronic exposure to 4-vinylcycloxene diepoxide (VCD) in rodents accelerates the natural process of ovarian follicular atresia modelling perimenopause in women. We investigated why estrogen therapy is beneficial for symptomatic women despite normal or high estrogen levels during perimenopause. Female rats (28 d) were injected daily with VCD or oil for 15 d; 55-65 d after the first injection, pellets of 17β-estradiol or oil were inserted subcutaneously. Around 20 d after, the rats were euthanized (control rats on diestrus and estradiol-treated 21 d after pellets implants). Blood was collected for hormone measurement, the brains were removed and dorsal raphe nucleus (DRN), hippocampus (HPC), and amygdala (AMY) punched out for serotonin (5-HT), estrogen receptor β (ERβ), and progesterone receptor (PR) mRNA level measurements. Another set of rats was perfused for tryptophan hydroxylase (TPH) immunohistochemistry in the DRN. Periestropausal rats exhibited estradiol levels similar to controls and a lower progesterone level, which was restored by estradiol. The DRN of periestropausal rats exhibited lower expression of PR and ERβ mRNA and a lower number of TPH cells. Estradiol restored the ERβ mRNA levels and number of serotonergic cells in the DRN caudal subregion. The 5-HT levels were lower in the AMY and HPC in peristropausal rats, and estradiol treatment increased the 5-HT levels in the HPC and also increased ERβ expression in this area. In conclusion, estradiol may improve perimenopause symptoms by increasing progesterone and boosting serotonin pathway from the caudal DRN to the dorsal HPC potentially through an increment in ERβ expression in the DRN.
Collapse
|
13
|
Locci A, Pinna G. Neurosteroid biosynthesis down-regulation and changes in GABA A receptor subunit composition: a biomarker axis in stress-induced cognitive and emotional impairment. Br J Pharmacol 2017; 174:3226-3241. [PMID: 28456011 DOI: 10.1111/bph.13843] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/05/2017] [Accepted: 04/12/2017] [Indexed: 12/26/2022] Open
Abstract
By rapidly modulating neuronal excitability, neurosteroids regulate physiological processes, such as responses to stress and development. Excessive stress affects their biosynthesis and causes an imbalance in cognition and emotions. The progesterone derivative, allopregnanolone (Allo) enhances extrasynaptic and postsynaptic inhibition by directly binding at GABAA receptors, and thus, positively and allosterically modulates the function of GABA. Allo levels are decreased in stress-induced psychiatric disorders, including depression and post-traumatic stress disorder (PTSD), and elevating Allo levels may be a valid therapeutic approach to counteract behavioural dysfunction. While benzodiazepines are inefficient, selective serotonin reuptake inhibitors (SSRIs) represent the first choice treatment for depression and PTSD. Their mechanisms to improve behaviour in preclinical studies include neurosteroidogenic effects at low non-serotonergic doses. Unfortunately, half of PTSD and depressed patients are resistant to current prescribed 'high' dosage of these drugs that engage serotonergic mechanisms. Unveiling novel biomarkers to develop more efficient treatment strategies is in high demand. Stress-induced down-regulation of neurosteroid biosynthesis and changes in GABAA receptor subunit expression offer a putative biomarker axis to develop new PTSD treatments. The advantage of stimulating Allo biosynthesis relies on the variety of neurosteroidogenic receptors to be targeted, including TSPO and endocannabinoid receptors. Furthermore, stress favours a GABAA receptor subunit composition with higher sensitivity for Allo. The use of synthetic analogues of Allo is a valuable alternative. Pregnenolone or drugs that stimulate its levels increase Allo but also sulphated steroids, including pregnanolone sulphate which, by inhibiting NMDA tonic neurotransmission, provides neuroprotection and cognitive benefits. In this review, we describe current knowledge on the effects of stress on neurosteroid biosynthesis and GABAA receptor neurotransmission and summarize available pharmacological strategies that by enhancing neurosteroidogenesis are relevant for the treatment of SSRI-resistant patients. Linked Articles This article is part of a themed section on Pharmacology of Cognition: a Panacea for Neuropsychiatric Disease? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.19/issuetoc.
Collapse
Affiliation(s)
- Andrea Locci
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
14
|
Maguire J. Calming Down During Coming of Age. Epilepsy Curr 2017; 17:57-59. [PMID: 28331476 PMCID: PMC5340562 DOI: 10.5698/1535-7511-17.1.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
|
15
|
Sex Differences in GABAA Signaling in the Periaqueductal Gray Induced by Persistent Inflammation. J Neurosci 2016; 36:1669-81. [PMID: 26843648 DOI: 10.1523/jneurosci.1928-15.2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The ventrolateral periaqueductal gray (vlPAG) is a key structure in the descending pain modulatory circuit. Activation of the circuit occurs via disinhibition of GABAergic inputs onto vlPAG output neurons. In these studies, we tested the hypothesis that GABAergic inhibition is increased during persistent inflammation, dampening activation of the descending circuit from the vlPAG. Our results indicate that persistent inflammation induced by Complete Freund's adjuvant (CFA) modulates GABA signaling differently in male and female rats. CFA treatment results in increased presynaptic GABA release but decreased high-affinity tonic GABAA currents in female vlPAG neurons. These effects are not observed in males. The tonic currents in the vlPAG are dependent on GABA transporter activity and are modulated by agonists that activate GABAA receptors containing the δ subunit. The GABAA δ agonist THIP (gaboxadol) induced similar amplitude currents in naive and CFA-treated rats. In addition, a positive allosteric modulator of the GABAA δ subunit, DS2 (4-chloro-N-[2-(2-thienyl)imidazo[1,2-a]pyridin-3-yl]benzamide), increased tonic currents. These results indicate that GABAA δ receptors remain on the cell surface but are less active in CFA-treated female rats. In vivo behavior studies showed that morphine induced greater antinociception in CFA-treated females that was reversed with microinjections of DS2 directly into the vlPAG. DS2 did not affect morphine antinociception in naive or CFA-treated male rats. Together, these data indicate that sex-specific adaptations in GABAA receptor signaling modulate opioid analgesia in persistent inflammation. Antagonists of GABAA δ receptors may be a viable strategy for reducing pain associated with persistent inflammation, particularly in females. SIGNIFICANCE STATEMENT These studies demonstrate that GABA signaling is modulated in the ventrolateral periaqueductal gray by persistent inflammation differently in female and male rats. Our results indicate that antagonists or negative allosteric modulators of GABAA δ receptors may be an effective strategy to alleviate chronic inflammatory pain and promote opioid antinociception, especially in females.
Collapse
|
16
|
Translational approach to studying panic disorder in rats: hits and misses. Neurosci Biobehav Rev 2015; 46 Pt 3:472-96. [PMID: 25316571 DOI: 10.1016/j.neubiorev.2014.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/26/2014] [Accepted: 10/01/2014] [Indexed: 12/30/2022]
Abstract
Panic disorder (PD) patients are specifically sensitive to 5–7% carbon dioxide. Another startling feature of clinical panic is the counterintuitive lack of increments in ‘stress hormones’. PD is also more frequent in women and highly comorbid with childhood separation anxiety (CSA). On the other hand, increasing evidence suggests that panic is mediated at dorsal periaqueductal grey matter (DPAG). In line with prior studies showing that DPAG-evoked panic-like behaviours are attenuated by clinically-effective treatments with panicolytics, we show here that (i) the DPAG harbors a hypoxia-sensitive alarm system, which is activated by hypoxia and potentiated by hypercapnia, (ii) the DPAG suffocation alarm system is inhibited by clinically-effective treatments with panicolytics, (iii) DPAG stimulations do not increase stress hormones in the absence of physical exertion, (iv) DPAG-evoked panic-like behaviours are facilitated in neonatally-isolated adult rats, a model of CSA, and (v) DPAG-evoked responses are enhanced in the late diestrus of female rats. Data are consistent with the DPAG mediation of both respiratory and non-respiratory types of panic attacks.
