1
|
Kato K, Serizawa R, Yokoyama T, Nakamuta N, Yamamoto Y. Fos expression in A1/C1 neurons of rats exposed to hypoxia, hypercapnia, or hypercapnic hypoxia. Neurosci Lett 2024; 843:138024. [PMID: 39442648 DOI: 10.1016/j.neulet.2024.138024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
The distribution of Fos expression in catecholaminergic neurons with immunoreactivity for dopamine β-hydroxylase (DBH) of the ventrolateral medulla was compared between rats exposed to hypoxia (10 % O2), hypercapnia (8 % CO2), and hypercapnic hypoxia (8 % CO2 and 10 % O2) for 2 h. Among the experimental groups, hypoxia-exposed rats had more Fos/DBH double-immunoreactive neurons than the control group (20 % O2) in the rostral area of the ventrolateral medulla, specifically in the range of + 150 μm to + 2,400 μm from the caudal end of the facial nerve nucleus. On the other hand, Fos/DBH double-immunoreactive neurons were scarcely observed in the ventrolateral medullary region of hypercapnia-exposed rats. The number of double-immunoreactive neurons in hypercapnic hypoxia-exposed rats was comparable to that in the control group. The present results suggest that adrenergic C1 neurons are specifically activated by hypoxia and are involved in the regulation of respiratory and circulatory functions.
Collapse
Affiliation(s)
- Kouki Kato
- Center for Laboratory Animal Science, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Risa Serizawa
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, 18-8, Ueda 3-chome, Morioka, Iwate 020-8550, Japan
| | - Takuya Yokoyama
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, 18-8, Ueda 3-chome, Morioka, Iwate 020-8550, Japan
| | - Nobuaki Nakamuta
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, 18-8, Ueda 3-chome, Morioka, Iwate 020-8550, Japan
| | - Yoshio Yamamoto
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, 18-8, Ueda 3-chome, Morioka, Iwate 020-8550, Japan.
| |
Collapse
|
2
|
Busceti CL, Bucci D, Damato A, De Lucia M, Venturini E, Ferrucci M, Lazzeri G, Puglisi-Allegra S, Scioli M, Carrizzo A, Nicoletti F, Vecchione C, Fornai F. Methamphetamine-Induced Blood Pressure Sensitization Correlates with Morphological Alterations within A1/C1 Catecholamine Neurons. Int J Mol Sci 2024; 25:10282. [PMID: 39408612 PMCID: PMC11476956 DOI: 10.3390/ijms251910282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Methamphetamine (METH) is a drug of abuse, which induces behavioral sensitization following repeated doses. Since METH alters blood pressure, in the present study we assessed whether systolic and diastolic blood pressure (SBP and DBP, respectively) are sensitized as well. In this context, we investigated whether alterations develop within A1/C1 neurons in the vasomotor center. C57Bl/6J male mice were administered METH (5 mg/kg, daily for 5 consecutive days). Blood pressure was measured by tail-cuff plethysmography. We found a sensitized response both to SBP and DBP, along with a significant decrease of catecholamine neurons within A1/C1 (both in the rostral and caudal ventrolateral medulla), while no changes were detected in glutamic acid decarboxylase. The decrease of catecholamine neurons was neither associated with the appearance of degeneration-related marker Fluoro-Jade B nor with altered expression of α-synuclein. Rather, it was associated with reduced free radicals and phospho-cJun and increased heat shock protein-70 and p62/sequestosome within A1/C1 cells. Blood pressure sensitization was not associated with altered arterial reactivity. These data indicate that reiterated METH administration may increase blood pressure persistently and may predispose to an increased cardiovascular response to METH. These data may be relevant to explain cardiovascular events following METH administration and stressful conditions.
Collapse
Affiliation(s)
- Carla Letizia Busceti
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, 86077 Pozzilli, Italy; (C.L.B.); (D.B.); (A.D.); (M.D.L.); (E.V.); (S.P.-A.); (M.S.); (A.C.); (F.N.)
| | - Domenico Bucci
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, 86077 Pozzilli, Italy; (C.L.B.); (D.B.); (A.D.); (M.D.L.); (E.V.); (S.P.-A.); (M.S.); (A.C.); (F.N.)
| | - Antonio Damato
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, 86077 Pozzilli, Italy; (C.L.B.); (D.B.); (A.D.); (M.D.L.); (E.V.); (S.P.-A.); (M.S.); (A.C.); (F.N.)
| | - Massimiliano De Lucia
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, 86077 Pozzilli, Italy; (C.L.B.); (D.B.); (A.D.); (M.D.L.); (E.V.); (S.P.-A.); (M.S.); (A.C.); (F.N.)
| | - Eleonora Venturini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, 86077 Pozzilli, Italy; (C.L.B.); (D.B.); (A.D.); (M.D.L.); (E.V.); (S.P.-A.); (M.S.); (A.C.); (F.N.)
| | - Michela Ferrucci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (M.F.); (G.L.)
| | - Gloria Lazzeri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (M.F.); (G.L.)
| | - Stefano Puglisi-Allegra
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, 86077 Pozzilli, Italy; (C.L.B.); (D.B.); (A.D.); (M.D.L.); (E.V.); (S.P.-A.); (M.S.); (A.C.); (F.N.)
| | - Mariarosaria Scioli
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, 86077 Pozzilli, Italy; (C.L.B.); (D.B.); (A.D.); (M.D.L.); (E.V.); (S.P.-A.); (M.S.); (A.C.); (F.N.)
| | - Albino Carrizzo
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, 86077 Pozzilli, Italy; (C.L.B.); (D.B.); (A.D.); (M.D.L.); (E.V.); (S.P.-A.); (M.S.); (A.C.); (F.N.)
