1
|
Bin EP, Zaobornyj T, Garces M, D'Annunzio V, Buchholz B, Marchini T, Evelson P, Gelpi RJ, Donato M. Remote ischemic preconditioning prevents sarcolemmal-associated proteolysis by MMP-2 inhibition. Mol Cell Biochem 2024; 479:2351-2363. [PMID: 37728809 DOI: 10.1007/s11010-023-04849-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 09/02/2023] [Indexed: 09/21/2023]
Abstract
The death of myocytes occurs through different pathways, but the rupture of the plasma membrane is the key point in the transition from reversible to irreversible injury. In the myocytes, three major groups of structural proteins that link the extracellular and intracellular milieus and confer structural stability to the cell membrane: the dystrophin-associated protein complex, the vinculin-integrin link, and the spectrin-based submembranous cytoskeleton. The objective was to determine if remote ischemic preconditioning (rIPC) preserves membrane-associated cytoskeletal proteins (dystrophin and β-dystroglycan) through the inhibition of metalloproteinase type 2 (MMP-2) activity. A second objective was to describe some of the intracellular signals of the rIPC, that modify mitochondrial function at the early reperfusion. Isolated rat hearts were subjected to 30 min of global ischemia and 120 min of reperfusion (I/R). rIPC was performed by 3 cycles of ischemia/reperfusion in the lower limb (rIPC). rIPC significantly decreased the infarct size, induced Akt/GSK-3 β phosphorylation and inhibition of the MPTP opening. rIPC improved mitochondrial function, increasing membrane potential, ATP production and respiratory control. I/R increased ONOO- production, which activates MMP-2. This enzyme degrades β-dystroglycan and dystrophin and collaborates to sarcolemmal disruption. rIPC attenuates the breakdown of β-dystroglycan and dystrophin through the inhibition of MMP-2 activity. Furthermore, we confirm that rIPC activates different intracellular pathway that involves the an Akt/Gsk3β and MPTP pore with preservation of mitochondrial function.
Collapse
Affiliation(s)
- Eliana P Bin
- Universidad de Buenos Aires, Facultad de Ciencias Médicas, Instituto de Fisiopatología Cardiovascular, 950 J. E. Uriburu, 2nd floor, C1114AAD, Buenos Aires, Argentina
- Universidad de Buenos Aires - CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Tamara Zaobornyj
- Universidad de Buenos Aires - CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Físico-Química, Buenos Aires, Argentina
| | - Mariana Garces
- Universidad de Buenos Aires - CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Verónica D'Annunzio
- Universidad de Buenos Aires, Facultad de Ciencias Médicas, Instituto de Fisiopatología Cardiovascular, 950 J. E. Uriburu, 2nd floor, C1114AAD, Buenos Aires, Argentina
- Universidad de Buenos Aires - CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Bruno Buchholz
- Universidad de Buenos Aires, Facultad de Ciencias Médicas, Instituto de Fisiopatología Cardiovascular, 950 J. E. Uriburu, 2nd floor, C1114AAD, Buenos Aires, Argentina
- Universidad de Buenos Aires - CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Timoteo Marchini
- Universidad de Buenos Aires - CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Pablo Evelson
- Universidad de Buenos Aires - CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Ricardo J Gelpi
- Universidad de Buenos Aires, Facultad de Ciencias Médicas, Instituto de Fisiopatología Cardiovascular, 950 J. E. Uriburu, 2nd floor, C1114AAD, Buenos Aires, Argentina
- Universidad de Buenos Aires - CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Martín Donato
- Universidad de Buenos Aires, Facultad de Ciencias Médicas, Instituto de Fisiopatología Cardiovascular, 950 J. E. Uriburu, 2nd floor, C1114AAD, Buenos Aires, Argentina.
- Universidad de Buenos Aires - CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina.
| |
Collapse
|
2
|
Wang Y, Wang X, Guo Y, Bian Y, Bai R, Liang B, Xiao C. Effect of adiponectin on macrophage reverse cholesterol transport in adiponectin-/- mice and its mechanism. Exp Ther Med 2017; 13:2757-2762. [PMID: 28587337 PMCID: PMC5450760 DOI: 10.3892/etm.2017.4321] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/23/2017] [Indexed: 12/13/2022] Open
Abstract
The objective of the present study was to investigate the effect of adiponectin (APN) on macrophage reverse cholesterol transport (RCT) in adiponectin-/- knockout mice (APN-/-mice) and its possible anti-atherosclerotic mechanism. A total of 30 male APN-/-mice were randomly divided into the control group and four intervention groups. The intervention groups were treated with intraperitoneal injections of APN, at doses of 50, 150, 200 and 250 µg/(kg/day), respectively, for 4 weeks. The control group received normal saline. After 4 weeks, serum lipid levels were measured, the degree of severity of atherosclerotic lesions was observed by light microscopy, the 3H-TC (APN-/-mice treated with intraperitoneal injections of 3H-TC-labeled macrophages) radioactivity in serum, liver, and feces, and the expression of ABCA1 mRNA and protein in liver were determined. Compared with the control group, serum triglycerides, total cholesterol, and low-density lipoproteins levels in the intervention groups were significantly decreased, while high-density lipoprotein was increased. The severity of aortic atherosclerotic lesions in the intervention groups was milder than in the control group, which had obvious aortic atherosclerotic lesions, large lipid deposition on vessel walls, and the formation of atheromatous plaques. In the intervention groups, serum 3H-TC content was significantly decreased (P<0.05), but the 3H-TC content in liver and feces was significantly increased (P<0.05). The levels of ABCA1 mRNA in liver of the intervention groups were significantly increased in a dose-dependent manner. In conclusion, APN can promote RCT and intracellular cholesterol efflux by upregulating the expression of ABCA1, to delay the occurrence and development of atherosclerosis.