Collapse
|
17
|
Lonstein JS, Maguire J, Meinlschmidt G, Neumann ID. Emotion and mood adaptations in the peripartum female:complementary contributions of GABA and oxytocin. J Neuroendocrinol 2014; 26:649-64. [PMID: 25074620 PMCID: PMC5487494 DOI: 10.1111/jne.12188] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 07/22/2014] [Accepted: 07/23/2014] [Indexed: 01/23/2023]
Abstract
Peripartum hormones and sensory cues from young modify the maternal brain in ways that can render females either at risk for, or resilient to, elevated anxiety and depression. The neurochemical systems underlying these aspects of maternal emotional and mood states include the inhibitory neurotransmitter GABA and the neuropeptide oxytocin (OXT). Data from laboratory rodents indicate that increased activity at the GABA(A) receptor contributes to the postpartum suppression of anxiety-related behaviour that is mediated by physical contact with offspring, whereas dysregulation in GABAergic signalling results in deficits in maternal care, as well as anxiety- and depression-like behaviours during the postpartum period. Similarly, activation of the brain OXT system accompanied by increased OXT release within numerous brain sites in response to reproductive stimuli also reduces postpartum anxiety- and depression-like behaviours. Studies of peripartum women are consistent with these findings in rodents. Given the similar consequences of elevated central GABA and OXT activity on maternal anxiety and depression, balanced and partly reciprocal interactions between these two systems may be essential for their effects on maternal emotional and mood states, in addition to other aspects of postpartum behaviour and physiology.
Collapse
Affiliation(s)
- J S Lonstein
- Department of Psychology & Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | | | | | | |
Collapse
|
18
|
Lovick TA. Sex determinants of experimental panic attacks. Neurosci Biobehav Rev 2014; 46 Pt 3:465-71. [DOI: 10.1016/j.neubiorev.2014.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/15/2014] [Accepted: 03/01/2014] [Indexed: 12/16/2022]
|
19
|
Ferando I, Mody I. In vitro gamma oscillations following partial and complete ablation of δ subunit-containing GABAA receptors from parvalbumin interneurons. Neuropharmacology 2014; 88:91-8. [PMID: 25261782 DOI: 10.1016/j.neuropharm.2014.09.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/06/2014] [Accepted: 09/08/2014] [Indexed: 10/24/2022]
Abstract
Perisynaptic and extrasynaptic δ subunit-containing GABAA receptors (δ-GABAARs) mediate tonic conductances in many neurons. On principal cells of the neocortex and hippocampus they comprise α4 subunits, whereas they usually contain α1 on various interneurons. Specific characteristics of δ-GABAARs are their pharmacology and high plasticity. In particular δ-GABAARs are sensitive to low concentrations of neurosteroids (NS) and during times of altered NS production (stress, puberty, ovarian cycle and pregnancy) δ-GABAARs expression varies in many neurons regardless of the α subunits they contain, with direct consequences for neuronal excitability and network synchrony. For example δ-GABAARs plasticity on INs underlies modifications in hippocampal γ oscillations during pregnancy or over the ovarian cycle. Most δ-GABAAR-expressing INs in CA3 stratum pyramidale (SP) are parvalbumin (PV) + INs, whose fundamental role in γ oscillations generation and control has been extensively investigated. In this study we reduced or deleted δ-subunits in PV + INs, with the use of a PV/Cre-Gabrd/floxed genetic system. We find that in vitro CA3 γ oscillations of both PV-Gabrd(+/-)and PV-Gabrd(-/-) mice are characterized by higher frequencies than WT controls. The increased frequencies could be lowered to control levels in PV-Gabrd(+/-) by the NS allopregnanolone (3α,5α-tetrahydroprogesterone, 100 nM) but not the synthetic δ-GABAAR positive allosteric modulator 4-Chloro-N-[2-(2-thienyl)imidazo[1,2-a]pyridin-3-yl] benzamide (DS-2, 10 μM). This is consistent with the idea that DS-2, in contrast to ALLO, selectively targets α4/δ-GABAARs but not the α1/δ-GABAARs found on INs. Therefore, development of drugs selective for IN-specific α1/δ-GABAARs may be useful in neurological and psychiatric conditions correlated with altered PV + IN function and aberrant γ oscillations.
Collapse
Affiliation(s)
- Isabella Ferando
- Departments of Neurology, The David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Interdepartmental Graduate Program in Molecular, Cellular, and Integrative Physiology, University of California, Los Angeles, CA, USA
| | - Istvan Mody
- Departments of Neurology, The David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Departments of Physiology, The David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
20
|
Cushman JD, Moore MD, Olsen RW, Fanselow MS. The role of the δ GABA(A) receptor in ovarian cycle-linked changes in hippocampus-dependent learning and memory. Neurochem Res 2014; 39:1140-6. [PMID: 24667980 DOI: 10.1007/s11064-014-1282-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/05/2014] [Accepted: 03/13/2014] [Indexed: 02/04/2023]
Abstract
The δ subunit of the GABAAR is highly expressed in the dentate gyrus of the hippocampus where it mediates a tonic extrasynaptic inhibitory current that is sensitive to neurosteroids. In female mice, the expression level of the δ subunit within the dentate gyrus is elevated in the diestrous relative to estrous phase of the estrous cycle. Previous work in our lab found that female δ-GABAAR KO mice showed enhanced hippocampus-dependent trace but normal hippocampus-independent delay fear conditioning. Wild-type females in this study showed a wide range of freezing levels, whereas δ-GABAAR KO mice expressed only high levels of fear. We hypothesized that the variability in the wild-type mice may have been due to estrous cycle-mediated changes in the expression of the δ-GABAAR, with low levels of freezing in mice that were in the diestrous phase when dentate gyrus tonic inhibition is high. In the present study we tested this hypothesis by utilizing contextual, delay, and trace fear conditioning protocols in mice that were trained and tested in either the diestrous or estrous phases. Consistent with our hypothesis, we found a significant impairment of hippocampus-dependent learning and memory during diestrus relative to estrus in wild-type mice and this impairment was absent in δ-GABAAR mice. These findings argue that the δ-GABAAR plays an important role in estrous cycle-mediated fluctuations in hippocampus-dependent learning and memory.
Collapse
Affiliation(s)
- Jesse D Cushman
- Department of Psychology, Brain Research Institute, University of California Los Angeles, 8578 Franz Hall, Los Angeles, CA, 90095-1563, USA,
| | | | | | | |
Collapse
|
21
|
Sani G, Kotzalidis GD, Panaccione I, Simonetti A, De Chiara L, Del Casale A, Ambrosi E, Napoletano F, Janiri D, Danese E, Girardi N, Rapinesi C, Serata D, Manfredi G, Koukopoulos AE, Angeletti G, Nicoletti F, Girardi P. Low-dose acetazolamide in the treatment of premenstrual dysphoric disorder: a case series. Psychiatry Investig 2014; 11:95-101. [PMID: 24605130 PMCID: PMC3942558 DOI: 10.4306/pi.2014.11.1.95] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 12/31/2022] Open
Abstract
The treatment of premenstrual dysphoric disorder (PMDD) is far from satisfactory, as there is a high proportion of patients who do not respond to conventional treatment. The antidiuretic sulfonamide, acetazolamide, inhibits carbonic anhydrase and potentiates GABAergic transmission; the latter is putatively involved in PMDD. We therefore tried acetazolamide in a series of women with intractable PMDD. Here, we describe a series of eight women diagnosed with DSM-IV-TR PMDD, five of whom had comorbidity with a mood disorder and one with an anxiety disorder, who were resistant to treatment and responded with symptom disappearance after being added-on 125 mg/day acetazolamide for 7-10 days prior to menses each month. Patients were free from premenstrual symptoms at the 12-month follow-up. We suggest that acetazolamide may be used to improve symptoms of PMDD in cases not responding to other treatments. GABAergic mechanisms may be involved in counteracting PMDD symptoms.