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana” University of Salerno, 84081 Baronissi, Italy
| | - Ferdinando Nicoletti
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, 86077 Pozzilli, Italy; (C.L.B.); (D.B.); (A.D.); (M.D.L.); (E.V.); (S.P.-A.); (M.S.); (A.C.); (F.N.)
- Department of Physiology and Pharmacology, University Sapienza, 00185 Roma, Italy
| | - Carmine Vecchione
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, 86077 Pozzilli, Italy; (C.L.B.); (D.B.); (A.D.); (M.D.L.); (E.V.); (S.P.-A.); (M.S.); (A.C.); (F.N.)
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana” University of Salerno, 84081 Baronissi, Italy
| | - Francesco Fornai
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, 86077 Pozzilli, Italy; (C.L.B.); (D.B.); (A.D.); (M.D.L.); (E.V.); (S.P.-A.); (M.S.); (A.C.); (F.N.)
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (M.F.); (G.L.)
| |
Collapse
|
3
|
Ribeiro JVV, Graziani D, Carvalho JHM, Mendonça MM, Naves LM, Oliveira HF, Campos HM, Fioravanti MCS, Pacheco LF, Ferreira PM, Pedrino GR, Ghedini PC, Fernandes KF, Batista KDA, Xavier CH. A peptide fraction from hardened common beans ( Phaseolus vulgaris) induces endothelium-dependent antihypertensive and renal effects in rats. Curr Res Food Sci 2022; 6:100410. [PMID: 36545514 PMCID: PMC9762200 DOI: 10.1016/j.crfs.2022.100410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/31/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Beans reached the research spotlight as a source of bioactive compounds capable of modulating different functions. Recently, we reported antioxidant and oxidonitrergic effect of a low molecular weight peptide fraction (<3 kDa) from hardened bean (Phaseolus vulgaris) in vitro and ex vivo, which necessitate further in vivo assessments. This work aimed to evaluate the hypotensive effect and the involved physiological mechanisms of the hardened common bean peptide (Phaseolus vulgaris) in normotensive (Wistar) and hypertensive (SHR) animals. Bean flour was combined with a solution containing acetonitrile, water and formic acid (25: 24: 1). Protein extract (PV3) was fractioned (3 kDa membrane). We assessed PV3 effects on renal function and hemodynamics of wistar (WT-normotensive) and spontaneously hypertensive rats (SHR) and measured systemic arterial pressure and flow in aortic and renal beds. The potential endothelial and oxidonitrergic involvements were tested in isolated renal artery rings. As results, we found that PV3: I) decreased food consumption in SHR, increased water intake and urinary volume in WT, increased glomerular filtration rate in WT and SHR, caused natriuresis in SHR; II) caused NO- and endothelium-dependent vasorelaxation in renal artery rings; III) reduced arterial pressure and resistance in aortic and renal vascular beds; IV) caused antihypertensive effects in a dose-dependent manner. Current findings support PV3 as a source of bioactive peptides and raise the potential of composing nutraceutical formulations to treat renal and cardiovascular diseases.
Collapse
Key Words
- ABF, Aortic blood flow
- AVR, Aortic vascular resistance
- Bioactive peptides
- Common beans
- GFR, Glomerular filtration rate
- HTC, Hard-to-Cook effects
- Hard-to-cook
- Hydroelectrolytic balance
- Hypertension
- L-NAME, nitroarginine methyl ester
- NO, Nitric oxide
- PV3, Phaseolus vulgaris extract with peptides smaller than 3 kDa
- Phaseolus vulgaris
- RBF, Renal blood flow
- RVR, Renal vascular resistance
- Renal function
- SHR, Spontaneously hypertensive rat
- WT, Wistar rat
Collapse
Affiliation(s)
| | - Daniel Graziani
- Systems Neurobiology Laboratory, Institute of Biological Sciences, Federal University of Goiás, Brazil
| | | | | | - Lara Marques Naves
- Center of Neuroscience and Cardiovascular Research, Institute of Biological Sciences, Federal University of Goiás, Brazil
| | - Helton Freires Oliveira
- Molecule, Cell and Tissue Analysis Laboratory, School of Veterinary and Animal Science, Federal University of Goiás, Brazil
| | - Hericles Mesquita Campos
- Biochemical and Molecular Pharmacology Laboratory, Institute of Biological Sciences, Federal University of Goiás, Brazil
| | | | | | - Patricia Maria Ferreira
- Systems Neurobiology Laboratory, Institute of Biological Sciences, Federal University of Goiás, Brazil
| | - Gustavo Rodrigues Pedrino
- Center of Neuroscience and Cardiovascular Research, Institute of Biological Sciences, Federal University of Goiás, Brazil
| | - Paulo César Ghedini
- Biochemical and Molecular Pharmacology Laboratory, Institute of Biological Sciences, Federal University of Goiás, Brazil
| | - Kátia Flávia Fernandes
- Polymer Chemistry Laboratory, Institute of Biological of Sciences, Federal University of Goiás, Brazil
| | | | - Carlos Henrique Xavier
- Systems Neurobiology Laboratory, Institute of Biological Sciences, Federal University of Goiás, Brazil,Corresponding author. Systems Neurobiology Laboratory. Department of Physiological Sciences, room 203, Institute of Biological Sciences. Federal University of Goiás, Esperança Avenue, Campus II, Goiania, GO, 74690-900, Brazil.