Collapse
Affiliation(s)
- Yueru Wang
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China.,Shanxi Key Laboratory of Cardiovascular Medicine and Clinical Pharmacology, Taiyuan, Shanxi 030001, P.R. China
| | - Xin Wang
- Shanxi Key Laboratory of Cardiovascular Medicine and Clinical Pharmacology, Taiyuan, Shanxi 030001, P.R. China
| | - Yingying Guo
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China.,Shanxi Key Laboratory of Cardiovascular Medicine and Clinical Pharmacology, Taiyuan, Shanxi 030001, P.R. China
| | - Yunfei Bian
- Shanxi Key Laboratory of Cardiovascular Medicine and Clinical Pharmacology, Taiyuan, Shanxi 030001, P.R. China.,Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Rui Bai
- Shanxi Key Laboratory of Cardiovascular Medicine and Clinical Pharmacology, Taiyuan, Shanxi 030001, P.R. China
| | - Bin Liang
- Shanxi Key Laboratory of Cardiovascular Medicine and Clinical Pharmacology, Taiyuan, Shanxi 030001, P.R. China.,Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Chuanshi Xiao
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China.,Shanxi Key Laboratory of Cardiovascular Medicine and Clinical Pharmacology, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
3
|
Cerisano G, Buonamici P, Parodi G, Santini A, Moschi G, Valenti R, Migliorini A, Colonna P, Bellandi B, Gori AM, Antoniucci D. Early changes of left ventricular filling pattern after reperfused ST-elevation myocardial infarction and doxycycline therapy: Insights from the TIPTOP trial. Int J Cardiol 2017; 240:43-48. [PMID: 28433557 DOI: 10.1016/j.ijcard.2017.03.125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/27/2017] [Indexed: 01/21/2023]
Abstract
AIM Metalloproteinases inhibition by doxycycline reduces cardiac protein degradation at extracellular and intracellular level in the experimental model ischemia/reperfusion injury. Since both extracellular cardiac matrix and titin filaments inside the cardiomyocyte are responsible for the myocardial stiffness, we hypothesized that doxycycline could favorably act on left ventricular (LV) filling pressures in patients after reperfused acute ST-elevation myocardial infarction (STEMI). METHODS AND RESULTS Seventy-three of 110 patients of the TIPTOP trial underwent a 2D-Echo-Doppler on admission, and at pre-discharge and at 6-month after a primary PCI for STEMI and LV dysfunction. From admission to pre-discharge, LV filling changed from a high filling pressure (HFP) to a normal filling pressure (NFP) pattern in 91% of the doxycycline-group, and in 67% of the control-group. Conversely, 1% of the doxycycline-group, and 37% of the control-group changed the LV filling from NFP to HFP pattern. Overall, a pre-discharge HFP pattern was present in 4 patients (11%) of the doxycycline-group and in 13 patients (36%) of the control-group (p=0.025). The evaluation of metalloproteinases and their tissue inhibitors plasma concentrations provide possible favorable action of doxycycline. On the multivariate analyses, troponine I peak (p=0.026), doxycycline (p=0.033), and on admission to pre-discharge LVEF changes (p=0.044) were found to be associated with pre-discharge HFP pattern. Independently of their baseline LV filling behavior, the 6-month remodeling was less in patients with pre-discharge NFP pattern than in patients with HFP pattern. CONCLUSIONS In patients with STEMI and LV dysfunction doxycycline can favorably modulate the LV filling pattern early after primary PCI.