Collapse
Affiliation(s)
- Gabriele Sani
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant'Andrea Hospital, Rome, Italy
- Centro Lucio Bini, Rome, Italy
| | - Georgios D. Kotzalidis
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant'Andrea Hospital, Rome, Italy
| | - Isabella Panaccione
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant'Andrea Hospital, Rome, Italy
- IRCSS NEUROMED, Pozzilli, Isernia, Italy
| | - Alessio Simonetti
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant'Andrea Hospital, Rome, Italy
- Centro Lucio Bini, Rome, Italy
| | - Lavinia De Chiara
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant'Andrea Hospital, Rome, Italy
- Centro Lucio Bini, Rome, Italy
| | - Antonio Del Casale
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant'Andrea Hospital, Rome, Italy
| | - Elisa Ambrosi
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant'Andrea Hospital, Rome, Italy
| | - Flavia Napoletano
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant'Andrea Hospital, Rome, Italy
- Centro Lucio Bini, Rome, Italy
| | - Delfina Janiri
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant'Andrea Hospital, Rome, Italy
| | - Emanuela Danese
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant'Andrea Hospital, Rome, Italy
| | - Nicoletta Girardi
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant'Andrea Hospital, Rome, Italy
| | - Chiara Rapinesi
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant'Andrea Hospital, Rome, Italy
| | - Daniele Serata
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant'Andrea Hospital, Rome, Italy
| | - Giovanni Manfredi
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant'Andrea Hospital, Rome, Italy
- Centro Lucio Bini, Rome, Italy
| | - Alexia E. Koukopoulos
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant'Andrea Hospital, Rome, Italy
- Centro Lucio Bini, Rome, Italy
| | - Gloria Angeletti
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant'Andrea Hospital, Rome, Italy
- Centro Lucio Bini, Rome, Italy
| | - Ferdinando Nicoletti
- IRCSS NEUROMED, Pozzilli, Isernia, Italy
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University, School of Medicine and Psychology, Rome, Italy
| | - Paolo Girardi
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant'Andrea Hospital, Rome, Italy
- Centro Lucio Bini, Rome, Italy
- Clinica Neuropsichiatrica Villa Rosa, Suore Ospedaliere del Sacro Cuore di Gesù, Viterbo, Italy
| |
Collapse
|
22
|
GABAergic influence on temporomandibular joint-responsive spinomedullary neurons depends on estrogen status. Neuroscience 2013; 259:53-62. [PMID: 24316475 DOI: 10.1016/j.neuroscience.2013.11.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/25/2013] [Accepted: 11/25/2013] [Indexed: 12/19/2022]
Abstract
Sensory input from the temporomandibular joint (TMJ) to neurons in superficial laminae at the spinomedullary (Vc/C1-2) region is strongly influenced by estrogen status. This study determined if GABAergic mechanisms play a role in estrogen modulation of TMJ nociceptive processing in ovariectomized female rats treated with high- (HE) or low-dose (LE) estradiol (E2) for 2days. Superficial laminae neurons were activated by ATP (1mM) injections into the joint space. The selective GABAA receptor antagonist, bicuculline methiodide (BMI, 5 or 50μM, 30μl), applied at the site of recording greatly enhanced the magnitude and duration of ATP-evoked responses in LE rats, but not in units from HE rats. The convergent cutaneous receptive field (RF) area of TMJ neurons was enlarged after BMI in LE but not HE rats, while resting discharge rates were increased after BMI independent of estrogen status. By contrast, the selective GABAA receptor agonist, muscimol (50μM, 30μl), significantly reduced the magnitude and duration of ATP-evoked activity, resting discharge rate, and cutaneous RF area of TMJ neurons in LE and HE rats, whereas lower doses (5μM) affected only units from LE rats. Protein levels of GABAA receptor β3 isoform at the Vc/C1-2 region were similar for HE and LE rats. These results suggest that GABAergic mechanisms contribute significantly to background discharge rates and TMJ-evoked input to superficial laminae neurons at the Vc/C1-2 region. Estrogen status may gate the magnitude of GABAergic influence on TMJ neurons at the earliest stages of nociceptive processing at the spinomedullary region.
Collapse
|
23
|
Santos RO, de Assunção GLM, de Medeiros DMB, de Sousa Pinto IA, de Barros KS, Soares BL, André E, Gavioli EC, de Paula Soares-Rachetti V. Evaluation of the effect of acute sibutramine in female rats in the elevated T-maze and elevated plus-maze tests. Basic Clin Pharmacol Toxicol 2013; 114:181-7. [PMID: 24034271 DOI: 10.1111/bcpt.12131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/12/2013] [Indexed: 01/01/2023]
Abstract
Sibutramine is a serotonin and norepinephrine reuptake inhibitor indicated for the treatment of obesity. A pre-clinical study showed that acute administration of sibutramine promoted anxiolytic- and panicolytic-like effects in male rats. However, in clinical reports, sibutramine favoured the onset of panic attacks in women. In this study, the effect of sibutramine on experimental anxiety in females and the relevance of different oestrous cycle phases for this effect were analysed. In experiment 1, both male and female rats were submitted to acute intraperitoneal injection of sibutramine or vehicle 30 min. before testing in the elevated T-maze (ETM) and in the open-field test (OF). Females in the pro-oestrus (P), oestrus (E), early dioestrus (ED) and late dioestrus (LD) phases were tested in the ETM and OF (experiment 2) or in the elevated plus-maze (EPM) 30 min. after the injection of sibutramine. Sibutramine impaired the escape response in the ETM in both males and females. This effect was observed for P, E and ED, but not for LD females. Sibutramine altered neither the inhibitory avoidance in the ETM nor the behaviour of females in the EPM. Thus, sibutramine promoted a panicolytic-like effect in female rats cycling at P, E and ED, but not in the LD phase and did not alter behaviours related to anxiety in both ETM and EPM. Considering that pre-clinical studies aiming the screening of anxiolytic drugs employ male rodents, data here obtained reinforce the importance of better understanding the effects of drugs in females.