| |
Collapse
|
4
|
Sales da Silva E, Ferreira PM, Castro CH, Pacheco LF, Graziani D, Pontes CNR, Bessa ADSMD, Fernandes E, Naves LM, Ribeiro LCDS, Mendonça MM, Gomes RM, Pedrino GR, Ferreira RN, Xavier CH. Brain and kidney GHS-R1a underexpression is associated with changes in renal function and hemodynamics during neurogenic hypertension. Mol Cell Endocrinol 2020; 518:110984. [PMID: 32814069 DOI: 10.1016/j.mce.2020.110984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 10/23/2022]
Abstract
Ghrelin is a peptide hormone whose effects are mediated by the growth hormone secretagogue receptor subtype 1a (GHS-R1a), mainly expressed in the brain but also in kidneys. The hypothesis herein raised is that GHS-R1a would be player in the renal contribution to the neurogenic hypertension pathophysiology. To investigate GHS-R1a role on renal function and hemodynamics, we used Wistar (WT) and spontaneously hypertensive rats (SHR). First, we assessed the effect of systemically injected vehicle, ghrelin, GHS-R1a antagonist PF04628935, ghrelin plus PF04628935 or GHS-R1a synthetic agonist MK-677 in WT and SHR rats housed in metabolic cages (24 h). Blood and urine samples were also analyzed. Then, we assessed the GHS-R1a contribution to the control of renal vasomotion and hemodynamics in WT and SHR. Finally, we assessed the GHS-R1a levels in brain areas, aorta, renal artery, renal cortex and medulla of WT and SHR rats using western blot. We found that ghrelin and MK-677 changed osmolarity parameters of SHR, in a GHS-R1a-dependent manner. GHS-R1a antagonism reduced the urinary Na+ and K+ and creatinine clearance in WT but not in SHR. Ghrelin reduced arterial pressure and increased renal artery conductance in SHR. GHS-R1a protein levels were decreased in the kidney and brain areas of SHR when compared to WT. Therefore, GHS-R1a role in the control of renal function and hemodynamics during neurogenic hypertension seem to be different, and this may be related to brain and kidney GHS-R1a downregulation.
Collapse
Affiliation(s)
- Elder Sales da Silva
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Patrícia Maria Ferreira
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Carlos Henrique Castro
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Lilian Fernanda Pacheco
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Daniel Graziani
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Carolina Nobre Ribeiro Pontes
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Amanda de Sá Martins de Bessa
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Erika Fernandes
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Lara Marques Naves
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Larissa Cristina Dos Santos Ribeiro
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Michelle Mendanha Mendonça
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Rodrigo Mello Gomes
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Gustavo Rodrigues Pedrino
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Reginaldo Nassar Ferreira
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Carlos Henrique Xavier
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
5
|
da Silva EF, de Melo ABS, Lobo Júnior EDO, Rodrigues KL, Naves LM, Coltro WKT, Rebelo ACS, Freiria-Oliveira AH, Menani JV, Pedrino GR, Colombari E. Role of the Carotid Bodies in the Hypertensive and Natriuretic Responses to NaCl Load in Conscious Rats. Front Physiol 2018; 9:1690. [PMID: 30564134 PMCID: PMC6289036 DOI: 10.3389/fphys.2018.01690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/09/2018] [Indexed: 01/08/2023] Open
Abstract
Hyperosmotic challenges trigger a hypertensive response and natriuresis mediated by central and peripheral sensors. Here, we evaluated the importance of the carotid bodies for the hypertensive and natriuretic responses to acute and sub-chronic NaCl load in conscious rats. Male Wistar rats (250–330 g) submitted to bilateral carotid body removal (CBX) or sham surgery were used. One day after the surgery, the changes in arterial blood pressure (n = 6–7/group) and renal sodium excretion (n = 10/group) to intravenous infusion of 3 M NaCl (1.8 mL/kg b.w. during 1 min) were evaluated in non-anesthetized rats. Another cohort of sham (n = 8) and CBX rats (n = 6) had access to 0.3 M NaCl as the only source of fluid to drink for 7 days while ingestion and renal excretion were monitored daily. The sodium balance was calculated as the difference between sodium infused/ingested and excreted. CBX reduced the hypertensive (8 ± 2 mmHg, vs. sham rats: 19 ± 2 mmHg; p < 0.05) and natriuretic responses (1.33 ± 0.13 mmol/90 min, vs. sham: 1.81 ± 0.11 mmol/90 min; p < 0.05) to acute intravenous infusion of 3 M NaCl, leading to an increase of sodium balance (0.38 ± 0.11 mmol/90 min, vs. sham: -0.06 ± 0.10 mmol/90 min; p < 0.05). In CBX rats, sub-chronic NaCl load with 0.3 M NaCl to drink for 7 days increased sodium balance (18.13 ± 4.45 mmol, vs. sham: 5.58 ± 1.71 mmol; p < 0.05) and plasma sodium concentration (164 ± 5 mmol/L, vs. sham: 140 ± 7 mmol/L; p < 0.05), without changing arterial pressure (121 ± 9 mmHg, vs. sham: 116 ± 2 mmHg). These results suggest that carotid bodies are important for the maintenance of the hypertensive response to acute hypertonic challenges and for sodium excretion to both acute and chronic NaCl load.