Collapse
Affiliation(s)
- Giampaolo Cerisano
- Cardiovascular and Thoracic Department, Careggi Hospital, Florence, Italy.
| | | | - Guido Parodi
- Cardiovascular and Thoracic Department, Careggi Hospital, Florence, Italy
| | - Alberto Santini
- Cardiovascular and Thoracic Department, Careggi Hospital, Florence, Italy
| | - Guia Moschi
- Cardiovascular and Thoracic Department, Careggi Hospital, Florence, Italy
| | - Renato Valenti
- Cardiovascular and Thoracic Department, Careggi Hospital, Florence, Italy
| | - Angela Migliorini
- Cardiovascular and Thoracic Department, Careggi Hospital, Florence, Italy
| | - Paolo Colonna
- Division of Cardiology, Hospital Policlinico of Bari, Bari, Italy
| | - Benedetta Bellandi
- Cardiovascular and Thoracic Department, Careggi Hospital, Florence, Italy
| | - Anna Maria Gori
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - David Antoniucci
- Cardiovascular and Thoracic Department, Careggi Hospital, Florence, Italy
| |
Collapse
|
4
|
Inhibition of endogenous thioredoxin-1 in the heart of transgenic mice does not confer cardioprotection in ischemic postconditioning. Int J Biochem Cell Biol 2016; 81:315-322. [PMID: 27682518 DOI: 10.1016/j.biocel.2016.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/21/2016] [Accepted: 09/24/2016] [Indexed: 12/29/2022]
Abstract
Thioredoxin-1 maintains the cellular redox status and decreases the infarct size in ischemia/reperfusion injury. However, whether the increase of thioredoxin-1 expression or its lack of activity modifies the protection conferred by ischemic postconditioning has not been yet elucidated. The aim was to evaluate if the thioredoxin-1 overexpression enhances the posctconditioning protective effect, and whether the lack of the activity abolishes the reduction of the infarct size. Wild type mice hearts, transgenic mice hearts overexpressing thioredoxin-1, and a dominant negative mutant (C32S/C35S) of thioredoxin-1 were used. The hearts were subjected to 30min of ischemia and 120min of reperfusion (Langendorff) (I/R group) or to postconditioning protocol (PostC group). The infarct size in the Wt-PostC group decreased in comparison to the Wt-I/R group (54.6±2.4 vs. 39.2±2.1%, p<0.05), but this protection was abolished in DN-Trx1-PostC group (49.7±1.1%). The ischemia/reperfusion and postconditioning in mice overexpressing thioredoxin-1 reduced infarct size at the same magnitude (35.9±2.1 and 38.4±1.3%, p<0.05 vs. Wt-I/R). In Wt-PostC, Trx1-I/R and Trx1- PostC, Akt and GSK3β phosphorylation increased compared to Wt-I/R, without changes in DN-Trx1 groups. In conclusion, given that the cardioprotection conferred by thioredoxin-1 overexpression and postconditioning, is accomplished through the activation of the Akt/GSK3β survival pathway, no synergic effect was evidenced. Thioredoxin-1 plays a key role in the postconditioning, given that when this protein is inactive the cardioprotective mechanism was abolished. Thus, diverse comorbidities or situations modifying the thioredoxin activity, could explain the absence of this strong mechanism of protection in different clinical situations.
Collapse
|
5
|
D'Annunzio V, Perez V, Boveris A, Gelpi RJ, Poderoso JJ. Role of thioredoxin-1 in ischemic preconditioning, postconditioning and aged ischemic hearts. Pharmacol Res 2016; 109:24-31. [PMID: 26987940 DOI: 10.1016/j.phrs.2016.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 01/12/2023]
Abstract
Thioredoxin is one of the most important cellular antioxidant systems known to date, and is responsible of maintaining the reduced state of the intracellular space. Trx-1 is a small cytosolic protein whose transcription is induced by stress. Therefore it is possible that this antioxidant plays a protective role against the oxidative stress caused by an increase of reactive oxygen species concentration, as occurs during the reperfusion after an ischemic episode. However, in addition to its antioxidant properties, it is able to activate other cytoplasmic and nuclear mediators that confer cardioprotection. It is remarkable that Trx-1 also participates in myocardial protection mechanisms such as ischemic preconditioning and postconditioning, activating proteins related to cellular survival. In this sense, it has been shown that Trx-1 inhibition abolished the preconditioning cardioprotective effect, evidenced through apoptosis and infarct size. Furthermore, ischemic postconditioning preserves Trx-1 content at reperfusion, after ischemia. However, comorbidities such as aging can modify this powerful cellular defense leading to decrease cardioprotection. Even ischemic preconditioning and postconditioning protocols performed in aged animal models failed to decrease infarct size. Therefore, the lack of success of antioxidants therapies to treat ischemic heart disease could be solved, at least in part, avoiding the damage of Trx system.