Collapse
Affiliation(s)
- Raliny O Santos
- Laboratory of Behavioural Pharmacology, Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Li Y, Raaby KF, Sánchez C, Gulinello M. Serotonergic receptor mechanisms underlying antidepressant-like action in the progesterone withdrawal model of hormonally induced depression in rats. Behav Brain Res 2013; 256:520-8. [PMID: 24016840 DOI: 10.1016/j.bbr.2013.09.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 08/27/2013] [Accepted: 09/01/2013] [Indexed: 11/16/2022]
Abstract
Hormonally induced mood disorders such as premenstrual dysphoric disorder (PMDD) are characterized by a range of physical and affective symptoms including anxiety, irritability, anhedonia, social withdrawal and depression. Studies demonstrated rodent models of progesterone withdrawal (PWD) have a high level of constructive and descriptive validity to model hormonally-induced mood disorders in women. Here we evaluate the effects of several classes of antidepressants in PWD female Long-Evans rats using the forced swim test (FST) as a measure of antidepressant activity. The study included fluoxetine, duloxetine, amitriptyline and an investigational multimodal antidepressant, vortioxetine (5-HT(3), 5-HT(7) and 5-HT(1D) receptor antagonist; 5-HT(1B) receptor partial agonist; 5-HT(1A) receptor agonist; inhibitor of the serotonin transporter (SERT)). After 14 days of administration, amitriptyline and vortioxetine significantly reduced immobility in the FST whereas fluoxetine and duloxetine were ineffective. After 3 injections over 48 h, neither fluoxetine nor duloxetine reduced immobility, whereas amitriptyline and vortioxetine significantly reduced FST immobility during PWD. When administered acutely during PWD, the 5-HT(1A) receptor agonist, flesinoxan, significantly reduced immobility, whereas the 5-HT(1A) receptor antagonist, WAY-100635, increased immobility. The 5-HT(3) receptor antagonist, ondansetron, significantly reduced immobility, whereas the 5-HT(3) receptor agonist, SR-57227, increased immobility. The 5-HT(7) receptor antagonist, SB-269970, was inactive, although the 5-HT(7) receptor agonist, AS-19, significantly increased PWD-induced immobility. None of the compounds investigated (ondansetron, flesinoxan and SB-269970) improved the effect of fluoxetine during PWD. These data indicate that modulation of specific 5-HT receptor subtypes is critical for manipulating FST immobility in this model of hormone-induced depression.
Collapse
Affiliation(s)
- Yan Li
- External Sourcing and Scientific Excellence, Lundbeck Research USA, United States.
| | | | | | | |
Collapse
|
25
|
Gao F, Edden RA, Li M, Puts NA, Wang G, Liu C, Zhao B, Wang H, Bai X, Zhao C, Wang X, Barker PB. Edited magnetic resonance spectroscopy detects an age-related decline in brain GABA levels. Neuroimage 2013; 78:75-82. [DOI: 10.1016/j.neuroimage.2013.04.012] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 04/01/2013] [Accepted: 04/05/2013] [Indexed: 11/16/2022] Open
|
26
|
Huberfeld G, Le Duigou C, Le Van Quyen M, Navarro V, Baulac M, Miles R. The paradox of the paroxysm: can seizure precipitants help explain human ictogenesis? Neuroscientist 2013; 19:523-40. [PMID: 23881918 DOI: 10.1177/1073858413497430] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An epileptic brain is permanently in a diseased state, but seizures occur rarely and without warning. Here we examine this paradox, common to paroxysmal diseases. We review the problem in the context of the prototypic acquired epilepsies of the medial temporal lobe. We ask how an epileptic temporal lobe differs from a healthy one and examine biological mechanisms that may explain the transition to seizure. Attempts to predict seizure timing from analyses of brain electrical activity suggest that the neurological processes involved may be initiated significantly before a seizure. Furthermore, whereas seizures are said to occur without warning, some patients say they know when a seizure is imminent. Several factors, including sleep deprivation, oscillations in hormonal levels, or withdrawal from drugs, increase the probability of a seizure. We ask whether these seizure precipitants might act through common neuronal mechanisms. Several precipitating factors seem to involve relief from a neurosteroid modulation of gamma-amino butyric acid receptor type A (GABAA) receptors. We propose tests of this hypothesis.
Collapse
Affiliation(s)
- Gilles Huberfeld
- INSERM U975, Institut du Cerveau et la Moëlle Epinière, Paris, France
| | | | | | | | | | | |
Collapse
|
27
|
Ovarian hormones and the heterogeneous receptor mechanisms mediating the discriminative stimulus effects of ethanol in female rats. Behav Pharmacol 2013; 24:95-104. [PMID: 23399883 DOI: 10.1097/fbp.0b013e32835efc5f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Past studies have suggested that progesterone-derived ovarian hormones contribute to the discriminative stimulus effects of ethanol, particularly via progesterone metabolites that act at γ-aminobutyric acid type A (GABA(A)) receptors. It is unknown whether loss of ovarian hormones in women, for example, after menopause, may be associated with altered receptor mediation of the effects of ethanol. The current study measured the substitution of allopregnanolone, pregnanolone, pentobarbital, midazolam, dizocilpine, TFMPP, and RU 24969 in female sham and ovariectomized rats trained to discriminate 1.0 g/kg ethanol from water. The groups did not differ in the substitution of GABA(A)-positive modulators (barbiturates, benzodiazepines, neuroactive steroids) or the N-methyl-D-aspartate receptor antagonist dizocilpine. Similarly, blood-ethanol concentration did not differ between the groups, and plasma adrenocorticotropic hormone, progesterone, pregnenolone, and deoxycorticosterone were unchanged 30 min after administration of 1.0 g/kg ethanol or water. However, substitution of neuroactive steroids and RU 24969, a 5-hydroxytryptamine (5-HT)(1A/1B) receptor agonist, was lower than observed in previous studies of male rats, and TFMPP substitution was decreased in ovariectomized rats. Ovarian hormones appear to contribute to 5-HT receptor mediation of the discriminative stimulus effects of ethanol in rats.
Collapse
|
28
|
Gerrits P, Kortekaas R, de Weerd H, Luiten P, van der Want J, Veening J. Spumiform basement membrane aberrations in the microvasculature of the midbrain periaqueductal gray region in hamster: Rostro-caudal pathogenesis? Neuroscience 2013; 228:128-38. [DOI: 10.1016/j.neuroscience.2012.10.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/04/2012] [Accepted: 10/06/2012] [Indexed: 11/28/2022]
|
29
|
Lustyk MKB, Douglas HAC, Shilling EA, Woods NF. Hemodynamic and psychological responses to laboratory stressors in women: assessing the roles of menstrual cycle phase, premenstrual symptomatology, and sleep characteristics. Int J Psychophysiol 2012; 86:283-90. [PMID: 23092740 DOI: 10.1016/j.ijpsycho.2012.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 10/14/2012] [Accepted: 10/15/2012] [Indexed: 11/30/2022]
Abstract
This study assessed whether premenstrual symptomatology and/or sleep characteristics explain increased luteal phase psychophysiological reactivity to laboratory stressors. We hypothesized that: (1) premenstrual symptoms and sleep characteristics would explain greater luteal versus follicular phase psychophysiological reactivity, (2) symptoms and sleep characteristics would differentially predict psychophysiological reactivity within each cycle phase, and (3) symptoms and sleep characteristics would interact to affect luteal but not follicular reactivity. Freely cycling women (N=87) completed two laboratory sessions, one follicular (cycle days 5-9) and one luteal (days 7-10 post-ovulation). We employed two stressors: one physical (cold pressor task) and the other cognitive in nature (Paced Auditory Serial Addition Task). During testing, electrocardiography monitored heart rate (HR) while a timed and auto-inflatable sphygmomanometer assessed blood pressure (BP). Participants also completed a one-time self-report measure of sleep characteristics and premenstrual symptomatology as well as a measure of state anxiety pre-post stressor. Results revealed greater luteal HR and systolic BP reactivity compared to follicular reactivity (p<0.001 for both analyses), however neither premenstrual symptoms nor sleep characteristics explained this luteal increase. Within cycle analyses revealed that symptoms and sleep characteristics interacted to affect luteal phase state anxiety reactivity (R(2)=.32, p=.002) with negative affect being associated with more reactivity when sleep hours were low (β=.333, p=.04). Overall, significant relationships existed during the luteal phase only. Findings are discussed in terms of clinical utility and methodological challenges related to performing laboratory stress testing in women.