Collapse
Affiliation(s)
- Elaine Fernanda da Silva
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, Brazil.,Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiâs, Goiânia, Brazil
| | | | | | - Karla Lima Rodrigues
- Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiâs, Goiânia, Brazil
| | - Lara Marques Naves
- Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiâs, Goiânia, Brazil
| | | | - Ana Cristina Silva Rebelo
- Department of Morphology, Biological Sciences Institute, Federal University of Goiâs, Goiânia, Brazil
| | | | - José Vanderlei Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, Brazil
| | - Gustavo Rodrigues Pedrino
- Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiâs, Goiânia, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, Brazil
| |
Collapse
|
6
|
Impaired chemosensory control of breathing after depletion of bulbospinal catecholaminergic neurons in rats. Pflugers Arch 2017; 470:277-293. [PMID: 29032505 DOI: 10.1007/s00424-017-2078-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/11/2017] [Accepted: 10/09/2017] [Indexed: 02/07/2023]
Abstract
Bulbospinal catecholaminergic neurons located in the rostral aspect of the ventrolateral medulla (C1 neurons) or within the ventrolateral pons (A5 neurons) are involved in the regulation of blood pressure and sympathetic outflow. A stimulus that commonly activates the C1 or A5 neurons is hypoxia, which is also involved in breathing activation. Although pharmacological and optogenetic evidence suggests that catecholaminergic neurons also regulate breathing, a specific contribution of the bulbospinal neurons to respiratory control has not been demonstrated. Therefore, in the present study, we evaluated whether the loss of bulbospinal catecholaminergic C1 and A5 cells affects cardiorespiratory control during resting, hypoxic (8% O2), and hypercapnic (7% CO2) conditions in unanesthetized rats. Thoracic spinal cord (T4-T8) injections of the immunotoxin anti-dopamine β-hydroxylase-saporin (anti-DβH-SAP-2.4 ng/100 nl) and the retrograde tracer Fluor-Gold or ventrolateral pontine injections of 6-OHDA were performed in adult male Wistar rats (250-280 g, N = 7-9/group). Anti-DβH-SAP or 6-OHDA eliminated most bulbospinal C1 and A5 neurons or A5 neurons, respectively. Serotonergic neurons and astrocytes were spared. Depletion of the bulbospinal catecholaminergic cells did not change cardiorespiratory variables under resting condition, but it did affect the response to hypoxia and hypercapnia. Specifically, the increase in the ventilation, the number of sighs, and the tachycardia were reduced, but the MAP increased during hypoxia in anti-DβH-SAP-treated rats. Our data reveal that the bulbospinal catecholaminergic neurons (A5 and C1) facilitate the ventilatory reflex to hypoxia and hypercapnia.
Collapse
|
7
|
Dos Santos Moreira MC, Naves LM, Marques SM, Silva EF, Rebelo AC, Colombari E, Pedrino GR. Neuronal circuits involved in osmotic challenges. Physiol Res 2017; 66:411-423. [PMID: 28248529 DOI: 10.33549/physiolres.933373] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The maintenance of plasma sodium concentration within a narrow limit is crucial to life. When it differs from normal physiological patterns, several mechanisms are activated in order to restore body fluid homeostasis. Such mechanisms may be vegetative and/or behavioral, and several regions of the central nervous system (CNS) are involved in their triggering. Some of these are responsible for sensory pathways that perceive a disturbance of the body fluid homeostasis and transmit information to other regions. These regions, in turn, initiate adequate adjustments in order to restore homeostasis. The main cardiovascular and autonomic responses to a change in plasma sodium concentration are: i) changes in arterial blood pressure and heart rate; ii) changes in sympathetic activity to the renal system in order to ensure adequate renal sodium excretion/absorption, and iii) the secretion of compounds involved in sodium ion homeostasis (ANP, Ang-II, and ADH, for example). Due to their cardiovascular effects, hypertonic saline solutions have been used to promote resuscitation in hemorrhagic patients, thereby increasing survival rates following trauma. In the present review, we expose and discuss the role of several CNS regions involved in body fluid homeostasis and the effects of acute and chronic hyperosmotic challenges.
Collapse
Affiliation(s)
- M C Dos Santos Moreira
- Department of Physiological Science, Federal University of Goiás, Goiânia - GO - Brazil. or
| | | | | | | | | | | | | |
Collapse
|
8
|
Silva TM, Takakura AC, Moreira TS. Acute hypoxia activates hypothalamic paraventricular nucleus-projecting catecholaminergic neurons in the C1 region. Exp Neurol 2016; 285:1-11. [DOI: 10.1016/j.expneurol.2016.08.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/17/2016] [Accepted: 08/24/2016] [Indexed: 01/09/2023]
|
9
|
Pedrino GR, Mourão AA, Moreira MCS, da Silva EF, Lopes PR, Fajemiroye JO, Schoorlemmer GHM, Sato MA, Reis ÂAS, Rebelo ACS, Cravo SL. Do the carotid body chemoreceptors mediate cardiovascular and sympathetic adjustments induced by sodium overload in rats? Life Sci 2016; 153:9-16. [PMID: 27060222 DOI: 10.1016/j.lfs.2016.03.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/15/2016] [Accepted: 03/24/2016] [Indexed: 10/22/2022]
Abstract
Acute plasma hypernatremia induces several cardiovascular and sympathetic responses. It is conceivable that these responses contribute to rapid sodium excretion and restoration of normal conditions. Afferent pathways mediating these responses are not entirely understood. The present study analyses the effects of acute carotid chemoreceptor inactivation on cardiovascular and sympathetic responses induced by infusion of hypertonic saline (HS). All experiments were performed on anesthetized male Wistar rats instrumented for recording of arterial blood pressure (ABP), renal blood flow (RBF) and renal sympathetic nerve activity (RSNA). Animals were subjected to sham surgery or carotid chemoreceptor inactivation by bilateral ligation of the carotid body artery (CBA). In sham rats (n=8), intravenous infusion of HS (3 M NaCl, 1.8 ml/kg b.wt.) elicited a transient increase (9±2mmHg) in ABP, and long lasting (30 min) increases in RBF (138±5%) and renal vascular conductance (RVC) (128±5%) with concurrent decrease in RSNA (-19±4%). In rats submitted to CBA ligation (n=8), the pressor response to HS was higher (24±2mmHg; p<0.05). However, RBF and RVC responses to HS infusion were significantly reduced (113±5% and 93±4%, respectively) while RSNA was increased (13±2%). When HS (3M NaCl, 200μl) was administrated into internal carotid artery (ICA), distinct sympathetic and cardiovascular responses were observed. In sham-group, HS infusion (3M NaCl, 200μl) into ICA promoted an increase in ABP (26±8mmHg) and RSNA (29±13%). In CBA rats, ABP (-3±5.6mmHg) remained unaltered despite sympathoinhibition (-37.6±5.4%). These results demonstrate that carotid body chemoreceptors play a role in the development of hemodynamic and sympathetic responses to acute HS infusion.