Collapse
Affiliation(s)
- Veronica D'Annunzio
- Institute of Biochemistry and Molecular Medicine (IBIMOL, UBA-CONICET), Argentina; Institute of Cardiovascular Physiopathology, Department of Pathology, Faculty of Medicine, University of Buenos Aires, Argentina
| | - Virginia Perez
- Institute of Biochemistry and Molecular Medicine (IBIMOL, UBA-CONICET), Argentina; Institute of Cardiovascular Physiopathology, Department of Pathology, Faculty of Medicine, University of Buenos Aires, Argentina
| | - Alberto Boveris
- Institute of Biochemistry and Molecular Medicine (IBIMOL, UBA-CONICET), Argentina
| | - Ricardo J Gelpi
- Institute of Biochemistry and Molecular Medicine (IBIMOL, UBA-CONICET), Argentina; Institute of Cardiovascular Physiopathology, Department of Pathology, Faculty of Medicine, University of Buenos Aires, Argentina.
| | - Juan J Poderoso
- Laboratory of Oxygen Metabolism, University Hospital, University of Buenos Aires, Argentina
| |
Collapse
|
6
|
Ischemic postconditioning confers cardioprotection and prevents reduction of Trx-1 in young mice, but not in middle-aged and old mice. Mol Cell Biochem 2016; 415:67-76. [PMID: 26932791 DOI: 10.1007/s11010-016-2677-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 02/18/2016] [Indexed: 01/04/2023]
Abstract
Thioredoxin-1 (Trx-1) is part of an antioxidant system that maintains the cell redox homeostasis but their role on ischemic postconditioning (PostC) is unknown. The aim of this work was to determine whether Trx-1 participates in the cardioprotective mechanism of PostC in young, middle-aged, and old mice. Male FVB young (Y: 3 month-old), middle-aged (MA: 12 month-old), and old (O: 20 month-old) mice were used. Langendorff-perfused hearts were subjected to 30 min of ischemia and 120 min of reperfusion (I/R group). After ischemia, we performed 6 cycles of R/I (10 s each) followed by 120 min of reperfusion (PostC group). We measured the infarct size (triphenyltetrazolium); Trx-1, total and phosphorylated Akt, and GSK3β expression (Western blot); and the GSH/GSSG ratio (HPLC). PostC reduced the infarct size in young mice (I/R-Y: 52.3 ± 2.4 vs. PostC-Y: 40.0 ± 1.9, p < 0.05), but this protection was abolished in the middle-aged and old mice groups. Trx-1 expression decreased after I/R, and the PostC prevented the protein degradation in young animals (I/R-Y: 1.05 ± 0.1 vs. PostC-Y: 0.52 ± .0.07, p < 0.05). These changes were accompanied by an improvement in the GSH/GSSG ratio (I/R-Y: 1.25 ± 0.30 vs. PostC-Y: 7.10 ± 2.10, p < 0.05). However, no changes were observed in the middle-aged and old groups. Cytosolic Akt and GSK3β phosphorylation increased in the PostC compared with the I/R group only in young animals. Our results suggest that PostC prevents Trx-1 degradation, decreasing oxidative stress and allowing the activation of Akt and GSK3β to exert its cardioprotective effect. This protection mechanism is not activated in middle-aged and old animals.
Collapse
|
7
|
Matrix metalloproteinases and their tissue inhibitor after reperfused ST-elevation myocardial infarction treated with doxycycline. Insights from the TIPTOP trial. Int J Cardiol 2015; 197:147-53. [PMID: 26134371 DOI: 10.1016/j.ijcard.2015.06.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/24/2015] [Accepted: 06/16/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND The TIPTOP (Early Short-term Doxycycline Therapy In Patients with Acute Myocardial Infarction and Left Ventricular Dysfunction to Prevent The Ominous Progression to Adverse Remodelling) trial demonstrated that a timely, short-term therapy with doxycycline is able to reduce LV dilation, and both infarct size and severity in patients treated with primary percutaneous intervention (pPCI) for a first ST-elevation myocardial infarction (STEMI) and left ventricular (LV) dysfunction. In this secondary, pre-defined analysis of the TIPTOP trial we evaluated the relationship between doxycycline and plasma levels of matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs). METHODS In 106 of the 110 (96%) patients enrolled in the TIPTOP trial, plasma MMPs and TIMPs were measured at baseline, and at post-STEMI days 1, 7, 30 and 180. To evaluate the remodeling process, 2D-Echo studies were performed at baseline and at 6months. A (99m)Tc-SPECT was performed to evaluate the 6-month infarct size and severity. RESULTS Doxycycline therapy was independently related to higher plasma TIMP-2 levels at day 7 (p<0.05). Plasma TIMP-2 levels above the median value at day 7 were correlated with the 6-month smaller infarct size (3% [0%-16%] vs. 12% [0%-30%], p=0.002) and severity (0.55 [0.44-0.64] vs. 0.45 [0.29-0.60], p=0.002), and LV dilation (-1ml/m(2) [from -7ml/m(2) to 9ml/m(2)] vs. 3ml/m(2) [from -2ml/m(2) to 19ml/m(2)], p=0.04), compared to their counterpart. CONCLUSIONS In this clinical setting, doxycycline therapy results in higher plasma levels of TIMP-2 which, in turn, inversely correlate with 6month infarct size and severity as well as LV dilation.