Collapse
|
30
|
Lovick TA. Estrous cycle and stress: influence of progesterone on the female brain. Braz J Med Biol Res 2012; 45:314-20. [PMID: 22450372 PMCID: PMC3854171 DOI: 10.1590/s0100-879x2012007500044] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Accepted: 03/13/2012] [Indexed: 11/25/2022] Open
Abstract
The female brain operates in a constantly changing chemical milieu caused by cyclical changes in gonadal hormones during the estrous cycle (menstrual cycle in women). Such hormones are highly lipophilic and pass readily from the plasma to the brain where they can influence neuronal function. It is becoming clear that the rapid reduction in peripheral circulating progesterone, which occurs during the late diestrous phase of the cycle, can trigger a withdrawal-like response, in which changes in GABAA receptor expression render hyper-responsive certain brain areas involved in processing responses to stressful stimuli. The periaqueductal gray matter (PAG) is recognised as an important region for integrating anxiety/defence responses. Withdrawal from progesterone, via actions of its neuroactive metabolite allopregnanolone, triggers up-regulation of extrasynaptic GABAA receptors on GABAergic neurons in the PAG. As a consequence, ongoing GABAergic tone on the output cells decreases, leading to an increase in functional excitability of the circuitry and enhanced responsiveness to stressful stimuli during the late diestrous phase. These changes during late diestrus could be prevented by short-term neurosteroid administration, timed to produce a more gradual fall in the peripheral concentration of allopregnanolone than the rapid decrease that occurs naturally, thus removing the trigger for the central withdrawal response.
Collapse
Affiliation(s)
- T A Lovick
- School of Clinical and Experimental Medicine, University of Birmingham, UK.
| |
Collapse
|
31
|
Abstract
BACKGROUND About 5% of women experience severe symptoms called premenstrual syndrome (PMS), only in the two weeks before their menstrual periods. Treatment with progesterone may restore a deficiency, balance menstrual hormone levels or reduce effects of falling progesterone levels on the brain or on electrolytes in the blood. OBJECTIVES The objectives were to determine if progesterone has been found to be an effective treatment for all or some premenstrual symptoms and if adverse events associated with this treatment have been reported. SEARCH METHODS We searched the Cochrane Menstrual Disorders and Subfertility Group's Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE and PsycINFO to February 2011. We contacted pharmaceutical companies for information about unpublished trials, for the first version of this review.The search strings are in Appendix 2. SELECTION CRITERIA We included randomised double-blind, placebo-controlled trials of progesterone on women with PMS diagnosed by at least two prospective cycles, without current psychiatric disorder. DATA COLLECTION AND ANALYSIS Two reviewers (BM and OF) extracted data independently and decided which trials to include. OF wrote to trial investigators for missing data. MAIN RESULTS From 17 studies, only two met our inclusion criteria. Together they had 280 participants aged between 18 and 45 years. One hundred and fifteen yielded analysable results. Both studies measured symptom severity using subjective scales. Differing in design, participants, dose of progesterone and how delivered, the studies could not be combined in meta-analysis.Adverse events which may or may not have been side effects of the treatment were described as mild.Both trials had defects. They intended to exclude women whose symptoms continued after their periods. When data from ineligible women were excluded from analysis in one trial, the other women were found to have benefited more from progesterone than placebo. The smaller study found no statistically significant difference between oral progesterone, vaginally absorbed progesterone and placebo, but reported outcomes incompletely. AUTHORS' CONCLUSIONS The trials did not show that progesterone is an effective treatment for PMS nor that it is not. Neither trial distinguished a subgroup of women who benefited, nor examined claimed success with high doses.
Collapse
Affiliation(s)
- Olive Ford
- Over Stratton, South Petherton, Somerset, TA 13 5LL, UK.
| | | | | | | |
Collapse
|
32
|
Bereiter DA, Okamoto K. Neurobiology of estrogen status in deep craniofacial pain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 97:251-84. [PMID: 21708314 DOI: 10.1016/b978-0-12-385198-7.00010-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pain in the temporomandibular joint (TMJ) region often occurs with no overt signs of injury or inflammation. Although the etiology of TMJ-related pain may involve multiple factors, one likely risk factor is female gender or estrogen status. Evidence is reviewed from human and animal studies, supporting the proposition that estrogen status acts peripherally or centrally to influence TMJ nociceptive processing. A new model termed the "TMJ pain matrix" is proposed as critical for the initial integration of TMJ-related sensory signals in the lower brainstem that is both modified by estrogen status, and closely linked to endogenous pain and autonomic control pathways.
Collapse
Affiliation(s)
- David A Bereiter
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | | |
Collapse
|
33
|
Evans CJ, McGonigle DJ, Edden RAE. Diurnal stability of gamma-aminobutyric acid concentration in visual and sensorimotor cortex. J Magn Reson Imaging 2010; 31:204-9. [PMID: 20027589 DOI: 10.1002/jmri.21996] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To establish the diurnal stability of edited magnetic resonance spectroscopy measurements of gamma-aminobutyric acid (GABA) in visual and sensorimotor regions of the brain. MATERIALS AND METHODS GABA measurements were made in two regions of the brain (an occipital, "visual" region and a "sensorimotor" region centered on the precentral gyrus) using the MEGA-PRESS editing method, scanning eight healthy adults at five timepoints during a single day. GABA concentration was quantified from the ratio of the GABA integral to the unsuppressed water signal. RESULTS No significant effect of time on GABA concentration was seen (P = 0.35). GABA was shown to be significantly more concentrated in visual regions than in sensorimotor regions (1.10 i.u. and 1.03 i.u., respectively; P = 0.050). Coefficients of variability (CVs) across all subjects of 9.1% and 12% (visual and sensorimotor) were significantly higher than mean within-subjects CVs of 6.5% and 8.8. CONCLUSION This study demonstrates the excellent reproducibility of MEGA-PRESS detection of GABA, demonstrating that the method is sufficiently sensitive to detect inter-subject variability, and suggests that (within the sensitivity limits of current measurements) time of day can be ignored in the design of MRS studies of visual and sensorimotor regions.
Collapse
|
34
|
Moore MD, Cushman J, Chandra D, Homanics GE, Olsen RW, Fanselow MS. Trace and contextual fear conditioning is enhanced in mice lacking the alpha4 subunit of the GABA(A) receptor. Neurobiol Learn Mem 2009; 93:383-7. [PMID: 20018248 DOI: 10.1016/j.nlm.2009.12.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 12/03/2009] [Accepted: 12/10/2009] [Indexed: 11/29/2022]
Abstract
The GABA(A)R alpha4 subunit is highly expressed in the dentate gyrus region of the hippocampus at predominantly extra synaptic locations where, along with the GABA(A)R delta subunit, it forms GABA(A) receptors that mediate a tonic inhibitory current. The present study was designed to test hippocampus-dependent and hippocampus-independent learning and memory in GABA(A)R alpha4 subunit-deficient mice using trace and delay fear conditioning, respectively. Mice were of a mixed C57Bl/6J X 129S1/X1 genetic background from alpha4 heterozygous breeding pairs. The alpha4-knockout mice showed enhanced trace and contextual fear conditioning consistent with an enhancement of hippocampus-dependent learning and memory. These enhancements were sex-dependent, similar to previous studies in GABA(A)R delta knockout mice, but differences were present in both males and females. The convergent findings between alpha4 and delta knockout mice suggests that tonic inhibition mediated by alpha4betadelta GABA(A) receptors negatively modulates learning and memory processes and provides further evidence that tonic inhibition makes important functional contributions to learning and behavior.