Collapse
Affiliation(s)
- Gustavo R Pedrino
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil.
| | - Aline A Mourão
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Marina C S Moreira
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Elaine F da Silva
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Paulo R Lopes
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - James O Fajemiroye
- Department of Pharmacology, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Guss H M Schoorlemmer
- Department of Physiology, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Mônica A Sato
- Department of Morphology and Physiology, Faculty of Medicine of ABC, Santo Andre, SP, Brazil
| | - Ângela A S Reis
- Department of Biochemistry, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Ana C S Rebelo
- Department of Morphology, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Sergio L Cravo
- Department of Physiology, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
10
|
Silva EF, Sera CTN, Mourão AA, Lopes PR, Moreira MCS, Ferreira-Neto ML, Colombari DAS, Cravo SLD, Pedrino GR. Involvement of sinoaortic afferents in renal sympathoinhibition and vasodilation induced by acute hypernatremia. Clin Exp Pharmacol Physiol 2015; 42:1135-41. [DOI: 10.1111/1440-1681.12475] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/29/2015] [Accepted: 08/01/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Elaine F Silva
- Centre for Neuroscience and Cardiovascular Research; Department of Physiological Sciences; Biological Sciences Institute; Federal University of Goiás; Goiânia Goiás Brazil
| | - Celisa TN Sera
- Department of Physiology; Federal University of São Paulo; São Paulo São Paulo Brazil
| | - Aline A Mourão
- Centre for Neuroscience and Cardiovascular Research; Department of Physiological Sciences; Biological Sciences Institute; Federal University of Goiás; Goiânia Goiás Brazil
| | - Paulo R Lopes
- Centre for Neuroscience and Cardiovascular Research; Department of Physiological Sciences; Biological Sciences Institute; Federal University of Goiás; Goiânia Goiás Brazil
| | - Marina CS Moreira
- Centre for Neuroscience and Cardiovascular Research; Department of Physiological Sciences; Biological Sciences Institute; Federal University of Goiás; Goiânia Goiás Brazil
| | - Marcos L Ferreira-Neto
- Laboratory of Experimental Physiology; Faculty of Physical Education; Federal University of Uberlândia; Uberlândia Minas Gerais Brazil
| | - Débora AS Colombari
- Department of Physiology and Pathology; School of Dentistry; São Paulo State University; Araraquara São Paulo Brazil
| | - Sérgio LD Cravo
- Department of Physiology; Federal University of São Paulo; São Paulo São Paulo Brazil
| | - Gustavo R Pedrino
- Centre for Neuroscience and Cardiovascular Research; Department of Physiological Sciences; Biological Sciences Institute; Federal University of Goiás; Goiânia Goiás Brazil
| |
Collapse
|
11
|
Brainstem areas activated by intermittent apnea in awake unrestrained rats. Neuroscience 2015; 297:262-71. [DOI: 10.1016/j.neuroscience.2015.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/24/2015] [Accepted: 04/03/2015] [Indexed: 11/21/2022]
|
12
|
Della Penna SL, Rosón MI, Toblli JE, Fernández BE. Role of angiotensin II and oxidative stress in renal inflammation by hypernatremia: Benefits of atrial natriuretic peptide, losartan, and tempol. Free Radic Res 2015; 49:383-96. [DOI: 10.3109/10715762.2015.1006216] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Amaral NO, de Oliveira TS, Naves LM, Filgueira FP, Ferreira-Neto ML, Schoorlemmer GHM, de Castro CH, Freiria-Oliveira AH, Xavier CH, Colugnati DB, Rosa DA, Blanch GT, Borges CL, Soares CMA, Reis AAS, Cravo SL, Pedrino GR. Efferent pathways in sodium overload-induced renal vasodilation in rats. PLoS One 2014; 9:e109620. [PMID: 25279805 PMCID: PMC4184892 DOI: 10.1371/journal.pone.0109620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 09/11/2014] [Indexed: 11/19/2022] Open
Abstract
Hypernatremia stimulates the secretion of oxytocin (OT), but the physiological role of OT remains unclear. The present study sought to determine the involvement of OT and renal nerves in the renal responses to an intravenous infusion of hypertonic saline. Male Wistar rats (280–350 g) were anesthetized with sodium thiopental (40 mg. kg−1, i.v.). A bladder cannula was implanted for collection of urine. Animals were also instrumented for measurement of mean arterial pressure (MAP) and renal blood flow (RBF). Renal vascular conductance (RVC) was calculated as the ratio of RBF by MAP. In anesthetized rats (n = 6), OT infusion (0.03 µg • kg−1, i.v.) induced renal vasodilation. Consistent with this result, exvivo experiments demonstrated that OT caused renal artery relaxation. Blockade of OT receptors (OXTR) reduced these responses to OT, indicating a direct effect of this peptide on OXTR on this artery. Hypertonic saline (3 M NaCl, 1.8 ml • kg−1 b.wt., i.v.) was infused over 60 s. In sham rats (n = 6), hypertonic saline induced renal vasodilation. The OXTR antagonist (AT; atosiban, 40 µg • kg−1 • h−1, i.v.; n = 7) and renal denervation (RX) reduced the renal vasodilation induced by hypernatremia. The combination of atosiban and renal denervation (RX+AT; n = 7) completely abolished the renal vasodilation induced by sodium overload. Intact rats excreted 51% of the injected sodium within 90 min. Natriuresis was slightly blunted by atosiban and renal denervation (42% and 39% of load, respectively), whereas atosiban with renal denervation reduced sodium excretion to 16% of the load. These results suggest that OT and renal nerves are involved in renal vasodilation and natriuresis induced by acute plasma hypernatremia.