Collapse
|
8
|
Cardioprotective effects of voluntary exercise in a rat model: role of matrix metalloproteinase-2. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:876805. [PMID: 25874025 PMCID: PMC4385683 DOI: 10.1155/2015/876805] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/24/2014] [Indexed: 12/26/2022]
Abstract
Background. Regular exercise at moderate intensity reduces cardiovascular risks. Matrix metalloproteinases (MMPs) play a major role in cardiac remodeling, facilitating physiological adaptation to exercise. The aim of this study was to examine the influence of voluntary physical exercise on the MMP-2 enzyme activity and to investigate the cardiac performance by measurement of angina susceptibility of the heart, the basal blood pressure, the surviving aorta ring contraction, and the cardiac infarct size after I/R-induced injury. Methods. Male Wistar rats were divided into control and exercising groups. After a 6-week period, the serum level of MMP-2, basal blood pressure, cardiac angina susceptibility (the ST segment depression provoked by epinephrine and 30 s later phentolamine), AVP-induced heart perfusion and aorta ring contraction, infarct size following 30 min ischemia and 120 min reperfusion, and coronary effluent MMP-2 activity were measured. Results. Voluntary wheel-running exercise decreased both the sera (64 kDa and 72 kDa) and the coronary effluent (64 kDa) MMP-2 level, reduced the development of ST depression, improved the isolated heart perfusion, and decreased the ratio of infarct size. Conclusion. 6 weeks of voluntary exercise training preserved the heart against cardiac injury. This protective mechanism might be associated with the decreased activity of MMP-2.
Collapse
|
9
|
Hughes BG, Schulz R. Targeting MMP-2 to treat ischemic heart injury. Basic Res Cardiol 2014; 109:424. [PMID: 24986221 DOI: 10.1007/s00395-014-0424-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 06/23/2014] [Indexed: 10/24/2022]
Abstract
Matrix metalloproteinase (MMPs) are long understood to be involved in remodeling of the extracellular matrix. However, over the past decade, it has become clear that one of the most ubiquitous MMPs, MMP-2, has numerous intracellular targets in cardiac myocytes. Notably, MMP-2 proteolyzes components of the sarcomere, and its intracellular activity contributes to ischemia-reperfusion injury of the heart. Together with the well documented role played by MMPs in the myocardial remodeling that occurs following myocardial infarction, this has led to great interest in targeting MMPs to treat cardiac ischemic injury. In this review we will describe the expanding understanding of intracellular MMP-2 biology, and how this knowledge may lead to improved treatments for ischemic heart injury. We also critically review the numerous preclinical studies investigating the effects of MMP inhibition in animal models of myocardial infarction and ischemia-reperfusion injury, as well as the recent clinical trials that are part of the effort to translate these results into clinical practice. Acknowledging the disappointing results of past clinical trials of MMP inhibitors for other diseases, we discuss the need for carefully designed preclinical and clinical studies to avoid mistakes that have been previously made. We conclude that inhibition of MMPs, and in particular MMP-2, shows promise as a therapy to prevent the progression from ischemic injury to heart failure. However, it is critical that the full breadth of MMP-2 biology be taken into account as such therapies are developed.
Collapse
Affiliation(s)
- Bryan G Hughes
- Departments of Pediatrics and Pharmacology, Mazankowski Alberta Heart Institute/Cardiovascular Research Centre, University of Alberta, 4-62 HMRC, Edmonton, AB, T6G 2S2, Canada
| | | |
Collapse
|
10
|
Ischemic Postconditioning Reduces Infarct Size Through the α1-Adrenergic Receptor Pathway. J Cardiovasc Pharmacol 2014; 63:504-11. [DOI: 10.1097/fjc.0000000000000074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Gao L, Chen L, Lu ZZ, Gao H, Wu L, Chen YX, Zhang CM, Jiang YK, Jing Q, Zhang YY, Yang HT. Activation of α1B-adrenoceptors contributes to intermittent hypobaric hypoxia-improved postischemic myocardial performance via inhibiting MMP-2 activation. Am J Physiol Heart Circ Physiol 2014; 306:H1569-81. [PMID: 24705558 DOI: 10.1152/ajpheart.00772.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inhibition of matrix metalloproteinases-2 (MMP-2) activation renders cardioprotection from ischemia/reperfusion (I/R) injury; however, the signaling pathways involved have not been fully understood. Intermittent hypobaric hypoxia (IHH) has been shown to enhance myocardial tolerance to I/R injury via triggering intrinsic adaptive responses. Here we investigated whether IHH protects the heart against I/R injury via the regulation of MMP-2 and how the MMP-2 is regulated. IHH (Po2 = 84 mmHg, 4-h/day, 4 wk) improved postischemic myocardial contractile performance, lactate dehydrogenase (LDH) release, and infarct size in isolated perfused rat hearts. Moreover, IHH reversed I/R-induced MMP-2 activation and release, disorders in the levels of MMP-2 regulators, peroxynitrite (ONOO(-)) and tissue inhibitor of metalloproteinase-4 (TIMP-4), and loss of the MMP-2 targets α-actinin and troponin I. This protection was mimicked, but not augmented, by a MMP inhibitor doxycycline and lost by the α1-adrenoceptor (AR) antagonist prazosin. Furthermore, IHH increased myocardial α1A-AR and α1B-AR density but not α1D-AR after I/R. Concomitantly, IHH further enhanced the translocation of PKC epsilon (PKCε) and decreased the release of mitochondrial cytochrome c due to I/R via the activation of α1B-AR but not α1A-AR or α1D-AR. IHH-conferred cardioprotection in the postischemic contractile function, LDH release, MMP-2 activation, and nitrotyrosine as well as TIMP-4 contents were mimicked but not additive by α1-AR stimulation with phenylephrine and were abolished by an α1B-AR antagonist chloroethylclonidine and a PKCε inhibitor PKCε V1-2. These findings demonstrate that IHH exerts cardioprotection through attenuating excess ONOO(-) biosynthesis and TIMP-4 loss and sequential MMP-2 activation via the activation of α1B-AR/PKCε pathway.