Collapse
Affiliation(s)
- M D Moore
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, USA
| | | | | | | | | | | |
Collapse
|
35
|
Mostallino MC, Sanna E, Concas A, Biggio G, Follesa P. Plasticity and function of extrasynaptic GABA(A) receptors during pregnancy and after delivery. Psychoneuroendocrinology 2009; 34 Suppl 1:S74-83. [PMID: 19608348 DOI: 10.1016/j.psyneuen.2009.06.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 06/18/2009] [Accepted: 06/21/2009] [Indexed: 11/19/2022]
Abstract
Neuroactive steroids such as 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha,5alpha-THP) are reduced metabolites of progesterone and are thought to play an important physiological role in local modulation of neuronal excitability by "fine-tuning" the action of gamma-aminobutyric acid (GABA) at GABA(A) receptors. Fluctuations in the concentrations of neuroactive steroids in the brain are also thought to contribute to GABA(A) receptor plasticity. We here review results from our laboratory related to the regulation of GABA(A) receptor function and plasticity by changes in the levels of neuroactive steroids during pregnancy and after delivery in rats. Pregnancy is characterized by marked and progressive increases in the plasma and brain concentrations of neuroactive steroids, which are implicated in the changes in mood, anxiety, and other psychiatric states associated with this condition. We have shown that the increases in the brain levels of neuroactive steroids during pregnancy are causally related to changes in the expression of specific GABA(A) receptor subunits and the function of extrasynaptic GABA(A) receptors in the hippocampus.
Collapse
|
36
|
Noriega NC, Eghlidi DH, Garyfallou VT, Kohama SG, Kryger SG, Urbanski HF. Influence of 17beta-estradiol and progesterone on GABAergic gene expression in the arcuate nucleus, amygdala and hippocampus of the rhesus macaque. Brain Res 2009; 1307:28-42. [PMID: 19833106 DOI: 10.1016/j.brainres.2009.10.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 10/04/2009] [Indexed: 02/06/2023]
Abstract
Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain, and the responsiveness of neurons to GABA can be modulated by sex steroids. To better understand how ovarian steroids influence the GABAergic system in the primate brain, we evaluated the expression of genes encoding GABA receptor subunits, glutamic acid decarboxylase (GAD) and a GABA transporter in the brains of female rhesus macaques. Ovariectomized adults were subjected to a hormone replacement paradigm involving either 17beta-estradiol (E), or E plus progesterone (E+P). Untreated animals served as controls. Using GeneChip microarray analysis and real-time RT-PCR (qPCR), we examined gene expression differences within and between the amygdala (AMD), hippocampus (HPC) and arcuate nuclei of the medial basal hypothalamus (MBH). The results from PCR corresponded with results from representative GeneChip probesets, and showed similar effects of sex steroids on GABA receptor subunit gene expression in the AMD and HPC, and a more pronounced expression than in the MBH. Exposure to E+P attenuated GAD1, GAD2 and SLC32A1 gene expression in the AMD and HPC, but not in the MBH. GABA receptor subunit gene expression was generally higher in the AMD and HPC than in the MBH, with the exception of receptor subunits epsilon and gamma 2. Taken together, the data demonstrate differential regulation of GABA receptor subunits and GABAergic system components in the MBH compared to the AMD and HPC of rhesus macaques. Elevated epsilon and reduced delta subunit expression in the MBH supports the hypothesis that the hypothalamic GABAergic system is resistant to the modulatory effects of sex steroids.
Collapse
Affiliation(s)
- Nigel C Noriega
- Division of Neuroscience, Oregon National Primate Research Center, 505 NW 185(th)Avenue, Beaverton, OR 97006, USA
| | | | | | | | | | | |
Collapse
|
37
|
Columnar organization of estrogen receptor-α immunoreactive neurons in the periaqueductal gray projecting to the nucleus para-retroambiguus in the caudal brainstem of the female golden hamster. Neuroscience 2009; 161:459-74. [DOI: 10.1016/j.neuroscience.2009.03.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 03/12/2009] [Accepted: 03/14/2009] [Indexed: 11/18/2022]
|
38
|
Devall AJ, Liu ZW, Lovick TA. Hyperalgesia in the setting of anxiety: sex differences and effects of the oestrous cycle in Wistar rats. Psychoneuroendocrinology 2009; 34:587-96. [PMID: 19059728 DOI: 10.1016/j.psyneuen.2008.10.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 09/24/2008] [Accepted: 10/25/2008] [Indexed: 11/29/2022]
Abstract
Sex differences to noxious thermal cutaneous stimulation were compared in Wistar rats. Male and female rats showed similar baseline tail flick latencies. However, sex differences emerged when nociceptive testing was carried out in the setting of mild non-noxious anxiogenic stress (4Hz vibration for 5min). On cessation of vibration stress 16/35 (46%) of male rats showed hyperalgesia (decrease in tail flick latency lasting >20min) whist the reminder showed a brief (<2min) hypoalgesia. In 15 animals re-tested the next day, stress-induced hyperalgesia was reproducible (n=7) but the hypoalgesia initially present in 8 rats was less stable, being reduced (n=2) or replaced by weak hyperalgesia (n=3) in some cases. The response of females was oestrous cycle dependent. On cessation of the vibration stress, females in late dioestrus displayed rapid onset hyperalgesia lasting 10min (n=12) whilst others showed either brief (<2min) hypoalgesia (proestrus, n=13 and early dioestrus, n=9) or brief (<2min) delayed hyperalgesia (oestrus, n=16). On re-testing the next day, when most rats were in a different stage of their cycle, the responsiveness of individual female rats changed according to cycle stage. Thus in females, stage of the oestrous cycle rather than trait differences between individuals appears to be the important determinant of responsiveness to stress. Hyperalgesia in females in late dioestrus correlated with increased anxiety behaviour in a novel environment: rats in late dioestrus showed longer latencies to re-enter the inner zone of an open field compared to rats in other cycle stages. Rats undergoing withdrawal from a progesterone dosing regimen (5mgkg(-1) IP twice daily for 6 days) to mimic the fall in progesterone that occurs naturally during late dioestrus, exhibited a stress-induced hyperalgesia similar to animals in late dioestrus. Falling levels of progesterone during late dioestrus may therefore be a pre-disposing factor for the development of stress-induced hyperalgesia in females.