Collapse
Affiliation(s)
- Nathalia O. Amaral
- Center for Neuroscience and Cardiovascular Physiology, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Thiago S. de Oliveira
- Center for Neuroscience and Cardiovascular Physiology, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Lara M. Naves
- Center for Neuroscience and Cardiovascular Physiology, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Fernando P. Filgueira
- Center for Neuroscience and Cardiovascular Physiology, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Marcos L. Ferreira-Neto
- Faculty of Physical Education, Biological Sciences Institute, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | | - Carlos H. de Castro
- Center for Neuroscience and Cardiovascular Physiology, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - André H. Freiria-Oliveira
- Center for Neuroscience and Cardiovascular Physiology, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Carlos H. Xavier
- Center for Neuroscience and Cardiovascular Physiology, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Diego B. Colugnati
- Center for Neuroscience and Cardiovascular Physiology, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Daniel A. Rosa
- Center for Neuroscience and Cardiovascular Physiology, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Graziela T. Blanch
- Center for Neuroscience and Cardiovascular Physiology, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Clayton L. Borges
- Laboratory of Molecular Biology, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Célia M. A. Soares
- Laboratory of Molecular Biology, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Angela A. S. Reis
- Department of Biochemistry and Molecular Biology, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Sergio L. Cravo
- Department of Physiology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Gustavo R. Pedrino
- Center for Neuroscience and Cardiovascular Physiology, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
- * E-mail:
| |
Collapse
|
14
|
Freiria-Oliveira AH, Blanch GT, De Paula PM, Menani JV, Colombari DSA. Lesion of the commissural nucleus of the solitary tract/A2 noradrenergic neurons facilitates the activation of angiotensinergic mechanisms in response to hemorrhage. Neuroscience 2013; 254:196-204. [PMID: 24060823 DOI: 10.1016/j.neuroscience.2013.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 08/20/2013] [Accepted: 09/08/2013] [Indexed: 11/18/2022]
Abstract
In the present study, we investigated the effects of lesions of A2 neurons of the commissural nucleus of the solitary tract (cNTS) alone or combined with the blockade of angiotensinergic mechanisms on the recovery of arterial pressure (AP) to hemorrhage in conscious rats. Male Holtzman rats (280-320g) received an injection of anti-dopamine-beta-hydroxylase-saporin (12.6ng/60nl; cNTS/A2-lesion, n=28) or immunoglobulin G (IgG)-saporin (12.6ng/60nl, sham, n=24) into the cNTS and 15-21days later had a stainless steel cannula implanted in the lateral ventricle. After 6days, rats were submitted to hemorrhage (four blood withdrawals, 2ml/300g of body weight every 10min). Both cNTS/A2-lesioned and sham rats had similar hypotension to hemorrhage (-62±7 and -73±7mmHg, respectively), however cNTS/A2-lesioned rats rapidly recovered from hypotension (-5±3mmHg at 30min), whereas sham rats did not completely recover until the end of the recording (-20±3mmHg at 60min). Losartan (angiotensin type 1 receptor antagonist) injected intracerebroventricularly (100μg/1μl) or intravenously (i.v.) (10mg/kg of body weight) impaired the recovery of AP in cNTS/A2-lesioned rats (-24±6 and -35±7mmHg at 30min, respectively). In sham rats, only i.v. losartan affected the recovery of AP (-39±6mmHg at 60min). The results suggest that lesion of the A2 neurons in the cNTS facilitates the activation of the angiotensinergic pressor mechanisms in response to hemorrhage.