Collapse
Affiliation(s)
- Ling Gao
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine Shanghai, China; and
| | - Le Chen
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine Shanghai, China; and
| | - Zhi-Zhen Lu
- Institute of Vascular Medicine, Peking University Third Hospital and Key Laboratory of Molecular Cardiovascular Sciences Ministry of Education, Beijing, China
| | - Hong Gao
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine Shanghai, China; and
| | - Lan Wu
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine Shanghai, China; and
| | - Yi-Xiong Chen
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine Shanghai, China; and
| | - Cai-Mei Zhang
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine Shanghai, China; and
| | - Yu-Kun Jiang
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine Shanghai, China; and
| | - Qing Jing
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine Shanghai, China; and
| | - You-Yi Zhang
- Institute of Vascular Medicine, Peking University Third Hospital and Key Laboratory of Molecular Cardiovascular Sciences Ministry of Education, Beijing, China
| | - Huang-Tian Yang
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine Shanghai, China; and
| |
Collapse
|
12
|
Effects of a timely therapy with doxycycline on the left ventricular remodeling according to the pre-procedural TIMI flow grade in patients with ST-elevation acute myocardial infarction. Basic Res Cardiol 2014; 109:412. [DOI: 10.1007/s00395-014-0412-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/23/2014] [Accepted: 04/25/2014] [Indexed: 10/25/2022]
|
13
|
Postresuscitation Administration of Doxycycline Preserves Cardiac Contractile Function in Hypoxia-Reoxygenation Injury of Newborn Piglets*. Crit Care Med 2014; 42:e260-9. [DOI: 10.1097/ccm.0000000000000135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Buchholz B, Donato M, D’Annunzio V, Gelpi RJ. Ischemic postconditioning: mechanisms, comorbidities, and clinical application. Mol Cell Biochem 2014; 392:1-12. [DOI: 10.1007/s11010-014-2014-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/28/2014] [Indexed: 02/08/2023]
|
15
|
Activation of intracellular matrix metalloproteinase-2 by reactive oxygen–nitrogen species: Consequences and therapeutic strategies in the heart. Arch Biochem Biophys 2013; 540:82-93. [DOI: 10.1016/j.abb.2013.09.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/20/2013] [Accepted: 09/30/2013] [Indexed: 12/27/2022]
|
16
|
Sevin G, Ozsarlak-Sozer G, Keles D, Gokce G, Reel B, Ozgur HH, Oktay G, Kerry Z. Taurine inhibits increased MMP-2 expression in a model of oxidative stress induced by glutathione depletion in rabbit heart. Eur J Pharmacol 2013; 706:98-106. [DOI: 10.1016/j.ejphar.2013.02.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/21/2013] [Accepted: 02/24/2013] [Indexed: 10/27/2022]
|
17
|
Müller AL, Hryshko LV, Dhalla NS. Extracellular and intracellular proteases in cardiac dysfunction due to ischemia-reperfusion injury. Int J Cardiol 2012; 164:39-47. [PMID: 22357424 DOI: 10.1016/j.ijcard.2012.01.103] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 10/19/2011] [Accepted: 01/28/2012] [Indexed: 12/20/2022]
Abstract
Various procedures such as angioplasty, thrombolytic therapy, coronary bypass surgery, and cardiac transplantation are invariably associated with ischemia-reperfusion (I/R) injury. Impaired recovery of cardiac function due to I/R injury is considered to be a consequence of the occurrence of both oxidative stress and intracellular Ca(2+)-overload in the myocardium. These changes in the ischemic myocardium appear to activate both extracellular and intracellular proteases which are responsible for the cleavage of extracellular matrix and subcellular structures involved in the maintenance of cardiac function. It is thus intended to discuss the actions of I/R injury on several proteases, with a focus on calpain, matrix metalloproteinases, and cathepsins as well as their role in inducing alterations both inside and outside the cardiomyocytes. In addition, modifications of subcellular organelles such as myofibrils, sarcoplasmic reticulum and sarcolemma as well as extracellular matrix, and the potential regulatory effects of endogenous inhibitors on protease activities are identified. Both extracellular and intracellular proteolytic activities appear to be imperative in determining the true extent of I/R injury and their inhibition seems to be of critical importance for improving the recovery of cardiac function. Thus, both extracellular and intracellular proteases may serve as potential targets for the development of cardioprotective interventions for reducing damage to the heart and retarding the development of contractile dysfunction caused by I/R injury.