Collapse
Affiliation(s)
- Adam J Devall
- Department of Physiology, University of Birmingham, Birmingham B15 2TT, UK
| | | | | |
Collapse
|
39
|
Abstract
BACKGROUND About 5% of women experience severe symptoms called premenstrual syndrome (PMS), only in the two weeks before their menstrual periods. Treatment with progesterone may restore a deficiency, balance menstrual hormone levels or reduce effects of falling progesterone levels on the brain or on electrolytes in the blood. OBJECTIVES The objectives were to determine if progesterone has been found to be an effective treatment for all or some premenstrual symptoms and if adverse events associated with this treatment have been reported. SEARCH STRATEGY We searched the Cochrane Menstrual Disorders and Subfertility Group's Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library, Issue 1, 2005), MEDLINE (1966 to 2005) and EMBASE (1980 to 2005) in March 2005, and PsycINFO (1806 to 2006) in April 2006. We contacted pharmaceutical companies for information about unpublished trials.The Trials Search Co-ordinator searched MEDLINE, EMBASE and PsycLIT on October 16 2000. MEDLINE and EMBASE were searched again on March 1 2005 and all again on March 3 2008. CINAHL was searched on March 3 2008. The search strings are in Appendix 2. SELECTION CRITERIA We included randomised double-blind, placebo-controlled trials of progesterone on women with PMS diagnosed by at least two prospective cycles, without current psychiatric disorder. DATA COLLECTION AND ANALYSIS Two reviewers (BM and OF) extracted data independently and decided which trials to include. OF wrote to trial investigators for missing data. MAIN RESULTS From 17 studies, only two met our inclusion criteria. Together they had 280 participants aged between 18 and 45 years. One hundred and fifteen yielded analysable results. Both studies measured symptom severity using subjective scales. Differing in design, participants, dose of progesterone and how delivered, the studies could not be combined in meta-analysis.Adverse events which may or may not have been side effects of the treatment were described as mild.Both trials had defects. They intended to exclude women whose symptoms continued after their periods. When data from ineligible women were excluded from analysis in one trial, the other women were found to have benefited more from progesterone than placebo. The smaller study found no statistically significant difference between oral progesterone, vaginally absorbed progesterone and placebo, but reported outcomes incompletely. AUTHORS' CONCLUSIONS The trials did not show that progesterone is an effective treatment for PMS nor that it is not. Neither trial distinguished a subgroup of women who benefited, nor examined claimed success with high doses.
Collapse
|
40
|
Gangitano D, Salas R, Teng Y, Perez E, De Biasi M. Progesterone modulation of alpha5 nAChR subunits influences anxiety-related behavior during estrus cycle. GENES BRAIN AND BEHAVIOR 2009; 8:398-406. [PMID: 19220484 DOI: 10.1111/j.1601-183x.2009.00476.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Smokers often report an anxiolytic effect of cigarettes. In addition, stress-related disorders such as anxiety, post-traumatic stress syndrome and depression are often associated with chronic nicotine use. To study the role of the alpha5 nicotinic acetylcholine receptor subunit in anxiety-related responses, control and alpha5 subunit null mice (alpha5(-/-)) were subjected to the open field activity (OFA), light-dark box (LDB) and elevated plus maze (EPM) tests. In the OFA and LDB, alpha5(-/-) behaved like wild-type controls. In the EPM, female alpha5(-/-) mice displayed an anxiolytic-like phenotype, while male alpha5(-/-) mice were undistinguishable from littermate controls. We studied the hypothalamus-pituitary-adrenal axis by measuring plasma corticosterone and hypothalamic corticotropin-releasing factor. Consistent with an anxiolytic-like phenotype, female alpha5(-/-) mice displayed lower basal corticosterone levels. To test whether gonadal steroids regulate the expression of alpha5, we treated cultured NTera 2 cells with progesterone and found that alpha5 protein levels were upregulated. In addition, brain levels of alpha5 mRNA increased upon progesterone injection into ovariectomized wild-type females. Finally, we tested anxiety levels in the EPM during the estrous cycle. The estrus phase (when progesterone levels are low) is anxiolytic-like in wild-type mice, but no cycle-dependent fluctuations in anxiety levels were found in alpha5(-/-) females. Thus, alpha5-containing neuronal nicotinic acetylcholine receptors may be mediators of anxiogenic responses, and progesterone-dependent modulation of alpha5 expression may contribute to fluctuations in anxiety levels during the ovarian cycle.
Collapse
Affiliation(s)
- D Gangitano
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
41
|
Biggio G, Cristina Mostallino M, Follesa P, Concas A, Sanna E. Chapter 6 GABAA Receptor Function and Gene Expression During Pregnancy and Postpartum. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 85:73-94. [DOI: 10.1016/s0074-7742(09)85006-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Progesterone withdrawal-evoked plasticity of neural function in the female periaqueductal grey matter. Neural Plast 2008; 2009:730902. [PMID: 19096515 PMCID: PMC2593562 DOI: 10.1155/2009/730902] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 07/30/2008] [Indexed: 11/17/2022] Open
Abstract
Cyclical changes in production of neuroactive steroids during the oestrous cycle induce significant changes in
GABAA receptor expression in female rats. In the periaqueductal grey (PAG) matter, upregulation of α4β1δ GABAA receptors occurs as progesterone levels fall during late dioestrus (LD) or during withdrawal from an exogenous progesterone dosing regime. The new receptors are likely to be extrasynaptically located on the GABAergic interneurone population and to mediate tonic currents. Electrophysiological studies showed that when α4β1δ GABAA receptor expression was increased, the excitability of the output neurones in the PAG increased, due to a decrease in the level of ongoing inhibitory tone from the GABAergic interneurones. The functional consequences in terms of nociceptive processing were investigated in conscious rats. Baseline tail flick latencies were similar in all rats. However, acute exposure to mild vibration stress evoked hyperalgesia in rats in LD and after progesterone withdrawal, in line with the upregulation of α4β1δ GABAA receptor expression.
Collapse
|
43
|
Arad M, Weiner I. Fluctuation of latent inhibition along the estrous cycle in the rat: modeling the cyclicity of symptoms in schizophrenic women? Psychoneuroendocrinology 2008; 33:1401-10. [PMID: 18819755 DOI: 10.1016/j.psyneuen.2008.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 08/03/2008] [Accepted: 08/06/2008] [Indexed: 10/21/2022]
Abstract
Latent inhibition (LI) is a cross-species selective attention phenomenon manifested as poorer conditioning of stimuli that had been experienced as irrelevant prior to conditioning. Disruption of LI by pro-psychotic agents such as amphetamine and its restoration by antipsychotic drugs (APDs) is a well-established model of psychotic symptoms of schizophrenia. There is evidence that in schizophrenic women symptom severity and treatment response fluctuate along the menstrual cycle. Here we tested whether hormonal fluctuation along the estrous cycle in female rats (as determined indirectly via the cellular composition of the vaginal smears) would modulate the expression of LI and its response to APDs. The results showed that LI was seen if rats were in estrus during pre-exposure stage and in metestrus during the conditioning stage of the LI procedure (estrus-metestrus) but not along the remaining sequential phases of the cycle (metestrus-diestrus, diestrus-proestrus and proestrus-estrus). Additionally, the efficacy of typical and atypical APDs, haloperidol and clozapine, respectively, in restoring LI depended on estrous condition. Only LI disruption in proestrus-estrus exhibited sensitivity to both APDs, whereas LI disruption in the other two phases was alleviated by clozapine but not haloperidol. Our results show for the first time that both the expression of LI and its sensitivity to APDs are modulated along the estrous cycle, consistent with fluctuations in psychotic symptoms and response to APDs seen along women's menstrual cycle. Importantly, the results indicate that although both low and high levels of hormones may give rise to psychotic-like behavior as manifested in LI loss, the pro-psychotic state associated with low hormonal level is more severe due to reduced sensitivity to typical APDs. The latter constellation may mimic states of increased vulnerability to psychosis coupled with reduced treatment response documented in schizophrenic women during periods associated with low levels of hormones.