Collapse
Affiliation(s)
- A H Freiria-Oliveira
- Department of Pathology and Physiology, School of Dentistry, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | | | | | | | | |
Collapse
|
15
|
da Silva EF, Freiria-Oliveira AH, Custódio CHX, Ghedini PC, Bataus LAM, Colombari E, de Castro CH, Colugnati DB, Rosa DA, Cravo SLD, Pedrino GR. A1 noradrenergic neurons lesions reduce natriuresis and hypertensive responses to hypernatremia in rats. PLoS One 2013; 8:e73187. [PMID: 24039883 PMCID: PMC3769347 DOI: 10.1371/journal.pone.0073187] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/17/2013] [Indexed: 11/18/2022] Open
Abstract
Noradrenergic neurons in the caudal ventrolateral medulla (CVLM; A1 group) contribute to cardiovascular regulation. The present study assessed whether specific lesions in the A1 group altered the cardiovascular responses that were evoked by hypertonic saline (HS) infusion in non-anesthetized rats. Male Wistar rats (280-340 g) received nanoinjections of antidopamine-β-hydroxylase-saporin (A1 lesion, 0.105 ng.nL(-1)) or free saporin (sham, 0.021 ng.nL(-1)) into their CVLMs. Two weeks later, the rats were anesthetized (2% halothane in O2) and their femoral artery and vein were catheterized and led to exit subcutaneously between the scapulae. On the following day, the animals were submitted to HS infusion (3 M NaCl, 1.8 ml • kg(-1), b.wt., for longer than 1 min). In the sham-group (n = 8), HS induced a sustained pressor response (ΔMAP: 35±3.6 and 11±1.8 mmHg, for 10 and 90 min after HS infusion, respectively; P<0.05 vs. baseline). Ten min after HS infusion, the pressor responses of the anti-DβH-saporin-treated rats (n = 11)were significantly smaller(ΔMAP: 18±1.4 mmHg; P<0.05 vs. baseline and vs. sham group), and at 90 min, their blood pressures reached baseline values (2±1.6 mmHg). Compared to the sham group, the natriuresis that was induced by HS was reduced in the lesioned group 60 min after the challenge (196±5.5 mM vs. 262±7.6 mM, respectively; P<0.05). In addition, A1-lesioned rats excreted only 47% of their sodium 90 min after HS infusion, while sham animals excreted 80% of their sodium. Immunohistochemical analysis confirmed a substantial destruction of the A1 cell group in the CVLM of rats that had been nanoinjected withanti-DβH-saporin. These results suggest that medullary noradrenergic A1 neurons are involved in the excitatory neural pathway that regulates hypertensive and natriuretic responses to acute changes in the composition of body fluid.
Collapse
Affiliation(s)
- Elaine Fernanda da Silva
- Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás,Goiânia, Goiás, Brazil
| | | | | | - Paulo César Ghedini
- Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás,Goiânia, Goiás, Brazil
| | - Luiz Artur Mendes Bataus
- Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás,Goiânia, Goiás, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Carlos Henrique de Castro
- Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás,Goiânia, Goiás, Brazil
| | - Diego Basile Colugnati
- Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás,Goiânia, Goiás, Brazil
| | - Daniel Alves Rosa
- Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás,Goiânia, Goiás, Brazil
| | - Sergio L. D. Cravo
- Department of Physiology, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Gustavo Rodrigues Pedrino
- Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás,Goiânia, Goiás, Brazil
- * E-mail:
| |
Collapse
|
16
|
Pedrino GR, Freiria-Oliveira AH, Almeida Colombari DS, Rosa DA, Cravo SL. A2 noradrenergic lesions prevent renal sympathoinhibition induced by hypernatremia in rats. PLoS One 2012; 7:e37587. [PMID: 22629424 PMCID: PMC3357396 DOI: 10.1371/journal.pone.0037587] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 04/21/2012] [Indexed: 11/11/2022] Open
Abstract
Renal vasodilation and sympathoinhibition are recognized responses induced by hypernatremia, but the central neural pathways underlying such responses are not yet entirely understood. Several findings suggest that A2 noradrenergic neurons, which are found in the nucleus of the solitary tract (NTS), play a role in the pathways that contribute to body fluid homeostasis and cardiovascular regulation. The purpose of this study was to determine the effects of selective lesions of A2 neurons on the renal vasodilation and sympathoinhibition induced by hypertonic saline (HS) infusion. Male Wistar rats (280-350 g) received an injection into the NTS of anti-dopamine-beta-hydroxylase-saporin (A2 lesion; 6.3 ng in 60 nl; n = 6) or free saporin (sham; 1.3 ng in 60 nl; n = 7). Two weeks later, the rats were anesthetized (urethane 1.2 g⋅kg(-1) b.wt., i.v.) and the blood pressure, renal blood flow (RBF), renal vascular conductance (RVC) and renal sympathetic nerve activity (RSNA) were recorded. In sham rats, the HS infusion (3 M NaCl, 1.8 ml⋅kg(-1) b.wt., i.v.) induced transient hypertension (peak at 10 min after HS; 9±2.7 mmHg) and increases in the RBF and RVC (141±7.9% and 140±7.9% of baseline at 60 min after HS, respectively). HS infusion also decreased the RSNA (-45±5.0% at 10 min after HS) throughout the experimental period. In the A2-lesioned rats, the HS infusion induced transient hypertension (6±1.4 mmHg at 10 min after HS), as well as increased RBF and RVC (133±5.2% and 134±6.9% of baseline at 60 min after HS, respectively). However, in these rats, the HS failed to reduce the RSNA (115±3.1% at 10 min after HS). The extent of the catecholaminergic lesions was confirmed by immunocytochemistry. These results suggest that A2 noradrenergic neurons are components of the neural pathways regulating the composition of the extracellular fluid compartment and are selectively involved in hypernatremia-induced sympathoinhibition.