Collapse
Affiliation(s)
- Alison L Müller
- Institute of Cardiovascular Sciences, St Boniface Hospital Research Centre, and Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
18
|
Gobbetti T, Cenac N, Motta JP, Rolland C, Martin L, Andrade-Gordon P, Steinhoff M, Barocelli E, Vergnolle N. Serine protease inhibition reduces post-ischemic granulocyte recruitment in mouse intestine. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:141-52. [PMID: 22067907 DOI: 10.1016/j.ajpath.2011.09.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 08/26/2011] [Accepted: 09/20/2011] [Indexed: 01/17/2023]
Abstract
Proteases and proteinase-activated receptor (PAR) activation are involved in several intestinal inflammatory conditions. We hypothesized that serine proteases and PAR activation could also modulate the intestinal injury induced by ischemia-reperfusion (I-R). C57Bl/6 mice were subjected to 90 minutes of intestinal ischemia followed or not by reperfusion. Sham-operated animals served as controls. After ischemia, plasma and tissue serine protease activity levels were increased compared to the activity measured in plasma and tissues from sham-operated mice. This increase was maintained or further enhanced after 2 and 5 hours of reperfusion, respectively. Trypsin (25 kDa) was detected in tissues both after ischemia and 2 hours of reperfusion. Treatment with FUT-175 (10 mg/kg), a potent serine protease inhibitor, increased survival after I-R, inhibited tissue protease activity, and significantly decreased intestinal myeloperoxidase (MPO) activity and chemokine and adhesion molecule expression. We investigated whether serine proteases modulate granulocyte recruitment by a PAR-dependent mechanism. MPO levels and adhesion molecule expression were significantly reduced in I-R groups pre-treated with the PAR(1) antagonist SCH-79797 (5 mg/kg) and in Par(2)(-/-)mice, compared, respectively, to vehicle-treated group and wild-type littermates. Thus, increased proteolytic activity and PAR activation play a pathogenic role in intestinal I-R injury. Inhibition of PAR-activating serine proteases could be beneficial to reduce post-ischemic intestinal inflammation.
Collapse
Affiliation(s)
- Thomas Gobbetti
- INSERM, U1043, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Dejonckheere E, Vandenbroucke RE, Libert C. Matrix metalloproteinases as drug targets in ischemia/reperfusion injury. Drug Discov Today 2011; 16:762-78. [PMID: 21745586 DOI: 10.1016/j.drudis.2011.06.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/24/2011] [Accepted: 06/27/2011] [Indexed: 12/11/2022]
Abstract
Deficient blood supply (ischemia) is a common consequence of some surgical procedures and certain pathologies. Once blood circulation is re-established (reperfusion), a complex series of events results in recruitment of inflammatory cells, rearrangement of the extracellular matrix and induction of cell death, which lead to organ dysfunction. Although ischemia/reperfusion (I/R) injury is an important cause of death, there is no effective therapy targeting the molecular mechanism of disease progression. Matrix metalloproteinases (MMPs), which are important regulators of many cellular activities, have a central role in disease progression after I/R injury, as suggested by numerous studies using MMP inhibitors or MMP-deficient mice. Here, we review the involvement of MMP activity in the various processes following I/R injury and the therapeutic potential of MMP inhibition.
Collapse
|
20
|
Castro MM, Kandasamy AD, Youssef N, Schulz R. Matrix metalloproteinase inhibitor properties of tetracyclines: therapeutic potential in cardiovascular diseases. Pharmacol Res 2011; 64:551-60. [PMID: 21689755 DOI: 10.1016/j.phrs.2011.05.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Matrix metalloproteinases (MMPs) are a family of proteases best known for their capacity to proteolyse several proteins of the extracellular matrix. Their increased activity contributes to the pathogenesis of several cardiovascular diseases. MMP-2 in particular is now considered to be also an important intracellular protease which has the ability to proteolyse specific intracellular proteins in cardiac muscle cells and thus reduce contractile function. Accordingly, inhibition of MMPs is a growing therapeutic aim in the treatment or prevention of various cardiovascular diseases. Tetracyclines, especially doxycycline, have been frequently used as important MMP inhibitors since they inhibit MMP activity independently of their antimicrobial properties. In this review we will focus on the intracellular actions of MMPs in some cardiovascular diseases including ischemia and reperfusion (I/R) injury, inflammatory heart diseases and septic shock; and explain how tetracyclines, as MMP inhibitors, have therapeutic actions to treat such diseases. We will also briefly discuss how MMPs can be intracellularly regulated and activated by oxidative stress, thus cleaving several important proteins inside cells. In addition to their potential therapeutic effects, MMP inhibitors may also be useful tools to understand the biological consequences of MMP activity and its respective extra- and intracellular effects.