Collapse
Affiliation(s)
- Michal Arad
- Department of Psychology, Tel-Aviv University, Tel-Aviv 69978, Israel.
| | | |
Collapse
|
44
|
Walker MC, Semyanov A. Regulation of excitability by extrasynaptic GABA(A) receptors. Results Probl Cell Differ 2008; 44:29-48. [PMID: 17671772 DOI: 10.1007/400_2007_030] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Not only are GABA(A) receptors activated transiently by GABA released at synapses, but high affinity, extrasynaptic GABA(A) receptors are also activated by ambient, extracellular GABA as a more persistent form of signalling (often termed tonic inhibition). Over the last decade tonic GABA(A) receptor-mediated inhibition and the properties of GABA(A) receptors mediating this signalling have received increasing attention. Tonic inhibition is present throughout the central nervous system, but is expressed in a cell-type specific manner (e.g. in interneurons more so than in pyramidal cells in the hippocampus, and in thalamocortical neurons more so than in reticular thalamic neurons in the thalamus). As a consequence, tonic inhibition can have a complex effect on network activity. Tonic inhibition is not fixed but can be modulated by endogenous and exogenous modulators, such as neurosteroids, and by developmental, physiological and pathological regulation of GABA uptake and GABA(A) receptor expression. There is also growing evidence that tonic currents play an important role in epilepsy, sleep (also actions of anaesthetics and sedatives), memory and cognition. Therefore, drugs specifically aimed at targeting the extrasynaptic receptors involved in tonic inhibition could be a novel approach to regulating both physiological and pathological processes.
Collapse
Affiliation(s)
- Matthew C Walker
- Institute of Neurology, University College London, Queen Square, London, UK.
| | | |
Collapse
|
45
|
Huber JC, Heskamp MLS, Schramm GAK. Effect of an Oral Contraceptive with Chlormadinone Acetate on Depressive Mood. Clin Drug Investig 2008; 28:783-91. [DOI: 10.2165/0044011-200828120-00006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
46
|
|
47
|
Mody I. Extrasynaptic GABAA receptors in the crosshairs of hormones and ethanol. Neurochem Int 2007; 52:60-4. [PMID: 17714830 PMCID: PMC2291573 DOI: 10.1016/j.neuint.2007.07.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 07/10/2007] [Accepted: 07/10/2007] [Indexed: 10/23/2022]
Abstract
Gamma-aminobutyric acid (GABA) is the main chemical inhibitory neurotransmitter in the brain. In the central nervous system (CNS) it acts on two distinct types of receptor: an ion channel, i.e., an "ionotropic" receptor permeable to Cl- and HCO3- (GABAA receptors) and a G-protein coupled "metabotropic" receptor that is linked to various effector mechanisms (GABAB receptors). This review will summarize novel developments in the physiology and pharmacology of GABAA receptors (GABAARs), specifically those found outside synapses. The focus will be on a particular combination of GABAAR subunits sensitive to ovarian and adrenal cortical steroid hormone metabolites that are synthesized in the brain (neurosteroids) and to sobriety impairing concentrations of ethanol. These receptors may be the final common pathway for interactions between ethanol and ovarian and stress-related neurosteroids.
Collapse
Affiliation(s)
- Istvan Mody
- Department of Neurology NRB1 575D, The David Geffen School of Medicine at UCLA, 635 Charles Young Dr S., Los Angeles, CA 90095, United States.
| |
Collapse
|
48
|
Schneider T, Popik P. Attenuation of estrous cycle-dependent marble burying in female rats by acute treatment with progesterone and antidepressants. Psychoneuroendocrinology 2007; 32:651-9. [PMID: 17561352 DOI: 10.1016/j.psyneuen.2007.04.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 04/13/2007] [Accepted: 04/13/2007] [Indexed: 11/17/2022]
Abstract
Premenstrual dysphoric disorder (PMDD) is characterized by the recurrence of a cluster of physical and negative mood symptoms, especially irritability, appearing when estrogen and progesterone levels decrease during the late luteal phase of the menstrual cycle. The aim of the present study was to explore a new potential model of premenstrual irritability. It has been suggested that burying of harmless objects by rodents may reflect a form of impulsive or anxiety-like behavior. This study demonstrates changes in burying behavior during various phases of the estrous cycle in some but not all female rats. Burying behavior was found to be enhanced at metestrus and decreased at proestrus, characterized by low and high ovarian hormone levels, respectively. No habituation of the cycle-dependent burying was observed. Enhanced burying was not observed in reproductive senescent and ovariectomized females characterized by stable, low levels of ovarian hormones. Increased marble burying at metestrus was reversed by acute treatment with antidepressants fluoxetine, desipramine, nomifensine, the benzodiazepine agonist diazepam, and progesterone, while the neuroleptic chlorpromazine was without effect. Reversal of cycle-dependent burying was unrelated to the drugs' effects on locomotor activity. These results indicate that estrous cycle-dependent marble-burying behavior displayed by a subgroup of female rats might be a manifestation of ovarian hormone-dependent irritability. This manifestation may be used to elucidate the neuroendocrine mechanisms triggering premenstrual irritability, and the detailed mode of action of antidepressants when used for PMDD.
Collapse
Affiliation(s)
- Tomasz Schneider
- Behavioral Neuroscience, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland.
| | | |
Collapse
|
49
|
Mody I, Glykys J, Wei W. A new meaning for "Gin & Tonic": tonic inhibition as the target for ethanol action in the brain. Alcohol 2007; 41:145-53. [PMID: 17521846 PMCID: PMC2012942 DOI: 10.1016/j.alcohol.2007.03.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 02/28/2007] [Accepted: 03/01/2007] [Indexed: 12/14/2022]
Abstract
Gamma-aminobutyric acid (GABA) is the main chemical inhibitory neurotransmitter in the brain. In the central nervous system, it acts on two distinct types of receptor: an ion channel, that is, an "ionotropic" receptor permeable to Cl- and HCO3- (GABAA receptors [GABAARs]) and a G-protein coupled "metabotropic" receptor that is linked to various effector mechanisms (GABAB receptors). This review will summarize novel developments in the physiology and pharmacology of GABAARs, specifically those found outside synapses. The focus will be on a particular combination of GABAAR subunits responsible for mediating tonic inhibition and sensitive to concentrations of ethanol legally considered to be sobriety impairing. Since the same receptors are also a preferred target for the metabolites of steroid hormones synthesized in the brain (neurosteroids), the ethanol-sensitive tonic inhibition may be a common pathway for interactions between the effects of alcohol and those of ovarian and stress-related neurosteroids.
Collapse
Affiliation(s)
- Istvan Mody
- Department of Neurology, The David Geffen School of Medicine at UCLA, 635 Charles Young Dr S, University of California, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
50
|
Campagne DM, Campagne G. The premenstrual syndrome revisited. Eur J Obstet Gynecol Reprod Biol 2007; 130:4-17. [PMID: 16916572 DOI: 10.1016/j.ejogrb.2006.06.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 04/20/2006] [Accepted: 06/26/2006] [Indexed: 12/01/2022]
Abstract
More women - and their families - are affected by the physical and psychological irregularities due to premenstrual symptoms than by any other condition. Up to 90% of women of childbearing age report perceiving one or more symptoms during the days before menstruation, symptoms which can alter their behaviour and wellbeing and which, therefore, can affect their family, social and work circle. However, and notwithstanding this general prevalence, the clinical entity that in a large number of cases results from these symptoms, commonly known as the premenstrual syndrome, still lacks defined and validated contents so that recommendations of treatments backed by adequate experimental and clinical evidence are only slowly appearing. In the present paper, we review recent experimental data as to a possible aetiology of the premenstrual problem. We propose a Premenstrual Profile, i.e. a new register of symptoms, to be used for the differential diagnosis of the three forms of the premenstrual alteration. Finally, we review the evidence-based recommendations from reliable sources as regards the treatment of "normal" and "abnormal" premenstrual symptoms.
Collapse
Affiliation(s)
- Daniel M Campagne
- Department of Personality, Evaluation and Psychological Treatment, Faculty of Psychology, UNED University, Madrid, Spain
| | | |
Collapse
|