Collapse
|
17
|
Cravo S, Lopes O, Pedrino G. Involvement of catecholaminergic medullary pathways in cardiovascular responses to acute changes in circulating volume. Braz J Med Biol Res 2011; 44:877-82. [DOI: 10.1590/s0100-879x2011007500092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 07/08/2011] [Indexed: 11/21/2022] Open
Affiliation(s)
- S.L. Cravo
- Universidade Federal de São Paulo, Brasil
| | - O.U Lopes
- Universidade Federal de São Paulo, Brasil
| | | |
Collapse
|
18
|
Pedrino GR, Rossi MV, Schoorlemmer GH, Lopes OU, Cravo SL. Cardiovascular adjustments induced by hypertonic saline in hemorrhagic rats: Involvement of carotid body chemoreceptors. Auton Neurosci 2011; 160:37-41. [DOI: 10.1016/j.autneu.2010.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 11/01/2010] [Accepted: 11/14/2010] [Indexed: 10/18/2022]
|
19
|
Pedrino GR, Monaco LR, Cravo SL. Renal vasodilation induced by hypernatraemia: Role of α-adrenoceptors in the median preoptic nucleus. Clin Exp Pharmacol Physiol 2009; 36:e83-9. [DOI: 10.1111/j.1440-1681.2009.05280.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Pedrino GR, Rosa DA, Korim WS, Cravo SL. Renal sympathoinhibition induced by hypernatremia: Involvement of A1 noradrenergic neurons. Auton Neurosci 2008; 142:55-63. [DOI: 10.1016/j.autneu.2008.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Revised: 05/16/2008] [Accepted: 06/23/2008] [Indexed: 11/26/2022]
|
21
|
Colombari DSA, Pedrino GR, Freiria-Oliveira AH, Korim WS, Maurino IC, Cravo SL. Lesions of medullary catecholaminergic neurons increase salt intake in rats. Brain Res Bull 2008; 76:572-8. [PMID: 18598847 DOI: 10.1016/j.brainresbull.2008.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 03/31/2008] [Accepted: 04/14/2008] [Indexed: 02/05/2023]
Abstract
Several findings suggest that catecholaminergic neurons in the caudal ventrolateral medulla (CVLM) contribute to body fluid homeostasis and cardiovascular regulation. From the CVLM other areas in central nervous system involved in cardiovascular regulation and hydroelectrolyte balance can be activated. Therefore, the aim of the present study was to investigate the effects of lesions of these neurons on 0.3M NaCl and water intake induced by subcutaneous injection of furosemide (FURO)+captopril (CAP) or 36 h of water deprivation/partial hydration with only water (WD/PR). Male Wistar rats (320-360 g) were submitted to medullary catecholaminergic neuron lesions by microinjection of anti-dopamine-beta-hydroxylase-saporin (anti-DbetaH-saporin; 6.3 ng in 60 nl) into the CVLM (SAP-rats). Sham rats received microinjections of free saporin (1.3 ng in 60 nl) in the same region. In SAP-rats, the 0.3M NaCl intake was increased after FURO+CAP (6.8+/-1.0 ml/2h, vs. sham: 3.7+/-0.7 ml/2h) as well as after WD/PR (11.1+/-1.3 ml/2h vs. sham: 6.1+/-1.8 ml/2h). Conversely, in SAP-rats, the water intake induced by FURO+CAP (14.8+/-1.3 ml/2h, vs. sham: 14.1+/-1.6 ml/2h) or by WD/PR (3.6+/-0.9 ml/2h, vs. sham: 3.2+/-1.1 ml/2h) was not different from sham rats. Immunohistochemical analysis indicates that microinjections of anti-DbetaH-saporin produced extensive destruction within the A1 cell groups in the CVLM. These results suggest an inhibitory role for medullary catecholaminergic neurons on sodium appetite.
Collapse
|
22
|
Zanella S, Viemari JC, Hilaire G. Muscarinic receptors and alpha2-adrenoceptors interact to modulate the respiratory rhythm in mouse neonates. Respir Physiol Neurobiol 2006; 157:215-25. [PMID: 17267295 DOI: 10.1016/j.resp.2006.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 12/01/2006] [Accepted: 12/01/2006] [Indexed: 11/27/2022]
Abstract
The respiratory rhythm generator (RRG) is modulated by several endogenous substances, including acetylcholine (ACh) and noradrenaline (NA) that interact in several modulatory processes. To know whether ACh and NA interacted to modulate the RRG activity, we used medullary "en bloc" and slice preparations from neonatal mice where the RRG has been shown to receive a facilitatory modulation from A1/C1 neurons, via a continuous release of endogenous NA and activation of alpha2 adrenoceptors. Applying ACh at 25 microM activated the RRG but ACh had no effects at 50 microM. Applying the ACh receptor agonists nicotine and muscarine facilitated and depressed the RRG, respectively. After yohimbine pre-treatment that blocked the alpha2 facilitation, the nicotinic facilitation was not altered, the muscarinic depression was reversed and ACh 50 microM significantly facilitated the RRG. After L-tyrosine pre-treatment that potentiated the alpha2 facilitation, the muscarinic depression was enhanced. Thus, ACh regulates the RRG activity via nicotinic and muscarinic receptors, the muscarinic receptors interacting with alpha2 adrenoceptors.
Collapse
Affiliation(s)
- Sébastien Zanella
- Formation de Recherche en Fermeture, FRE CNRS 2722, 280 Boulevard Sainte Marguerite, 13009 Marseille, France
| | | | | |
Collapse
|