Collapse
Affiliation(s)
- Michele M Castro
- Department of Pharmacology, Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
21
|
Schram K, Ganguly R, No EK, Fang X, Thong FSL, Sweeney G. Regulation of MT1-MMP and MMP-2 by leptin in cardiac fibroblasts involves Rho/ROCK-dependent actin cytoskeletal reorganization and leads to enhanced cell migration. Endocrinology 2011; 152:2037-47. [PMID: 21385940 DOI: 10.1210/en.2010-1166] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Altered leptin action has been implicated in the pathophysiology of heart failure in obesity, a hallmark of which is extracellular matrix remodeling. Here, we characterize the direct influence of leptin on matrix metalloproteinase (MMP) activity in primary adult rat cardiac fibroblasts and focus on elucidating the molecular mechanisms responsible. Leptin increased expression and cell surface localization of membrane type 1 (MT1)-MMP, measured by cell surface biotinylation assay and antibody-based colorimetric detection of an exofacial epitope in intact cells. Coimmunoprecipitation analysis showed that leptin also induced the formation of a cluster of differentiation 44/MT1-MMP complex. Qualitative analysis using rhodamine-conjugated phalloidin immunofluorescence indicated that leptin stimulated actin cytoskeletal reorganization and enhanced stress fiber formation. Hence, we analyzed activation of Ras homolog gene family (Rho), member A GTPase activity and found a rapid increase in response to leptin that corresponded with increased phosphorylation of cofilin. Quantitative analysis of cytoskeleton reorganization upon separation of globular and filamentous actin by differential centrifugation confirmed the significant increase in filamentous to globular actin ratio in response to leptin, which was prevented by pharmacological inhibition of Rho (C3 transferase) or its downstream effector kinase Rho-associated coiled-coil-forming protein kinase (ROCK) (Y-27632). Inhibition of Rho or ROCK also attenuated leptin-stimulated increases in cell surface MT1-MMP content. Pro-MMP-2 is a known MT1-MMP substrate, and we observed that enhanced cell surface MT1-MMP in response to leptin resulted in enhanced extracellular activation of pro-MMP-2 measured by gelatin zymography, which was again attenuated by inhibition of Rho or ROCK. Using wound scratch assays, we observed enhanced cell migration, but not proliferation, measured by 5-bromo2'-deoxy-uridine incorporation, in response to leptin, again via a Rho-dependent signaling mechanism. Our results suggest that leptin regulates myocardial matrix remodeling by regulating the cell surface localization of MT1-MMP in adult cardiac fibroblasts via Rho/ROCK-dependent actin cytoskeleton reorganization. Subsequent pro-MMP-2 activation then contributes to stimulation of cell migration.
Collapse
Affiliation(s)
- Kristin Schram
- Department of Biology, York University, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Vinten-Johansen J, Granfeldt A, Mykytenko J, Undyala VV, Dong Y, Przyklenk K. The multidimensional physiological responses to postconditioning. Antioxid Redox Signal 2011; 14:791-810. [PMID: 20618066 DOI: 10.1089/ars.2010.3396] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Reperfusion is the definitive treatment to reduce infarct size and other manifestations of postischemic injury. However, reperfusion contributes to postischemic injury, and, therefore, reperfusion therapies do not achieve the optimal salvage of myocardium. Other tissues as well undergo injury after reperfusion, notably, the coronary vascular endothelium. Postconditioning has been shown to have salubrious effects on different tissue types within the heart (cardiomyocytes, endothelium) and to protect against various pathologic processes, including necrosis, apoptosis, contractile dysfunction, arrhythmias, and microvascular injury or "no-reflow." The mechanisms by which postconditioning alters the pathophysiology of reperfusion injury is exceedingly complex and involves physiological mechanisms (e.g., delaying re-alkalinization of tissue pH, triggering release of autacoids, and opening and closing of various channels) and molecular mechanisms (activation of kinases) that affect cellular and subcellular targets or effectors. The physiologic responses to postconditioning are not isolated or mutually exclusive, but are interactive, with one response affecting another in an integrated manner. This integrated response on multiple targets differs from the monotherapy approach by drugs that have failed to reduce reperfusion injury on a consistent basis and may underlie the efficacy of this therapeutic approach across species and in human trials.
Collapse
Affiliation(s)
- Jakob Vinten-Johansen
- Department of Surgery (Cardiothoracic), Carlyle Fraser Heart Center, Emory University, 550 Peachtree Street NE, Atlanta, GA 30308-2225, USA.
| | | | | | | | | | | |
Collapse
|